

	
3GPP TSG-CT WG4 Meeting #89	C4-190374
Montreal, Canada; 25th Feb - 1st March
	CR-Form-v11.4

	CHANGE REQUEST

	

	
	29.501
	CR
	0046
	rev
	1
	Current version:
	15.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at 
http://www.3gpp.org/Change-Requests.

	



	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X



	

	Title:	
	Correct use of "OpenAPI" name

	
	

	Source to WG:
	Orange

	Source to TSG:
	CT4

	
	

	Work item code:
	5G_Ph1-CT
	
	Date:
	2019-02-26

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F  (correction)
A  (mirror corresponding to a change in an earlier release)
B  (addition of feature), 
C  (functional modification of feature)
D  (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	Through the document, OpenAPI, which refers to a standard, programming language-agnostic interface description for REST APIs defined by the OpenAPI Initiative consortium, is sometimes incorrectly written "Open API", which is misleading.
Moreover, "OpenAPI file" is sometimes used instead of "OpenAPI specification file" which could also be misleading

	
	

	Summary of change:
	Replace "Open API" by "OpenAPI" when relevant
Replace "OpenAPI file" by "OpenAPI specification file" when relevant

	
	

	Consequences if not approved:
	Undefined use of the wording "Open API"

	
	

	Clauses affected:
	5.3, 5.3.1, 5.3.2, 5.3.3, 5.3.5, 5.3.6, 5.3.7, 5.3.8.1, 5.3.8.2, 5.3.8.3, 5.3.11, 5.3.16, Annex D

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ... 

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ... 

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ... 

	
	

	Other comments:
	







	

Page 1


* * * First Change * * * *
[bookmark: _Toc532984827]5.3	Open APIOpenAPI specification files
[bookmark: _Toc532984828]5.3.1	General
5GC SBI APIs' Open APIOpenAPI specification files shall comply with the OpenAPI specification [4] and with the present subclause 5.3.
Each API shall be described in one Open APIOpenAPI specification file contained in an Annex of the 3GPP specification that describes the corresponding API. In addition, 3GPP specifications may contain Open APIOpenAPI specification file with common data types.
For the purpose of referencing (see subclause 5.3.6), it is assumed that each Open APIOpenAPI specification file contained in a 3GPP specification is stored as separate physical file, that all Open APIOpenAPI specification files are stored in the same directory on the local server, and that the files are named according to the conventions in subclause 5.3.6.
NOTE:	Informative copies of all OpenAPI specification files contained in 3GPP technical specifications will be provided after each 3GPP CT/SA plenary cycle separately for each 3GPP release in a suitable directory on the 3GPP fileserver, e.g. http:/ftp.3gpp.org/Specs/2018-09/Rel-15/OpenAPI/.

* * * Next Change * * * *
[bookmark: _Toc532984829]5.3.2	Formatting of OpenAPI specification files
The following guidelines shall be used when documenting OpenAPI specification files:
-	OpenAPI specifications files shall be documented using YAML format (see YAML 1.2 [16]). For specific restrictions on the usage of YAML in OpenAPI, see OpenAPI 3.0.0 Specification [4].
-	The style used for the specification shall be "PL" (Programming Language).
-	The different scopes in the YAML data structures representing collections (objects, arrays…) shall use an indentation of two white spaces.
-	Comments may be added by following the standard YAML syntax ("#").

* * * Next Change * * * *
5.3.3	Info
The Open APIOpenAPI specification file of an API shall contain an "info" field with the title that should be set to the same value as chosen for the API name in the heading of Annex A.x of the corresponding 3GPP TS, and with the version set as described in subclause 4.3.
Example: 
info:
  title: Nsmf PDUSession
  version: 1.0.0

* * * Next Change * * * *
[bookmark: _Toc532984831]5.3.4	externalDocs
Each OpenAPI specification file shall provide an "externalDocs" field as illustrated in the example below that shall contain:
-	within the "description" field the 3GPP TS number, the version number and the name of the 3GPP TS describing the API, and
-	within the "url" field a reference to the folder of that TS within the specification archive of the 3GPP fileserver (i.e. "http://www.3gpp.org/ftp/Specs/archive/").
The version number in the "externalDocs" field shall be updated each time when the TS version contains new changes to the OpenAPI specification file.
[bookmark: _Hlk527585221]NOTE 1:	If a new TS version is published without any changes to the OpenAPI specification file, the version number in the "externalDocs" field in the OpenAPI specification file is not updated.
NOTE 2:	The update of the version number in the "externalDocs" field will be done by MCC when publishing the new TS version.
Example: 
externalDocs
  description: 3GPP TS 29.501 V15.1.0; 5G System; Principles and Guidelines for Services Definition
  url: http://www.3gpp.org/ftp/Specs/archive/29_series/29.501/

* * * Next Change * * * *
[bookmark: _Toc532984832]5.3.5	Servers
As defined in subclause 4.4, the base URI of an API consists of {apiRoot}/{apiName}/{apiVersion}. It shall be encoded in the corresponding Open APIOpenAPI specification file as "servers" field with {apiRoot} as variable.
Example: 
servers:
  - url: '{apiRoot}/nxxx-yyyy/v1'
    variables:
      apiRoot:
        default: https://example.com
        description: apiRoot as defined in subclause subclause 4.4 of 3GPP TS 29.501


[bookmark: _Toc532984833]* * * Next Change * * * *
5.3.6	References to other 3GPP-defined Open APIOpenAPI specification files
For the purpose of referencing, it shall be assumed that each Open APIOpenAPI specification file contained in a 3GPP specification is stored as separate physical file, that all Open APIOpenAPI specification files are stored in the same directory on the local server, and that the files are named according to the following convention, unless a specific file name is indicated in the Annex of a 3GPP specification defining an Open APIOpenAPI specification file. The file name shall consist of (in the order below):
-	the 3GPP specification number in the format "TSxxyyy";
-	an "_" character;
-	if the OpenAPI specification file contains an API definition: the API name which shall be taken from the heading of the relevant annex A.x as defined in the corresponding 3GPP TS of that API.
-	if the OpenAPI specification file contains a definition of CommonData: the string "CommonData"; and
-	the string ".yaml".
Such a reference to another OpenAPI specification file shall be interpreted as refering to the related OpenAPI specification file contained in the version of the corresponding 3GPP TS indicated in the reference clause of the specification, i.e. for a non-specific reference the latest version of that 3GPP TS in the same Release as the specification.
Examples:
Reference to Data Type "Xxx" defined in the same file
$ref: '#/components/schemas/Xxx'

Reference to Data Type "Xxx" defined as Common Data in 3GPP TS 29.571:
$ref: 'TS29571_CommonData.yaml#/components/schemas/Xxx'

Reference to Data Type "Xxx" defined within API "Nudm_UEAU" in 3GPP "TS 29.503":
$ref: 'TS29503_Nudm_UEAU.yaml#/components/schemas/Xxx'

[bookmark: _Toc532984834]* * * Next Change * * * *
5.3.7	Server-initiated communication
If an API contains server-initiated communication (see subclause 6.2 of 3GPP TS 29.500 [2]), e.g. for notifications as described in subclause 4.6.2.3, it should be described as "callbacks" in Open APIOpenAPI specification files.
Example: 
paths:
  /subscriptions:
    post:
      requestBody:
        required: true
        content:
          application/json:
            schema:
              type: object
              properties:
                callbackUrl: # Callback URL
                  type: string
                  format: uri
      responses:
        '201':
          description: Success
      callbacks:
        myNotification: # arbitrary name
          '{$request.body#/callbackUrl}': # refers The callback URL in the POST 
            post:
              requestBody: # Contents of the callback message
                required: true
                content:
                  application/json:
                    schema:
                      $ref: '#/components/schemas/NotificationBody'
              responses: # Expected responses to the callback message
                '200':
                  description: xxx

* * * Next Change * * * *
[bookmark: _Toc532984836]5.3.8.1	General
As described in subclause 4.6.1.1.3.2, the bodies of HTTP PATCH requests either use a "JSON Merge Patch" encoding as defined in IETF RFC 7396 [7], or a "JSON Patch" encoding as defined IETF RFC 6902 [8].
It is possible to allow both encodings in a OpenAPI Specification [4] offering both schemas as alternative contents.
NOTE:	In Rel-15 a single encoding will be selected for each resource as backward compatibility considerations do not yet apply.
An example OpenAPI specification file offering both PATCH encodings is included in Annex D.

[bookmark: _Toc532984837]* * * Next Change * * * *
5.3.8.2	JSON Merge Patch
In the OpenAPI Specification [4] file, the content field key of the Request Body Object shall contain "application/merge-patch+json". The content field value is a Media Type Object identifying the applicable patch body Schema Object. The patch body Schema Object may contain structured data types derived from the data types used in the schema to describe a complete representation of the resource in such a manner that attributes that are allowed to be modified are listed in the "properties" validation keyword. 
NOTE 1:	A derived structured data type is beneficial if the data types used to describe a complete representation of the resource contains mandatory attributes, if attributes are allowed to be removed by the PATCH operation, or if a checking by the OpenAPI tooling that only allowed modifications are done via the "additionalProperties: false" keyword is desired. It also provides a clear description in the OpenAPI specification file to developers which modifications need to be supported.
As an alternative, the data types used in the schema to describe a complete representation of the resource may be used if any attributes that are allowed to be removed are marked as "nullable: true" in that schema.
Any attributes that are allowed to be removed shall be marked as "nullable: true" in the patch body Schema Object.
The "additionalProperties: false" keyword may be set.
[bookmark: _Hlk507631119]NOTE 2:	The "additionalProperties: false" keyword enables the OpenAPI tooling to check that only allowed modifications are done. Extensions of the object in future releases are still possible under the assumption that the supported features mechanism is used to negotiate the usage of any new attribute prior to the PATCH invocation. If new optional attributes are expected to be introduced without corresponding supported feature or if PATCH can be used as first operation in an API, the usage of the "additionalProperties: false" keyword is not appropriate.

[bookmark: _Toc532984838]* * * Next Change * * * *
5.3.8.3	JSON PATCH
[bookmark: _Hlk506398371]In the OpenAPI Specification [4] file, the content field of the key Request Body Object shall contain "application/json-patch+json". The content field value is a Media Type Object identifying the applicable patch body. It may contain a mutually exclusive list (using the "oneOf" keyword) of all allowed modifications as <path, op, value> tuples, where "path" is a string containing a JSON Pointer value referring to a JSON object that is allowed to be modified, "op" is an enumeration of allowed JSON PATCH operations on the JSON object identified by "path" and "value" representing the schema/type of the value that will be updated or added at the JSON object identified by "path". In addition, an open alternative containing an object with no properties may be added using the "anyOf" keyword.
NOTE 1:	A mutually exclusive list provides a clear description in the OpenAPI specification file to developers which modifications need to be supported. This is of particular interest if only a limited number of modifications need to be supported. If no open alternative is included, the OpenAPI tooling will also check that only allowed modifications are done.
NOTE 2:	The open alternative allows for extensions of the PATCH in scenarios where new optional attributes are expected to be introduced without corresponding supported feature or if PATCH can be used as first operation in an API.

[bookmark: _Toc532984841]* * * Next Change * * * *
5.3.11	Error Responses
As described in subclause 4.8 of the present specification and subclause 5.2.7 of 3GPP TS 29.500 [2], 5GC SBI APIs use valid HTTP response codes as error codes in HTTP responses and may include a "ProblemDetails" data structure specified in subclause 5.2.4.1 of 3GPP TS 29.571 [5] or an application-specific data structure.
Table 5.2.7.1-1 of 3GPP TS 29.500 [2] specifies HTTP status code per HTTP method. For each HTTP method of an API, HTTP status codes shall be specified using response code tables as described in subclauses 5.2.2 and 5.2.3. OpenAPI specification files shall include in the description of an HTTP method in the "paths" segment the mandatory HTTP status codes in Table  5.2.7.1-1 of 3GPP TS 29.500 [2] and the HTTP status codes listed in response codes table of that HTTP method.
For the purpose of referencing, HTTP error responses with "ProblemDetails" data structure are specified as part of the CommonData OpenAPI specification file in Annex A of 3GPP TS 29.571 [5].
Example:
In the example below, the 400, 500 and default error response descriptions defined in 3GPP TS 29.571 [5] are referenced.

paths:
  /users:
    get:
      responses:
        '200':
          content:
            application/json
              schema:
                $ref: '#/components/schemas/ExampleGetBody'
        '400':
          $ref: 'TS29571_CommonData.yaml#/components/responses/400'
        '500':
          $ref: 'TS29571_CommonData.yaml#/components/responses/500'
        default:
          $ref: 'TS29571_CommonData.yaml#/components/responses/default'

The following definitions provided in Annex A of 3GPP TS 29.571 [5] are used in that example:
components:
  responses:
    '400':
      description: Bad request
      content:
        application/problem+json:
          schema:
            $ref: '#/components/schemas/ProblemDetails'
    '500':
      description: Internal Server Error
      content:
        application/problem+json:
          schema:
            $ref: '#/components/schemas/ProblemDetails'
    default:
      description: Generic Error

[bookmark: _Toc532984846]* * * Next Change * * * *
5.3.16	Security
As indicated in 3GPP TS 33.501 [22] and 3GPP TS 29.500 [2], the access to an 5GC API may be authorized by means of the OAuth2 protocol (see IETF RFC 6749 [n3]), based on local configuration. 5GC APIs thus need to support the OAuth2 protocol.
To reflect this, the Open APIOpenAPI specification file of an API shall contain:
-	a "security" field listing as alternatives:
i)	"{}" to indicate that usage of security is optional; and
ii)	the name of the security schema for oAuth2, as defined in the subsequent bullet, and in the subsequent array the name of the API as only scope; and
-	a "securitySchemes" field in the "components" section defining a security schema for oAuth2 as follows:
i)	to be of type "oauth2"; and
ii)	with a "flows" field containing a "clientCredentials" field that contains:
1)	a "tokenUri" field pointing to the Access Token Request service provided by the NRF (see 3GPP TS 29.510 [18]); and
2)	a "scopes" field defining the name of the corresponding API (using the format used within URIs of that API) as only scope since the same security applies to the entire API.

Example: 
security:
  - {}
  - oAuth2ClientCredentials:
    - nnrf-nfm


components:
  securitySchemes:
    oAuth2ClientCredentials:
      type: oauth2
      flows:
        clientCredentials:
          tokenUrl: '{nrfApiRoot}/oauth2/token'
          scopes:
            nnrf-nfm: Access to the Nnrf_NFManagement API

[bookmark: _Toc532984858]* * * Next Change * * * *
Annex D (informative):
Open APIExample of an OpenAPI specification example file for Patch
[bookmark: _GoBack]As described in subclause 4.6.1.1.3.2, the bodies of HTTP PATCH requests will either use a "JSON Merge Patch" encoding as defined in IETF RFC 7396 [7], or a "JSON Patch" encoding as defined IETF RFC 6902 [8]. This annex provides an example OpenAPI Specification [4] allowing both encodings.
NOTE:	Both encoding possibilities are shown in this example for illustrative purposes. However, only a single of the above encodings will be specified for each resource where the PATCH method is supported unless backward compatibility considerations necessitate the support of both encodings.
openapi: 3.0.0
servers:
  - description: SwaggerHub API Auto Mocking
    url: https://virtserver.swaggerhub.com/3GPP_5G_core/JSON_PATCH_Example/1.0.0
info:
  version: "1.R15.0.0"
  title: PATCH Example
paths:
  /inventory:
    post:
      summary: adds an inventory item
      operationId: addInventory
      description: Adds an item to the system
      responses:
        '201':
          description: item created
        '400':
          description: 'invalid input, object invalid'
        '409':
          description: an existing item already exists
      requestBody:
        content:
          application/json:
            schema:
              $ref: '#/components/schemas/InventoryItem'
        description: Inventory item to add
  /inventory/{id}:
    get:
      summary: read inventory item
      parameters:
        - name: id
          in: path
          required: true
          schema:
            type: integer
      responses:
        '200':
          description: search results matching criteria
          content:
            application/json:
              schema: 
                $ref: '#/components/schemas/InventoryItem'
        '400':
          description: bad input parameter
    patch:
      summary: patch inventory item
      parameters:
        - name: id
          in: path
          required: true
          schema:
            type: integer
      requestBody:
        required: true
        content:
          application/json-patch+json:
            schema:
              $ref: '#/components/schemas/PatchInventoryItem'
          application/merge-patch+json:
            schema:
              $ref: '#/components/schemas/MergePatchInventoryItem'
      responses:
        '200':
          description: Patch was succesfull and updated Inventory Item is returned.
          content:
            application/json:
              schema: 
                $ref: '#/components/schemas/InventoryItem'
        '204':
          description: Patch was succesfull
        '400':
          description: bad input parameter
components:
  schemas:
    InventoryItem:
      type: object
      required:
        - name
        - manufacturer
      properties:
        id:
          type: integer
        name:
          type: string
        manufacturer:
          $ref: '#/components/schemas/Manufacturer'
        customers:
          type: array
          items:
            type: string
    Manufacturer:
      type: object
      required:
        - name
      properties:
        name:
          type: string
        homePage:
          type: string
          format: url
        phone:
          type: string
    PatchInventoryItem:
      type: array
      description: A JSON PATCH body schema to Patch selected parts of an Inventory Item
      items:
        anyOf:
          - oneOf:
            - type: object
              description: Modifies the URL of a Manufacturer 
              properties:
                op: 
                  type: string 
                  enum:
                    - "add"
                    - "remove"
                    - "replace"
                path: 
                  type: string 
                  pattern: '^\/manufacturer\/homePage$'
                value:
                  type: string
                  format: url
              required:
                - "op"
                - "path"
            - type: object
              description: Modifies a Manufacturer
              properties:
                op: 
                  type: string 
                  enum:
                    - "replace"
                path: 
                  type: string 
                  pattern: '^\/manufacturer$'
                value:
                  $ref: '#/components/schemas/Manufacturer'
              required:
                - "op"
                - "path"
                - "value"
            - type: object
              description: Modifies a Customer
              properties:
                op: 
                  type: string 
                  enum:
                    - "add"
                    - "remove"
                    - "replace"
                path: 
                  type: string 
                  pattern: '^\/customers\/(-|\d+)$'
                value:
                  type: string
              required:
                - "op"
                - "path"
          - type: object
            description: Open Alternative
        minItems: 1
    MergePatchInventoryItem:
      description: A JSON Merge PATCH body schema to Patch selected parts of an Inventory Item
      type: object
      properties:
        manufacturer:
          $ref: '#/components/schemas/Manufacturer'
          nullable: true
        customers:
          type: array
          description: Allows to replace the entire array, but not to modify individual elements.
          items:
            type: string

* * * End of Changes * * * *

