3GPP TSG GERAN WG2 #5Bis meeting
Tdoc G2-010073

Helsinki, FINLAND

Agenda item 7.2.5.4
June 25th - 29th, 2001

Source: Nortel Networks
3GPP TSG GERAN WG2 #5Bis meeting
Tdoc G2-010073

ASN.1 encoding and GERAN

Earlier debates and proposals ([1], [2]) have raised the choice of the encoding method that will be used for GERAN Iu mode signalling protocols. This Nortel Networks contribution presents insights on why ASN.1 (Abstract Syntax Notation One) would fit GERAN RRC messages encoding. Details are provided within the following records.

· ASN.1 is used by RAN WG2 for RRC as a very concrete syntax, which allows to control the resulting bit string generation using PER (Packed Encoding Rules). The actual differences with the use of CSN.1 in GPRS (which is a non abstract syntax) are very minor (of course, initially, people were reluctant to use ASN.1; similarly CSN.1 took some time to make its way).

· One of the ASN.1 merits (this also applies to CSN.1) is that it is a formal language, which can benefit from generic tools (e.g. encoder / decoder are compiled directly from textual syntax description). This does not apply to tabular (TLV) format used in TS 44.018.

· UTRAN RRC extension mechanism specification is under completion in RAN WG2; the difficulties that have been encountered have little to do with ASN.1 itself. On the opposite, they mostly come from the fact that RAN WG2, for compactness reasons, did not want to use BER (Basic Encoding Rules) based on TLV principles, or the ellipsis notation (...) allowed in ASN.1 and requiring a length field for extensions. Therefore, RAN WG2 decided to use a specific, bit oriented, extensions mechanism that would be as difficult (or as easy) as with CSN.1.

· One of the aspects which leads to more complexity in RAN WG2 is the use of the extensions mechanism for backwards compatible corrections. This is a requirement that can be met with the methodology defined for UTRAN RRC.

· Issues credited to ASN.1 come from that this is a convoluted syntax lacking of legibility as well as of flexibility. Still, the very restrictive but simple way it is used in UTRAN RRC narrows notably this issue.

· ASN.1 is anyway used for Iu and Iur-g (RNS - BSS) interfaces specification, so it is seen as valuable to make use of a common methodology for GERAN R5. GSM/GPRS is based on too many different encoding formats: tabular format (within itself IEs may hold either values or bit-oriented information; also quite different approaches were used for Um and A interfaces description), CSN.1 and now ASN.1 for Iu and Iur-g.

· Furthermore, harmonization with UTRAN would bring further significant benefits for the Iu and Iur-g interfaces. The Iu interface protocols make use of a transparent container including radio interface parameters that are encoded as in 25.331, hence in ASN.1. These parameters would have to be transcoded if not specified in the same way. Also, some RRC messages, like CELL UPDATE, can be sent over the GERAN radio interface then towards the UTRAN RNC across Iur-g, and vice-versa. The transcoding, as well as the access to the related information, would add complexity if different methods were used across GERAN and UTRAN.

· Full backward compatibility between Release 5 messages and previous ones is not considered as desirable, as this would prevent any compactness benefit. E.g. any optional IE will cost 8 bits, in most cases, to code the type (TLV) while only 1 bit is needed with ASN.1. However, backward compatibility can be insured for some EIs requiring specific processing (e.g. frequency lists) as this would allow reusing of some complex computation procedures.

· The work needed to re-encode TLV messages is not so huge considering the restricted rules that are required, and is partly compensated in avoiding the re-encoding of RRC messages reused from UTRAN RRC.

· Most of the issues encountered in UTRAN are now solved, so GERAN will benefit directly from this, which brings a substantial benefit given the very tight schedule.

· Nortel believes that the simplest and most straightforward way when considering all the issues is the following:

· Apply UTRAN RRC methodology, i.e. use an abstract description in tabular form and describe messages coding in ASN.1 with Unaligned PER.

· Encoding ALL the messages of the RRC protocol (be them called RR or RRC messages) using ASN.1 will also bring extra benefits for existing RR messages, like Handover Command, that will be more compact.

· For IEs common to RLC/MAC and RRC, align the semantics (tabular) description, but keep separate encoding. It should be noted that ASN.1 should allow to encode these elements so that the actual encoded values match exactly CSN.1, if this is felt useful. ASN.1 with unaligned PER is a bit oriented generation tool, which provides a very compact and efficient output bit string when comparing to conventional ASN.1 (anyway much more compact than 44.018-like tabular encoding is able to provide).

As a conclusion, and although CSN.1 would have also been a good candidate for UTRAN and GERAN, Nortel believes that today a unique methodology should be applied from now on for GERAN RRC, and that in order to benefit from synergies with Iu, Iub and UTRAN RRC, it should be based on ASN.1 with unaligned PER.

References:

[1] GP-010719: “Definitions and coding methods for GERAN RRC” (Nokia)
[2] GP-011172: “Coding of RRC messages in 44.018” (Ericsson)
[3] 3GPP TS 25.921 v4.0.0: “Guidelines and principles for protocol description and error handling (Release 4)”

[4] 3GPP TS 24.007 v4.0.0: "Mobile radio interface signalling layer 3; General aspects (Release 4)"

[5] 3GPP TS 25.331 v4.0.0: “RRC protocol specification (Release 4)”

[6] 3GPP TS 25.413 v4.0.0: "UTRAN Iu interface RANAP signalling (Release 4)”

Appendix: Assignment command

Preliminary notes:

· This appendix is focused on Tabular vs. ASN.1 syntax concerns. Hence, the Release 5 semantic and messages content are not in the scope of this contribution: the Assignment command depicted below is based on existing GERAN Release 4 specification, except for integrity protection information which is included as a part of the general structure of the RRC messages.

· The example below proposes an overall framework to describe GERAN RRC messages based on UTRAN protocol specification [5]. It is understood that further refinements and enhancements are achievable (e.g. for naming, sorting, coding).

· This example depicts most of the useful syntax items needed to describe a protocol such as GERAN RRC or UTRAN RRC. Tagged CHOICE option and valued ENUMERATED, which are not needed for UTRAN RRC, are proposed to be used for GERAN to ensure coding compatibility for a few specific EIs.

· Items highlighted in yellow are EIs or messages for which description is not provided in this appendix or cases for which a more suitable syntax could be found. This should not prevent the overall understanding of this appendix.

· Other specific comments are highlighted in blue.

X.1
General message structure

Class-definitions DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

IMPORTS

AdditionalAssignment,

AssignmentCommand

-- <other message types>
FROM PDU-definitions

-- User Equipment IEs :

IntegrityCheckInfo
FROM InformationElements;

--**

--

-- Downlink DCCH messages

--

--**

-- The following message description framework, aligned on UTRAN RRC,

-- includes a generic integrity protection information

DL-SDCCH-FACCH-Message ::= SEQUENCE {

integrityCheckInfo

IntegrityCheckInfo

OPTIONAL,

message

DL-SDCCH-FACCH-MessageType

}

DL-SDCCH-FACCH-MessageType ::= CHOICE {

additionalAssignment

AdditionalAssignment,

assignmentCommand

AssignmentCommand,

-- <other message types>

extension

NULL

}

END

X.2
PDU definitions

PDU-definitions DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

--**

--

-- IE parameter types from other modules

--

--**

IMPORTS

CellChannelDescription,

ChannelDescription,

ChannelDescription2,

ChannelMode,

ChannelMode2,

CipherModeSetting,

FrequencyChannelSequence,

FrequencyList,

MobileAllocation,

MultiRateConfiguration,

MultislotAllocation,

PowerCommand,

StartingTime
FROM InformationElements

maxChannelSet

FROM Constant-definitions;

-- ***

--

-- ASSIGNMENT COMMAND

--

-- ***

-- The following description, aligned on UTRAN RRC one, allows message extensions

-- without the need of "…" ellipsis that implies extra coding length

AssignmentCommand ::= CHOICE {

r5

SEQUENCE {

assignmentCommand-r5

AssignmentCommand-r5-IEs,

nonCriticalExtensions

SEQUENCE {}
OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

-- The use of OPTIONAL clause avoids the sending of EI Type (coding needs 1 bit instead of 8)

AssignmentCommand-r5-IEs ::= SEQUENCE {

descriptionOfFirstChannelAfterTime

ChannelDescription2,

powerCommand

PowerCommand,

frequencyListAfterTime

FrequencyList

OPTIONAL,

cellChannelDescription

CellChannelDescription
OPTIONAL,

descriptionOfTheMultislotConfiguration
MultislotAllocation

OPTIONAL,

-- Size constrained sequence avoids the sending of repeated optional EI Types

modeOfChannelSet

SEQUENCE (SIZE (0.. maxChannelSet)) OF

ChannelMode,

descriptionOfTheSecondChannelAfterTime
ChannelDescription

OPTIONAL,

modeOfTheSecondChannel

ChannelMode2

OPTIONAL,

mobileAllocationAfterTime

MobileAllocation

OPTIONAL,

startingTime

StartingTime

OPTIONAL,

frequencyListBeforeTime

FrequencyList

OPTIONAL,

descriptionOfFirstChannelBeforeTime

ChannelDescription2
OPTIONAL,

descriptionOfTheSecondChannelBeforeTime
ChannelDescription

OPTIONAL,

frequencyChannelSequenceBeforeTime

FrequencyChannelSequence OPTIONAL,

mobileAllocationBeforeTime

MobileAllocation

OPTIONAL,

cipherModeSetting

CipherModeSetting

OPTIONAL,

multiRateConfiguration

MultiRateConfiguration
OPTIONAL

}

END

X.3
Information element definitions

InformationElements DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

IMPORTS

maxARFCN,

maxNumCaARFCN,

maxNumRRFCN,

maxTN

FROM Constant-definitions;

-- ***

--

-- Basic types

--

-- ***

ARFCN ::=

INTEGER (0..maxARFCN)

PowerLevel ::=

INTEGER (0..31)

HSN ::=

INTEGER (0..63)

MAIO ::=

INTEGER (0..63)

SDCCH4Num ::=

INTEGER (0..3)

SDCCH8Num ::=

INTEGER (0..7)

TCHNum ::=

INTEGER (0..1)

TN ::=

INTEGER (0..maxTN)

TSC ::=

INTEGER (0..7)

-- ***

--

-- Channel Description IE

--

-- ***

-- The following description does not take care of "backward compatibility", which saves 2 bits

-- in case of fixed frequency. Compatibility could be ensured by including 2 spare bits before ARFCN
ChannelDescription2 ::=

SEQUENCE {

channelTypeAndTDMAOffset

ChannelTypeAndTDMAOffset,

tn

TN,

tsc

TSC,

frequencyParameters

CHOICE {

hoppingParameters

SEQUENCE {

maio

MAIO,

hsn

HSN

},

arfcn

ARFCN

}

}

-- The following description does not take care of "backward compatibility"

-- but this could be insured using appropriate syntax description

-- Spare choices explicit extensibility to 2**n (here 16) cases

ChannelTypeAndTDMAOffset ::=

CHOICE {

tchF-facchF-sacchM-MultislotAlloc

NULL,

tchF-facchF-sacchF

NULL,

tchh-acch

TCHNum,

sdcch4-sacchc4-cbch

SDCCH4Num,

sdcch8-sacchc8-cbch

SDCCH8Num,

tchF-facchF-sacchM-ExplicitCoding

AdditionalTS,

tchF-facchF-sacchM-TNMinus1

NULL,

tchF-facchF-sacchM-TNPlus1ToTNMinus1
NULL,

tchF-facchF-sacchM-TNPlus1ToTNMinus2
NULL,

spare1

NULL,

spare2

NULL,

spare3

NULL,

spare4

NULL,

spare5

NULL,

spare6

NULL,

spare7

NULL

}

AdditionalTS ::=

CHOICE {

tchf-facchf-sacchM-NoAdditionalTS

NULL,

tchf-facchf-sacchM-TNMinus1

NULL,

tchf-facchf-sacchM-TNPlus1ToTNMinus1
NULL,

tchf-facchf-sacchM-TNPlus1ToTNMinus2
NULL,

tchf-facchf-sacchM-TNPlus1ToTNMinus3
NULL,

tchf-facchf-sacchM-TNPlus1ToTNMinus4
NULL,

tchf-facchf-sacchM-TNPlus1ToTNMinus5
NULL,

tchf-facchf-sacchM-TNPlus1ToTNMinus6
NULL

}

-- ***

--

-- Power Command IE

--

-- ***

PowerCommand ::=

SEQUENCE {

fpc

FPC,

powerLevel

PowerLevel

}

FPC::=

ENUMERATED {

fpcNotInUse, fpcInUse }

-- ***

--

-- Frequency list IE

--

-- The following proposal preserves existing GSM coding
--

-- ***

FrequencyList ::=
CHOICE {

-- Explicit tagging ([0], [2]) is used to output equivalent values (0b00 and 0b10 respectively)

bitmap0
[0]

SEQUENCE {

spare

INTEGER (0..3),
-- 2 spare bits - better alternative may exist

bitmap0-FreqList
Bitmap0-FreqListFormat

},

range
[2]

SEQUENCE {

spare

INTEGER (0..3),

range-FreqList

Range-FreqListFormat

}

}

ArfcnUsed ::=

ENUMERATED {

arfcnNotInSet
(0),

arfcnInSet

(1) }

Bitmap0-FreqListFormat ::= SEQUENCE (SIZE (maxNumCaARFCN)) OF ArfcnUsed

-- component [i] corresponds to ARFCN [124-i] (bitmap in reverse order)

Range-FreqListFormat ::=
CHOICE {

range1024-FreqListFormat [0]

SEQUENCE {

fO

ArfcnUsed,

w1024-IndexList
W1024-IndexList

},

range128to512-FreqList [1]

CHOICE {

range512-FreqListFormat [0]

SEQUENCE {

origARFCN

ARFCN,

w512-IndexList

W512-IndexList

},

range256-FreqListFormat
[1]

SEQUENCE {

origARFCN

ARFCN,

w256-IndexList

W256-IndexList

},

range128-FreqListFormat
[2]

SEQUENCE {

origARFCN

ARFCN,

w128-IndexList

W128-IndexList

},

variableBitMap-Format
[3]

SEQUENCE {

origARFCN

ARFCN,

variableBitMap

VariableBitMap

}

}

}

W1024-IndexList ::= SEQUENCE {

w1

INTEGER (0..1023), -- 10 bits

w2

INTEGER (0..511), -- 9 bits

w3

INTEGER (0..511), -- 9 bits

w4

INTEGER (0..255), -- 8 bits

w5

INTEGER (0..255), -- 8 bits

w6

INTEGER (0..255), -- 8 bits

w7

INTEGER (0..255), -- 8 bits

w8

INTEGER (0..127), -- 7 bits

w9

INTEGER (0..127), -- 7 bits

w10

INTEGER (0..127), -- 7 bits

w11

INTEGER (0..127), -- 7 bits

w12

INTEGER (0..127), -- 7 bits

w13

INTEGER (0..127), -- 7 bits

w14

INTEGER (0..127), -- 7 bits

w15

INTEGER (0..127), -- 7 bits

w16

INTEGER (0..63) -- 6 bits
}

W512-IndexList ::= SEQUENCE {

w1

INTEGER (0..511), -- 9 bits

w2

INTEGER (0..255), -- 8 bits

w3

INTEGER (0..255), -- 8 bits

w4

INTEGER (0..127), -- 7 bits

w5

INTEGER (0..127), -- 7 bits

w6

INTEGER (0..127), -- 7 bits

w7

INTEGER (0..127), -- 7 bits

w8

INTEGER (0..63), -- 6 bits

w9

INTEGER (0..63), -- 6 bits

w10

INTEGER (0..63), -- 6 bits

w11

INTEGER (0..63), -- 6 bits

w12

INTEGER (0..63), -- 6 bits

w13

INTEGER (0..63), -- 6 bits

w14

INTEGER (0..63), -- 6 bits

w15

INTEGER (0..63), -- 6 bits

w16

INTEGER (0..31), -- 5 bits

w17

INTEGER (0..31) -- 5 bits
}

W256-IndexList ::= SEQUENCE {

w1

INTEGER (0..255), -- 8 bits

w2

INTEGER (0..127), -- 7 bits

w3

INTEGER (0..127), -- 7 bits

w4

INTEGER (0..63), -- 6 bits

w5

INTEGER (0..63), -- 6 bits

w6

INTEGER (0..63), -- 6 bits

w7

INTEGER (0..63), -- 6 bits

w8

INTEGER (0..31), -- 5 bits

w9

INTEGER (0..31), -- 5 bits

w10

INTEGER (0..31), -- 5 bits

w11

INTEGER (0..31), -- 5 bits

w12

INTEGER (0..31), -- 5 bits

w13

INTEGER (0..31), -- 5 bits

w14

INTEGER (0..31), -- 5 bits

w15

INTEGER (0..31), -- 5 bits

w16

INTEGER (0..15), -- 4 bits

w17

INTEGER (0..15), -- 4 bits

w18

INTEGER (0..15), -- 4 bits

w19

INTEGER (0..15), -- 4 bits

w20

INTEGER (0..15), -- 4 bits

w21

INTEGER (0..15), -- 4 bits
 spare

INTEGER (0..1)
}

W128-IndexList ::= SEQUENCE {

w1

INTEGER (0..127), -- 7 bits

w2

INTEGER (0..63), -- 6 bits

w3

INTEGER (0..63), -- 6 bits

w4

INTEGER (0..31), -- 5 bits

w5

INTEGER (0..31), -- 5 bits

w6

INTEGER (0..31), -- 5 bits

w7

INTEGER (0..31), -- 5 bits

w8

INTEGER (0..15), -- 4 bits

w9

INTEGER (0..15), -- 4 bits

w10

INTEGER (0..15), -- 4 bits

w11

INTEGER (0..15), -- 4 bits

w12

INTEGER (0..15), -- 4 bits

w13

INTEGER (0..15), -- 4 bits

w14

INTEGER (0..15), -- 4 bits

w15

INTEGER (0..15), -- 4 bits

w16

INTEGER (0..7), -- 3 bits

w17

INTEGER (0..7), -- 3 bits

w18

INTEGER (0..7), -- 3 bits

w19

INTEGER (0..7), -- 3 bits

w20

INTEGER (0..7), -- 3 bits

w21

INTEGER (0..7), -- 3 bits

w22

INTEGER (0..7), -- 3 bits

w23

INTEGER (0..7), -- 3 bits

w24

INTEGER (0..7), -- 3 bits

w25

INTEGER (0..7), -- 3 bits

w26

INTEGER (0..7), -- 3 bits

w27

INTEGER (0..7), -- 3 bits

w28

INTEGER (0..7), -- 3 bits
 spare

INTEGER (0..1)
}

VariableBitMap ::= SEQUENCE (SIZE (maxNumRRFCN)) OF ArfcnUsed

-- ***

--

-- Channel Mode

--

-- The following proposal preserves existing GSM coding
--

-- ***

ChannelMode ::=

ENUMERATED {

signallingOnly

(0),

speechFROrHR-Version1

(1),

speechFROrHR-Version2

(33),

speechFROrHR-Version3

(65),

data-43-5Dl-14-5Ul

(97),

data-29-0Dl-14-5Ul

(98),

data-43-5Dl-29-0Ul

(100),

data-14-5Dl-43-5Ul

(103),

data-29-0Dl-29-5Ul

(101),

data-43-5Dl-43-5Ul

(102),

data43-5-RadioInterfaceRate (39),

data32-0-RadioInterfaceRate (99),

data29-0-RadioInterfaceRate (67),

data14-5-RadioInterfaceRate (15),

data12-0-RadioInterfaceRate (3),

data6-0-RadioInterfaceRate
(11),

data3-6-RadioInterfaceRate
(19),

maxDimension

(255) }

END

X.4
Constant definitions

Constant-definitions DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

maxARFCN

INTEGER
::= 1023

maxChannelSet

INTEGER
::= 8

maxNumCaARFCN

INTEGER
::= 124

maxNumRRFCN

INTEGER
::= 111

maxTN

INTEGER
::= 7

END

4(10)

10(10)

