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1 Introduction

In this contribution, a Link-to-System (L2S) mapping method that can be used to model the NB M2M system (see sub-clause 7.1 of [1]) is presented. It is based on a number of observations in [2] regarding the characteristics of interference scenarios.
This document is an update of [7]. Changes are highlighted in yellow background.
The updates of uplink pilot design and CBS tables in [9] have not been adopted in this document. They will be included in future update of this document.

2 Modelling of interferers
The interferers were generated in the same way as the wanted signal. A co-channel interferer (CCI) uses the same radio frequency as that of the wanted signal, and an adjacent channel interferer (ACI) uses the neighbouring radio frequency (i.e. 15 kHz away for the downlink, and 5 kHz away for the uplink, see [1]) to that of the wanted signal.

3 L2S mapping methodology
3.1 Selection of interference scenarios
Two alternative methods are commonly used to select interference scenario(s) for L2S mapping generation, as follows (see section 5.3.4.2 of [4]):
1. Derive the interference scenario from the statistics of the interference levels of different interferer types generated in system level simulations. This can be done in an iterative way, starting with an initial mapping. An initial interference scenario is derived and used to generate a second mapping, which is then fed back to the system simulator for the next iteration. The iteration is stopped when the mapping is considered sufficiently stable.

2. Identify, with link level simulations, one or more typical interference scenarios such that any interference scenario (“S1”) that might appear in system simulations can be represented by one typical interference scenario (“S0”) in terms of link level performance. This method requires a mapping switching logic to find the mapping derived from S0 based on a common “pattern” shared by both S0 and S1 (e.g. dominant interferer ratio falling in a given range).
Method 2 is used in this document.
3.2 Downlink L2S mapping
3.2.1 Scenario identification function
As indicated in [2], the contribution of ACI to link level performance is sufficiently small that ACI may be omitted from the L2S analysis, so only CCI will be taken into account hereafter.
By investigating link level performance in various interference scenarios, two dominant impacting factors are identified in [2]: noise ratio (
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) and dominant interferer ratio (
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). Suppose 
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is the power of noise to the sum of the powers of all interferers plus noise (in linear domain):
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And 
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is the power of dominant interferer to the sum of the powers of all interferers (in linear domain):
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Since 
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and 
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dictate the SINR vs. BLER curve, the combination 
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 can be used to represent an interference scenario. Furthermore, there should exist a definition of “pattern” (described using 
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 and 
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) such that if two interference scenarios follow the same pattern, they give very similar SINR vs. BLER performance. It was found by simulations that the “pattern” can be defined as a linear function as follows:
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where 
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, and the value of the function is given by the SINR at 10% BLER in the linear domain (to generate an increasing mapping between the value and the link level performance, an opposite is taken before the conversion to the linear domain). In this document, the above function is called a “scenario identification function”.
To determine the constants (i.e. 
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A given 
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 only holds within a specific combination of modulation and coding schemes (MCS) and code block size (CBS, in bit) (see [5] for details of MCS and CBS design). Note that a combination of MCS and CBS in NB M2M is equivalent to an MCS in GSM.
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 for (DL MCS-0, 48 bits) is as follows:
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The function is verified by the simulation results in Figure 1 where Scenario 1 and Scenario 2 are two substantially different interference scenarios in terms of interferer/noise configurations but give very close values of 
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. As shown in Figure 1, their link level performance curves largely overlap.
Table 1: Interference scenarios
	Name
	Interferer/noise 
	Interferer/noise relative power level (dB)
	NR
	MR
	f0(NR, MR)

	Scenario 1 
	1) Co-channel 1

2) Co-channel 2

3) AWGN
	1) 0

2) 6
3) 0.97
	0.2
	0.8
	3.019

	Scenario 2
	1) Co-channel 1

2) Co-channel 2
3) Co-channel 3
4) AWGN
	1) 0

2) 0
3) 0.7

4) -4.5
	0.1
	0.37
	3.018
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Figure 1: Sensitivity performance, (DL MCS-0, 48 bits)
Considering the large number of MCS and CBS combinations (e.g. 18 for DL MCS-0) in NB M2M, it is unrealistic to derive all scenario identification functions via link level simulations. One possible option is to derive the scenario identification function 
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of a baseline combination 
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 (i = 0) are the SINR (in dB) at BLER = 10% for Sensitivity and 1-CCI, respectively.
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 is a deterministic linear conversion of 
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, if two interference scenarios have very close values of 
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As can be seen from Figure 2, the performances of Scenario 1 and Scenario 2 match very well for (DL MCS-1, 48 bits).
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Figure 2: Sensitivity performance, (DL MCS-1, 48 bits)
3.2.2 Nominal interference scenarios
One further observation in [2] is that the Sensitivity performance and the 1-CCI performance set the two bounds of downlink performance, with about 2 dB difference at BLER = 10%. It is therefore sufficient to cover all interfering cases by choosing a small number (e.g. 2) of additional scenarios such that their link level performance curves are approximately uniform distributed between the Sensitivity and 1-CCI curves, and such that the distance between any two adjacent curves at BLER = 10% is less than about 1 dB.
Each 
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 has an associated set of 
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 interference scenarios (including Sensitivity and 1-CCI) which are defined by:
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These scenarios are defined as “nominal interference scenarios” for the purpose of deriving L2S mapping tables. An illustrative example is given in Figure 3 where there are four nominal interference scenarios (i.e. 
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Figure 3: Example of nominal interference scenarios
3.2.3 Mapping tables
In the sourcing companies’ previous contribution [3], to generate the mapping tables, the SINR of a burst was obtained by calculating the linear average of the SINR for each symbol. As the burst becomes longer and the radio condition varies during the burst period, the accuracy of this approach is likely to decrease, because two substantially different SINR distributions can result in the same linear average of SINR.
In this document, the mutual-information-based (MI-based) link quality model proposed in [6] is re-used as an approach to derive an accurate “effective SNR”. In system simulations, an “equivalent SNR” for the sensitivity scenario is first obtained for each (de-spread) symbol, and then fed to the MI-based model to calculate the symbol information (SI). The values for symbol information are then averaged and converted back to an effective SNR, which is used to look-up the SNR to BLER mapping table for the sensitivity scenario to obtain the final BLER.
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. The mapping table for nominal interference scenario 
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 is directly taken from the SINR vs. BLER curve for that scenario. An AWGN channel is assumed when running simulations for these curves, because in system simulations every signal and interference power value is collected in a very short instant during which the channel fading can be assumed to be constant.

3.2.4 Consideration on spreading and repetition
Suppose the received burst (or all repetitions of the burst in case the repetition factor is greater than one) has a spreading factor of 
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 and a repetition factor of 
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The signal power after de-spreading and soft-combining is:
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And the noise power after de-spreading and soft-combining is:
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The resulting SNR is:
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3.2.5 L2S mapping in the system simulator
To determine the 
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 for a given burst (or all repetitions of the burst in the case that the repetition factor is greater than unity) belonging to 
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 mapping tables, each representing nominal interference scenario
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, the following procedure is applied:
1. The signal power (
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b) Mapping table 
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c) The BLER (denoted by 
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) is obtained by looking up table 
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 with 
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 to reversely look up the mapping table for sensitivity to obtain 
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 are converted to the dB domain, and the equivalent noise power in sensitivity scenario is then expressed as:
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For each of the 
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 symbols, the signal power is taken as 
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 and the equivalent noise power is taken as 
[image: image101.wmf]q

n

.
2. Suppose the spreading factor is 
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 and the repetition factor is 
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. The (spread) symbols are divided into a number of groups (each containing 
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 symbols), and the procedure in sub-clause 3.2.4 is applied to each group to take spreading and repetition into account.

3. The resulting SNRs from step 2 are fed to the MI-based model to derive the symbol information (SI). The SIs are averaged and converted back to the final SNR, which is then used to look up the mapping table 0 (i.e. sensitivity) for 
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 but with no spreading and no repetition. The resulting BLER is considered the BLER of the given burst (or a number of bursts in the case of burst repetition).
3.3 Uplink L2S mapping
The observations on downlink interference scenarios are also applicable to the uplink, except for UL MCS with GMSK modulation, no repetition and no spreading for which the 1-CCI performance sets the lower bound and the Sensitivity performance sets the upper bound [2]. However, no impact is foreseen to the L2S mapping methodology. Therefore, the L2S methodology proposed for the downlink can be reused for the uplink, with different mapping data.

4 Conclusions
This document presents a L2S interface for NB M2M. A number of mapping tables are derived based on the 
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 combination and the interference characteristics quantified by the output of an interference identification function for the 
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Verification of the L2S methodology is provided in [8].
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