3GPP TSG GERAN #8

Rome, Italy

February 4th-8th, 2002

Tdoc GERAN GP 020272

Agenda Item 7.2.5.2.3

Source: Nokia

7 (1)

Multiple TBFs and RLC Memory

1. Introduction

The support of multiple TBFs in Rel5 raises the problem of memory consumption in the mobile station
 when several RLC instances run in parallel. In particular, for EGPRS mode TBFs, the memory dedicated to incremental redundancy is critical as it will dictate its performance. Dimensioning properly this resource is however implementation specific and should not be addressed in a specification. Instead, this paper concentrates on the RLC memory. The noticeable difference between IR and RLC memory is that IR memory stores non-correctly received RLC data blocks, while the RLC memory itself stores correctly received RLC Data blocks of which the BSN is higher than V(Q)
. In order for a TBF to offer good RLC performance, the RLC window size should be big enough to fully benefit from the resources allocated to this TBF. This is why for EGPRS the window size was defined according to the number of timeslots allocated to a TBF
 (see 44.060 §9.1.9.2 and Appendix I: copied in appendix of this document). Supporting multiple TBFs can be seen as expanding the memory requirements, but due to implementation limitations, the memory available for RLC might not be increased drastically. Rather, an intelligent memory management scheme should be designed that would allow for sharing dynamically among multiple TBFs, a common and limited memory resource.

2. Assumptions

It is proposed not to change today's minimum requirement for the RLC window size of a TBF: 64. I.e. the MS may have a TBF running provided a RLC window size of 64 can be allocated for this TBF. Assuming this, it is proposed that the MS informs within its MS RAC the network about either:

· the maximum number of TBFs it can support (complying with its multislot class): max. 8 is assumed for Rel5;

· and/or preferably the total RLC memory it has (in the same way as a window size is calculated today)

The latter one is preferred as it poses less restriction to MS implementation while allowing the network to have a direct and full control of what it can allocate to the MS. In fact, the first proposal alone would assume that the maximum RLC window size can be used for all the TBFs the MS can support.

In order to allow for an EGPRS TBF in Rel5 at least as good performance as for an EGPRS TBF in Rel99, the MS shall support in Rel5 a common RLC memory that equals to at least the maximum RLC window size corresponding to its multislot capability (i.e. 1024 if the MS is capable of 8 timeslots in one direction).

3. RLC and MEMOry

The Figure 1 below illustrates the transmitter and receiver windows definition as per GPRS, where V(A) represents the acknowledge state variable, V(S) the send state variable, V(Q) the receive window state variable and V(R) the receive state variable. The following observations can be made and are true as per the definition of the RLC protocol:

· the transmitter window (active window) is always smaller or equal to the window size WS

· the transmitter window is always larger or equal to the receiver window.

[image: image1.wmf]Nack

Nack

Note: the figure assumes the ack bitmap has just been received by the transmitter, i.e.

the transmitter will start retransmitting, starting from V(A).

Nack

Nack

Nack

Nack

Ack

Ack

V(Q)

RLC Window: WS

Receiver Window: V(R)-V(Q)

V(R)

Receiver Side

IR allows this

V(S)

Nack

Nack

Nack

Nack

Pend

Nack

Ack

Ack

V(A)

RLC Window: WS

Active Window: V(S) - V(A)

Transmitter Side

Figure 1. Transmitter and Receiver Windows

The Figure 2 on the next page represents the different memories and their content following the transmitter an receiver states shown in Figure 1. This contribution intends at optimizing the size of the RLC PDU memory on both transmitter and receiver sides, as previously highlighted in the introduction.

As can be seen, although given WS the size of the RLC window, the amount of memory required to store RLC PDUs at RLC prior to their transfer to the re-assembly function is always smaller than the receiver window itself, which as said earlier is itself shorter than the active window on transmitter side. This implies that the transmitter is always aware of the amount of physical memory in use in the receiver plus a delta that corresponds to the pending blocks.

[image: image2.wmf]Nack

Nack

Nack

Nack

Nack

Nack

Ack

Ack

RLC Window: WS

IR Memory

RLC PDU

Memory

RLC SDU

Memory

Receiver Side

Nack

Nack

Nack

Nack

Pend

Nack

Ack

Ack

RLC Window: WS

RLC PDU

Memory

Transmitter Side

Figure 2. RLC PDU Memory

4. DYnamic RLC WIndow SIZe

A dynamic RLC window size mechanism was proposed by Nokia earlier, that would enable to change dynamically the window size of a TBF (RLC instance), given the available RLC PDU memory in the MS and the amount of parallel TBFs. The evaluations of this proposal showed that although such a mechanism is feasible, the impact in term of delay of the TBF establishment due to queuing might be significant and not acceptable depending on the QoS of the RB mapped on a TBF. Therefore it is not recommended to specify such a mechanism.

Below in section 4.1 are the simulation results that were presented earlier. They show the active window size under different conditions as well as the queuing delay caused by such a mechanism.

4.1 SIMULATION RESULTS

The figures below show the performance of a single TBF (DBPSCH) with the following assumptions:

· TU3 iFH

· An acknowledgement fits in one block (no compression)

· PACCH corrupted (Same C/I for PACCH as was used for PDTCH in the other direction)

· Incremental Redundancy

[image: image3.emf]Time-distribution histogram of V(S)-V(A)

0

2

4

6

8

10

12

14

050100150200

V(S)-V(A)

seconds

Simulation time
10 minutes

WS
192

Max continuous time during which V(S)-V(A) > WS-32
0.56 seconds

Total proportion of simulation time during which V(S)-V(A) > WS-32
0.3%

Mean [V(S)-V(A)]
71

Standard deviation
24

Figure 3. Single slot; WS=192; MCS-5; 10dB

[image: image4.emf]Time-distribution histogram of V(S)-V(A)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

050100150200

V(S)-V(A)

seconds

Simulation time
10 minutes

WS
96

Max continuous time during which V(S)-V(A) > WS-32
1.7seconds

Total proportion of simulation time during which V(S)-V(A) > WS-32
1.5 %

Mean [V(S)-V(A)]
33

Standard deviation
12

Figure 4. Single slot; WS=96; MCS-5; 5dB

[image: image5.emf]Time-distribution histogram of V(S)-V(A)

0

5

10

15

20

25

30

020406080100

V(S)-V(A)

seconds

Simulation time
4 minutes

WS
192

Max continuous time during which V(S)-V(A) > WS-32
1.8 seconds

Total proportion of simulation time during which V(S)-V(A) > WS-32
5.2%

Mean [V(S)-V(A)]
93

Standard deviation
35

Figure 5. 4-timeslots; WS=192; MCS-5; 5dB

[image: image6.emf]Time-distribution histogram of V(S)-V(A)

0

1

2

3

4

5

6

050100150200

V(S)-V(A)

seconds

Simulation time
4 minutes

WS
192

Max continuous time during which V(S)-V(A) > WS-32
0.2 seconds

Total proportion of simulation time during which V(S)-V(A) > WS-32
0.3%

Mean [V(S)-V(A)]
77

Standard deviation
23

Figure 6. 4-timeslots; WS=192; MCS-5; 10dB

These figures show that reducing the RLC window size could make sense, provided the polling policy is adjusted accordingly.

The simulation results below show queuing delay caused by the dynamic RLC window size mechanism with multiple TBFs running in acknowledged mode. The assumptions are listed below:

· 4 DL-timeslots and 1 UL-timeslot allocated (DBPSCH on each timeslot).

· TBFs carried in DL, ack only carried in UL.

· Each TBF reserved one timeslot, only one TBF per timeslot allowed.

· TBF sizes generated from Exp-distribution, mean size = 2048 octets

If TBF size was under 500 octets or over 10240 octets, a new size was drawn.

· TBF interarrival time Exp-distributed, mean = 1 second.

· Total WS capacity = 512, individual TBF WS allowed between 64 and 192.

· Upper layer PDUs sized between 147 and 1560 octets

MCS-5, 10dB
MCS-9, 10dB
MCS-5, 20dB
MCS-9, 20dB

Queuing for allocation:

Max TBFs in queue
6
6
3
3

Max delay (s)
2.81
2.86
1.26
0.9

Mean delay
0.69
0.74
0.49
0.26

Standard deviation
0.52
0.55
0.3
0.21

"ETE-throughput"

(incl. queuing) of TBFs

Min (bit/s)
2160
1810
4120
9180

Max
19300
29100
21700
41000

Mean
11200
11700
19700
22500

Standard deviation
2500
2670
1830
5080

Table 1. Queuing delay due to dynamic RLC window size

4.2 Interpretation of the results

The active window size results above show that the actibe window size V(S)-V(A) on transmitter side is always much shorter than the window size itself (up to one third shorter in the simulation conditions). This means also that the receiver window is also much shorter than the WS. In other words, the RLC PDU memory in use on both transmitter and receiver sides is much shorter than WS.

This behaviour is the basis for the proposal on adaptive polling in section 5.

5. ADAPTIVE POLLING

The reasoning behind adaptive polling is that assuming an error free channel condition, the receiving RLC entity needs to store only one RLC block, and immediately receiving this block it can be forwarded to the re-assembly function. This latter function requires, of course, memory for the upper layer PDU (RLC SDU). Therefore, it is obvious that in error free case, the receiving RLC entity does not need memory for the whole buffer of RLC blocks.

When errors are introduced, the above is not entirely true anymore. However in MS case, the receiver buffer size in actual use at a given time T is not defined by the window size of the corresponding TBF (RLC instance) but the polling frequency used by the network. Therefore even if the WS is defined to be e.g. 1024 but the network always polls ack/nack when it has transmitted N blocks
 then the upper limit RLC receiver buffer size in the MS is N+x<<1024, where x depends on the channel condition and the round-trip delay. In Figure 1, N equals 7. Upon reception of an acknowledgement bitmap, the transmitter is able to know after having slid the window (if possible) an upper limit of the actual RLC PDU memory in use in the MS, which upper limit equals this RLC PDU memory in use (number of ack'ed blocks in the active window) plus the number of pending blocks in the active window. The priority of retransmissions over initial transmissions, the polling frequency and the round-trip delay enables the transmitter to monitor accurately the RLC PDU memory in use in the receiver. Therefore, if the transmitter knows the total amount of RLC PDU memory in the receiver, it is able, by scheduling and adapting the polling of TBFs, to handle multiple TBFs without any need for dynamically change the RLC window sizes of the TBFs.

For downlink traffic, this proposal is straightforward and does not require any specification work, but to define and signal the total RLC PDU memory of the MS as proposed in section 2.

For uplink traffic, the MS can of course not know the amount of RLC PDU memory of the network, and polling is not applicable. However, the MS may naturally stop transmitting new blocks if its memory is full, and proceed with preemptive retransmissions. Further, as the decision to send an acknowledgement is up to the network (in this case the receiver), and as the uplink resources are allocated by the network, the network is able to know an estimate of the RLC PDU memory in use in the MS (this estimate is 100% accurate if no blocks are lost –header cannot be decoded–, the accuracy decreasing if the number of blocks lost increases), and control this memory.

6. ConclusionS

This paper recommends that the dynamic RLC window size proposed earlier should not be specified, due to the impacts it has, and also due to the fact that the amount of memory (RLC PDU memory) in use at a given time in the MS is known and may be controlled by the network provided the network knows the total amount of RLC PDU memory of the MS. In downlink, scheduling and adaptive polling (implementation related only) enable the network to fullfill the MS's memory limitations, while in the uplink, the MS may stop transmitting new blocks upon filling of the memory and proceed with preemptive retransmissions. The occurrence of this latter situation may be limited by the network that is in charge of both the scheduling of TBFs in the UL and of the acknowledgements of these TBFs.

Appendix: EGPRS RLC window sizes

The table below is taken from §9.1.9.2 in 44.060 and shows the allowed window sizes in EGPRS TBF mode, for different multislot allocations.

Window size
Coding
Timeslots allocated (EGPRS multislot capability)

1
2
3
4
5
6
7
8

64
00000

96
00001

128
00010

160
00011

192
00100
Max

224
00101

256
00110

Max

288
00111

320
01000

352
01001

384
01010

Max

416
01011

448
01100

480
01101

512
01110

Max

544
01111

576
10000

608
10001

640
10010

Max

672
10011

704
10100

736
10101

768
10110

Max

800
10111

832
11000

864
11001

896
11010

Max

928
11011

960
11100

992
11101

1024
11110

Max

Reserved
11111
x
x
x
x
x
x
x
X

NOTE: The shaded cells represent the allowed window sizes

Although for each multislot allocation, the selected window size could preferably be the maximum, a smaller window size may be selected in order to optimize e.g. the number of (multislot) users and network memory consumption.

However, for each MS, in order to meet a performance which corresponds to the number of timeslots allocated to this MS, the selected window size shall not be smaller than a minimum window size for this particular multislot allocation.

For each network, the round-trip delay has a direct implication on the performance, hence on the definition of the minimum window sizes. Consequently, no generic minimum window sizes are suggested. However, for information, the table below lists the window size ranges recommended with a round-trip delay of about 120ms.

Window size
Coding
Timeslots allocated (Multislot capability)

1
2
3
4
5
6
7
8

64
00000
Min

96
00001

Min

128
00010

160
00011

Min
Min

192
00100
Max

224
00101

Min

256
00110

Max

288
00111

320
01000

Min

352
01001

Min

384
01010

Max

416
01011

448
01100

480
01101

512
01110

Max

Min

544
01111

576
10000

608
10001

640
10010

Max

672
10011

704
10100

736
10101

768
10110

Max

800
10111

832
11000

864
11001

896
11010

Max

928
11011

960
11100

992
11101

1024
11110

Max

Reserved
11111
x
X
x
x
x
x
x
X

� On network side, there is no memory increase compared to today, due to the same maximum number of TBFs per PDCH as today.

� V(Q) being the lowest BSN not yet received correctly

� An MS shall support the maximum window size corresponding to its multislot capability: see 44.060. For GPRS, the window size is fixed.

� Including the retransmissions

