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Complexity estimate for Outer Coding in the RLC layer: Encoding and Decoding with Reed-Solomon codes

1 Introduction

In [1], a FEC method for MBMS, termed “Outer Coding” is presented and performance is analysed and verified through simulations. This paper provides an estimate of the complexity of a number of different Reed-Solomon codes. Furthermore, a proposal for a flexible scheme using shortened and punctured RS codes is presented. An upper limit on memory and MIPS requirements is also suggested using appropriate coding rates (derived from a mother code) and MCS-3.

2 Outer coding for MBMS

As in [1] and [2], in this analysis the outer RS coding is applied to a sequence of RLC/MAC blocks, column-wise as shown in Figure 1.
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Figure 1: Outer coding applied at the RLC layer when using MCS-1

Each symbol of the code consists of 8 bits, i.e. m = 8. Thus, for MCS-1 RLC/MAC blocks, L=22 RS coding operations are applied to the sequence. The outer coding generates n-k parity symbols from k information symbols, which are transmitted separately and reduce the throughput by a factor of k/n, where n is the length of the code block. At the receiver, the RLC entity checks whether each block is in error using the CRC information provided by Layer 1. If a block is found in error, the block is discarded, and in each of the 22 RS code-words the symbol corresponding to that RLC/MAC block is erased.

It is worth mentioning that for a fixed code rate k/n and a constant symbol error probability p, the greater the value of n is, the smaller the residual symbol error probability becomes. Therefore, it is advantageous to introduce longer codes provided that the delay is acceptable for the application, and that the increased processing overhead and memory requirements are within limits imposed by current technology
. In the following we will provide estimates on the encoding and decoding complexity of RS codes.

3 Reed-Solomon complexity estimate

In the following section, we consider a RS code with parameters (N=2m-1, K). As mentioned earlier, different code rates are obtained by puncturing and shortening. The number of operations required to perform puncturing and shortening are negligible at both the encoder and decoder, and have not been considered further. 

3.1 Encoding

The first step in Reed Solomon encoding is to construct the Galois Field (GF), and the multiplication and addition tables for the field. Consider the following example. To construct the GF(2m) we need to select a suitable primitive polynomial
. For GF(23), one such polynomial is 
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Since the polynomial is of degree 3 it must have 3 roots. Let ( be a root of f(X), i.e.
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Furthermore, we can express other powers of ( using f(X). e.g.
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Continuing with the analysis, we find that (7=(0, and hence there are eight elements of the finite field GF(23),
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Using this result we can construct the multiplication and addition tables for the finite field, as presented in Table 1 and Table 2.

	+
	(0
	(1
	(2
	(3
	(4
	(5
	(6

	(0
	0
	(3
	(6
	(1
	(5
	(4
	(2

	(1
	(3
	0
	(4
	(0
	(2
	(6
	(5

	(2
	(6
	(4
	0
	(5
	(1
	(3
	(0

	(3
	(1
	(0
	(5
	0
	(6
	(2
	(4

	(4
	(5
	(2
	(1
	(6
	0
	(0
	(3

	(5
	(4
	(6
	(3
	(2
	(0
	0
	(1

	(6
	(2
	(5
	(0
	(4
	(3
	(1
	0


Table 1: Addition table for GF(8) with f(X)=1+X+X3.

	(
	(0
	(1
	(2
	(3
	(4
	(5
	(6

	(0
	(0
	(1
	(2
	(3
	(4
	(5
	(6

	(1
	(1
	(2
	(3
	(4
	(5
	(6
	(0

	(2
	(2
	(3
	(4
	(5
	(6
	(0
	(1

	(3
	(3
	(4
	(5
	(6
	(0
	(1
	(2

	(4
	(4
	(5
	(6
	(0
	(1
	(2
	(3

	(5
	(5
	(6
	(0
	(1
	(2
	(3
	(4

	(6
	(6
	(0
	(1
	(2
	(3
	(4
	(5


Table 2: Multiplication table for GF(8) with f(X)=1+X+X3.

Since we are dealing with binary systems it is necessary to map each element of the field to a binary representation in GF(2). For example, for GF(23) Table 3 contains the respective mapping.

	Element
	Binary representation

	0
	000

	(0
	001

	(1
	010

	(2
	100

	(3
	011

	(4
	100

	(5
	111

	(6
	101


Table 3: Mapping from GF(8) elements to binary representation (or GF(2)).

In the case of GF(28), there are 256 elements and the multiplication tables are on the dimensions 255 x 255. For a (N,K) Reed Solomon code, the code-words are generated using a generator matrix as defined by

v = uG

u is the information word, u = [uo u1 u2 u3…uK-1].

v is the code word, v = [vo v1 v2 v3 …vN-1].

G is the generator polynomial 
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The number of additions and multiplication over GF(2m) that must be performed to generate each codeword are summarised in Table 4.

	Function
	No of operations

	Multiplications over GF(2m)
	K(N

	Additions    over GF(2m)
	(K-1)(N


Table 4: Encoding arithmetic operations for un-shortened Reed-Solomon codes.

In case of systematic
 RS codes, the generator polynomial can be expressed as
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where IK is the K x K identity matrix, 

PK,N-K is the K x (N-K) parity matrix.

Since the first K symbols of the message are unchanged there is no need to perform any arithmetic upon them. . Then the number of operations can be reduced to

	Function
	No of operations

	Multiplication over GF(2m)
	K((N-K)

	Additions over GF(2m)
	(K-1)((N-K)


Table 5 Arithmetic operations for systematic Reed-Solomon codes

In addition, if we apply shortening and puncturing to obtain a RS code with parameters (n, k) , then the generator matrix is altered such that all columns for the shortened symbols are deleted and all rows for the punctured symbols are also deleted.

Then the total number of additions and multiplication that need to be performed for the shortened code can be reduced to: 

	Function
	No of operations

	Multiplication over GF(2m)
	k((n-k)

	Additions over GF(2m)
	(k-1)((n-k)


Table 6: Arithmetic operations for shortened Reed-Solomon codes.

As described in [3], addition over GF(2m) can be performed by a bit-wise XOR of the binary elements used to represent each element.

In order to perform multiplication over GF(2m) the following procedure is required:

a) The binary elements of a symbol are mapped to an exponent using a lookup table. The table size is 2m bytes.

b) Addition of the exponents is performed modulo 2m-1.
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c) The resulting exponent is mapped back to the binary element using an inverse lookup table. The table size is 2m bytes.

In order to avoid the need to perform addition modulo 2m-1, one possibility is to extend the inverse mapping tables to double the size. If we consider the example tables described earlier and assume we have m=8 and GF(28), the worst case multiplication is of (254((254 = (508 = (253. Therefore, the inverse lookup table maps the exponent value of 508 to the binary representation of (253, and hence needs to be 2 ( 255 = 510 bytes in length. The exponent lookup table only requires 255 bytes.

In summary the total number of operations is given below in Table 7:-

	Function
	Requirement

	Multiplication over GF(2m)
	k((n-k) additions 

2(k((n-k) table lookups

	Addition over GF(2m)
	(k-1)( (n-k) XOR operations.

	No. of read/write operations
	n + k

	Memory for GF(2m) lookup tables.
	2m + 2m+1 bytes.

	Memory required for generator matrix, G
	k(n bytes


Table 7: Arithmetic and memory requirements for Reed-Solomon encoding over GF(2m).

3.2 Decoding

In [3], an estimate of the decoding complexity of Reed-Solomon codes was made. This paper also considers the decoding complexity of “erasure” decoding. Note that if the number of erasures exceeds n-k then no attempt to decode the Reed-Solomon code is made. Consider the following example, with RS(7,4) the generator matrix is defined as:
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The message word is:

u = [( (2 (5 (3]

The parity symbols p1,p2, p3 are given by:

p1 =  ((( + (2((6 + (5((3 + (3((   =  (2 + ( + ( + (4       = (
p2 =  (((3 + (2((2 + (5(( + (3((4  =  (4 + (4 + (6 + (0  = (2
p3 =  (((5 + (2((4 + (5((6 + (3((2 =  (6 + (6 + (4 + (5   = 1

The code word, v is:

v = [u p1 p2 p3] = [( (2 (5 (3 ( (2 1]

Consider the received vector r, where e indicates an erased symbol.

r = [( e (5 (3 e (2 1]

and define







 r = [( (5 (3 (2 1]

We can now write

r = uGr
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Using Gaussian-Jordan elimination we can find the unknown symbol u1.

Firstly, we use the transpose operation to write the equation as:

GT(uT = rT
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Rows 2, 3, 4 of GT are pivoted, such that:
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The following operations are then applied. 

1) Multiplying row 1 by (3 and subtracting it from row 4.

2) Multiplying row 1 by (1 and subtracting it from row 4.

3) Multiplying row 1 by (4 and subtracting it from row 4.

Resulting in:
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and finally, dividing row 4 by (2.
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The recovered codeword is:

ur =[uo u1 u2 u3] = [( (2 (5 (3]

To simplify the estimate of the total number of operations required, a Gaussian-Jordan elimination algorithm with full pivoting
 is considered [4]. In the worst case up to n-k erasures will need to be corrected, assuming that the erasures occur on systematic symbols. For every symbol erased, a column of the generator matrix is removed. Hence, there will be up to n-k rows of the solution matrices containing more than one non-zero element. For each of these rows the following operations are required.

1) For every element (k elements for a shortened code, since the codeword is only generated from the systematic symbols and not the dummy symbols (zeros)) in the pivot row, one multiplication of another row containing only one non-zero element, is required. i.e. Multiplication of the pivot element on the current pivot row by the corresponding element in r. 
2) For every element other than the pivot element, the multiplied row is subtracted from the current pivot row. This requires two GF(2m) additions.

3) One division of the element in r on the current pivot row by the pivot element.

The total number of operations over GF(2m)  is summarised in Table 8.

	Function
	No of operations

	Multiplication over GF(2m)
	k((n-k)

	Additions over GF(2m)
	  2((k-1)((n-k)

	Divisions over GF(2m)
	k((n-k)


Table 8: Arithmetic operations for shortened RS erasure decoding.

Using the techniques for performing GF(x) arithmetic described in section 3.1, the total number of GF(2) operations is summarised in Table 9.

	Function
	Requirement

	Multiplication over GF(2m)
	k((n-k) additions 

2(k((n-k) table lookups

	Addition over GF(2m)
	2((k-1)((n-k)  XOR operations

	Division over GF(2m)
	k((n-k) additions 

2(k((n-k)  table lookups

	Memory for GF(2m) lookup tables.
	2m + 2m+1 bytes.

	Memory required for generator matrix, G
	n(k bytes


Table 9: Arithmetic and memory requirements for shortened Reed-Solomon erasure decoding over GF(2m).

If the code is shortened it is only necessary to correct the first k elements of each received codeword. If k is less than (n-k) then the maximum number of pivot rows that need to be manipulated will be limited to k.

4 Complexity estimate for Outer Coding in the GERAN

For MBMS we need to consider the total number of operations required to generate 2((n-k) parity blocks from the k systematic blocks. It is assumed that m=8 with be used, and hence each symbol in each RLC/MAC block is one octet. 

The memory requirement for the outer coding buffer is thus,
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where L indicates the number of octets in each RLC/MAC block.

It is assumed that RLC/MAC blocks containing systematic symbols can be transmitted while the outer coding is generating the parity symbol frames. When the MBMS stream first starts, there will be k*(20ms/TS#)  to complete the outer coding, where k is the number of systematic frames used per an outer code and TS# is the number of timeslots. In the subsequent transmissions there may be up to (n+k)*(20ms/TS#), to apply generate the next set of parity frames.  Thus, the limitation on the processing time is imposed by the number of systematic RLC/MAC blocks in each outer code block. Currently, it is expected that up to 6 timeslots could be used in the downlink
. Table 10 provides an estimate of the total number of operations and MIPS requirements for RS(N=255,K) shortened to RS(n,k=23) for different values of dmin with MCS-3. 

	Reed-Solomon Code
	dmin-1
	K
	n
	No. of XORs
(n-k)*(k-1)
	No. of additions (n-k)*k
	No. of table lookups (for multiplication) 2*(n-k)*k
	No .of read/write operations (n+k)
	Total number of operations (MCS-3, therefore 37 RS codes need to be applied) 
	Estimated processing time (6 timeslots) (k*20ms/6)
	MIPS

	RS(27,23)
	4
	251
	27
	88
	92
	184
	50
	15318
	0.0767
	0.19980

	RS(31,23)
	8
	247
	31
	176
	184
	368
	54
	28934
	0.0767
	0.37740

	RS(35,23)
	16
	239
	39
	352
	368
	736
	62
	56166
	0.0767
	0.73260

	RS(39,23)
	24
	231
	47
	528
	552
	1104
	70
	83398
	0.0767
	1.08780

	RS(47,23)
	32
	223
	55
	704
	736
	1472
	78
	110630
	0.0767
	1.44300

	RS(55,23)
	48
	207
	71
	1056
	1104
	2208
	94
	165094
	0.0767
	2.15340


Table 10: MIPS required for RS(N=255,K) shortened to RS(n,k=23) for various values of dmin using MCS-3 and 6 timeslots.

Figure 2 shows the linear relationship between dmin and the MIPS estimate required.
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Figure 2: MIPS required for RS(N=255,K) shortened to RS(n, k=23) for various values of dmin using MCS-3 and 6 timeslots.

As an example, consider a code with dmin = 17, a shortened RS(35,23) code
 with 22 columns per RS outer codeword (using MCS-1). The processing and memory requirements are summarised in Table 11:

	Function
	No of operations

	Multiplication over GF(2m)
	22(12(23 =   6072 additions 

22(2(12(12 = 12144  table lookups

	Addition over GF(2m)
	22(12(23 = 6072 XORs.

	Number of read/write operations to/from the outer code buffer
	22 ( (23+35) =  1276.

	Memory for lookup tables (exponent and inverse).
	255 +  510 bytes = 765 bytes.

	Memory for outer coding buffer
	35 RLC/MAC blocks of 22 octets each (assuming MCS-1) 

=  770 bytes.

	Memory requirement for generator matrix G. (Only the parity generator will be required)
	 35 ( 23 = 805  bytes

	Total number of operations
	25564


Table 11: Example requirements for shortened RS(35,23).

For the RS(35,23) code, this leads to a requirement of approximately 25564((23(20ms(6) = 333440 IPS (  0.33 MIPS.

We can also consider the case where there may be more than one MBMS service, provided as separate streams, with more than one RLC entity. Consider the  worst case
, with 6 MBMS streams, 6 separate RLC entities and 1 timeslots per service with MCS-3 (carrying 37 octets). Each stream uses a shortened RS(55,23). It is assumed that each stream uses the same generator polynomial. In this case
, the total requirements are the following:-

	Function
	Requirement

	Processing
	2.15 MIPS

	Memory for lookup tables (exponent and inverse).
	255 + 510 bytes = 765 bytes.

	Memory for outer coding buffer
	55 RLC/MAC blocks of 37 octets each (assuming MCS-3) 

= 6 ( 55 ( 37 = 11550 bytes.

	Memory requirement for generator matrix G. (Only the parity generator will be required)
	35 ( 23 = 805 bytes 


Table 12: Requirement per service for 6 MBMS services,  RS(35,23), 6 timeslots, MCS-3.

The total amount of memory required is 13120 bytes ( 13.12 kbytes.

One further consideration is whether it would be possible to use the existing RLC/MAC window memory to generate the parity frames. However, this requires the outer coding and RLC/MAC block processing functions to access the same memory independently.

5 Complexity estimate for RS decoding in the UE

At the receiver the available time to process each outer code block is equal to the shortened code block length, n, i.e. Processing time = n*20ms/TS#, where TS# is the number of timeslots. Based on Table 9, the total number of operations and MIPS required for decoding a shortened RS(n, k=23) code is shown in Table 12.

	Reed-Solomon Code
	dmin-1
	K
	n
	No. of XORs
2(n-k)*(k-1)
	No. of additions
2(n-k)k
	No. of table lookups (for multiplication/division) 4(n-k)*k
	Total number of operations (MCS-3, therefore 37 RS codes need to be decoded) 
	Estimated processing time (6 timeslots) (n*20ms/6)
	MIPS

	RS(27,23)
	4
	251
	27
	88
	184
	368
	23680
	0.0900
	0.263

	RS(31,23)
	8
	247
	31
	176
	368
	736
	47360
	0.1033
	0.458

	RS(35,23)
	12
	243
	35
	264
	552
	1104
	71040
	0.1167
	0.609

	RS(39,23)
	16
	239
	39
	352
	736
	1472
	94720
	0.1300
	0.729

	RS(47,23)
	24
	231
	47
	528
	1104
	2208
	142080
	0.1567
	0.907

	RS(55,23)
	32
	223
	55
	704
	1472
	2944
	189440
	0.1833
	1.033


Table 13: MIPS required for decoding for RS(N=255,K) shortened to RS(n,k=23) for various values of dmin  using MCS-3.

Table 14 shows the decoding requirements for one stream
 with 6 timeslots with MCS-3 (carrying 37 octets) with RS(35,23). As can be seen, with the particular code investigated, the additional processing required is estimated to be 0.6 MIPS. In the case that the UE is required to decode several different streams with different QoS requirements, then the total processing requirements may be larger. This aspect is for further study.

	Function
	Requirement

	Processing
	0.6 MIPS.

	Memory for lookup tables (exponent and inverse).
	255 + 510 bytes = 765 bytes.

	Memory for outer coding buffer
	35 RLC/MAC blocks of 37 octets each (assuming MCS-3) 

= 35 ( 37 = 1275 bytes.

	Memory requirement for generator matrix G. (Only the parity generator will be required)
	35 ( 23 = 805 bytes 


Table 14: Requirement per service for RS(35,23), 6 timeslots, MCS-3.

In this case, the total memory requirement is approximately 2845 bytes ( 2.85 kbytes.

6 Proposal for Outer Coding in the RLC

Due to the nature of existing network infrastructure, encoding may preferably be implemented in software and decoding, which is only required in the MS, may be supported by hardware. Therefore, we propose the following system design. We propose to specify a Reed-Solomon mother code with RS(N=255, K=128)
, which allows to support any RS code with (n, k) with k≤n≤N and 1≤k≤min(K,n). The scheme allows adaptation to throughput, residual error rate, and delay in a flexible manner, depending on the required QoS and the current radio channel conditions. Considering the complexity analysis presented in this paper, the proposal is supported by the following arguments:-

· As shown in Figure 2, the complexity of the encoding process increases linearly with n-k. Hence, as well as being able to adapt to the required QoS (throughput, delay, residual error rate), it is also possible to consider the BSC hardware processing capabilities. 

· If the decoder is implemented in software similar arguments as discussed for the encoding are applicable, in that the level of decoding complexity could be controlled according to the capabilities of the MSs receiving MBMS. 

· If the decoder is implemented in hardware, only a single decoder with fixed parameters (N, K) is necessary. To adapt to different code rates, dummy symbols are used to replace symbols discarded due to shortening, and erasures are used to replace symbols that have been punctured.

The system design as presented also supports the p-t-m strategy with feedback using incremental redundancy with RS codes as presented in [6] and [7].

By setting the k=K=255 and n=N=128, the upper limits on complexity for the BTS and UE are shown in Table 15. For the BTS, 6 streams have been considered with 1 timeslot per stream.

	
	MIPS
	Memory (kbytes)

	BSC
	5.7
	6 x 11 

	UE
	4.9
	11


Table 15: MIPS and memory requirements for mother code, RS(255,128)

The maximum requirements are thought to be relatively low when compared to the capabilities of modern processors.

7 Conclusion

This document provides an estimate of the encoding and decoding complexity of applying outer coding at the RLC layer. An estimate on limits on the memory and processing requirements would be the following for the BTS based on the proposal in section 6:

· An estimate of a limit for processing is thought to be approximately 6 MIPS.

· Typical memory requirement would be in the region of 66 kbytes (considering up to 6 streams on 6 timeslots).

· Depending upon the architecture of the PCU it may be possible to apply outer coding using the existing acknowledgment window. In this case additional memory is only required for the generator matrix, G, and the Galois Field lookup tables.

And for the MS based on the proposal in section 6, the following would be required:

· An estimate of a limit for processing is thought to be approximately 5 MIPS.

· Typical memory requirement would be in the region of   11 kbytes per stream.
· Depending upon the architecture of the UE is may be possible to reduce the processing requirements by using more memory to increase the amount of time available for decoding.
As demonstrated in this analysis the total memory and processing requirements are relatively low compared to the capabilities of modern processors. Both the encoding and decoding processes can be implemented in software and it is thought possible that no new hardware would need to be installed at the BSC for the outer code. In addition, the specification of a single mother code would allow a simple hardware implementation of a RS decoder in the UE for different coding parameters. Furthermore, if limits are imposed by the hardware capabilities of the BSC (or UE), then the code parameters can be adapted to these processing power and memory restrictions.
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� These limits are imposed by the spare processing and memory capabilities of existing BSCs currently deployed in the field. Since no MBMS capable MSs exist today, the limits imposed by mobile station technology are thought to be less relevant and less stringent. 


� For more details on Reed-Solomon coding refer to � REF _Ref55122954 \r \h ��[5]�.


� A systematic code will be needed since if the outer code fails (i.e. the number of symbol erasures exceeds dmin-1) then the undamaged RLC/MAC blocks will still be recoverable. Shortening the code reduces the computational processing power, memory requirements, and delay introduced by the encoding process. However, shortening also reduces the throughput.


� It should be noted that the complexity of implementing the pivoting algorithm is not considered in this estimate. However the additional complexity is thought to be relatively low and only requires some memory swapping to be performed.


� Note that if the mobile is also required to transmit in the uplink the maximum number of slots used in the downlink may be reduced to 4, due to MS transmit/receive limitations.


� Separate analysis has been used to determine the RS code required to reach 1% SDU FER, i.e. RS (255,191). In the analysis Frequency Hopping has been used � REF _Ref55378862 \r \h ��[1]�.


� This service scenario is unlikely, but serves as a worst case for estimating upper limits on processing and memory. A more realistic may be 2 or 3 MBMS streams using MCS-1 or MCS-3.


� It is assumed that one PCU unit will be processing all of the services.


� Stream in this case is considered as a single stream from one service e.g. one video stream with no audio. No other streams or services are multiplexed with it.


� The exact value of K is for further study
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						MBMS complexity estimate for RS(255,191)

						n		255

						k		191

										Shortened block length, a		No.of systematic symbols, b		No. of XORs
 (n-k)*(b-1)		No. of additions (n-k)*b		No. of table lookups (for multiplication) 2*(n-k)*b		No .of read/write operations (a+b)		Total number of operations (MCS-3, therefore 37 RS codes need to be applied)		Estimated processing time (6 timeslots,MCS-3) (d*20ms/6) (s)		MIPS

										75		11		640		704		1408		86		105006		0.0367		2.864

										84		20		1216		1280		2560		104		190920		0.0667		2.864

										94		30		1856		1920		3840		124		286380		0.1000		2.864
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						Coding complexity of RS(255,k) for values of t

						n		255

						b		23

		Reed-Solomon Code		dmin-1		t		k		a		No. of XORs
 (n-k)*(b-1)		No. of additions (n-k)*b		No. of table lookups (for multiplication) 2*(n-k)*b		No .of read/write operations (a+b)		Total number of operations (MCS-3, therefore 37 RS codes need to be applied)		Estimated processing time (6 timeslots) (b*20ms/6)		MIPS

		RS(27,23)		4		2		251		27		88		92		184		50		15318		0.0767		0.19980
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		RS(39,23)		24		12		231		47		528		552		1104		70		83398		0.0767		1.08780
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						Decoding complexity of RS(255,k) for values of t

						n		255
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				Reed-Solomon Code		t		k		a		No. of XORs
4t*(b-1)		No. of additions 2t*b +  2t*b		No. of table lookups (for multiplication/division) 4t*b + 4t*b		Total number of operations (MCS-3, therefore 37 RS codes need to be decoded)		Estimated processing time (6 timeslots) (a*20ms/6)		MIPS
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						Decoding complexity of RS(255,k) for t = 32. b=1
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