

	
3GPP TSG-CT WG4 Meeting #89	C4-190260
[bookmark: _GoBack]Montreal, Canada; 25th Feb - 1st March 2019

Source:	Ericsson
Title:	Pseudo-CR on Section 5 due to IETF progress in QUIC Standardization
Spec:	3GPP TR 29.893 v.0.4.0
Agenda item:	6.1.3
Document for:	Decision

1. Introduction
<Introduction part (optional)>
2. Reason for Change
The proposed changes are to update the text to reflect the current draft versions of QUIC and changes that has occurred in the IETF standardization process.
3. Conclusions
<Conclusion part (optional)>
4. Proposal
It is proposed to agree the following changes to 3GPP TS 29.893 v.0.4.0.

* * * First Change * * * *
[bookmark: _Toc531930755]5.3	Features of QUIC
[bookmark: _Toc531930756]5.3.1	General
QUIC is a multiplexed and secure transport protocol that runs on top of UDP. QUIC aims to provide a flexible set of features that allow it to be a general-purpose secure transport for multiple applications. The main parts of QUIC are defined in a set of documents IETF draft-ietf-quic-transport-13 [5], IETF draft-ietf-quic-recovery-13 [8], IETF draft-ietf-quic-tls-13 [6], IETF draft-ietf-quic-invariants-01 [9]. The highly integrated HTTP/32 over QUIC specification IETF draft-ietf-quic-http-13 [7] and HTTP header compression IETF draft-ietf-quic-qpack-01 [10] are developed in parallel with the core protocol. The protocol is developed by the Internet Engineering Task Force (IETF).
[bookmark: _Toc531930757]5.3.2	Framing and Multiplexing
QUIC endpoints communicate by exchanging QUIC packets in UDP datagrams. QUIC packets may have long or short headers, for packets sent prior or after the completion of version negotiation and establishment of 1-RTT keys respectively. A QUIC long header packet header contains a source and a destination Connection ID the length of each are explicitly signalled. Short header may contain a destination Connection ID, the length of the DCID field is implicit. The destination connection ID may be changed at any point and is expected to change on changes to the used 5-tuple (IP source and destination address, protocol (UDP), and source and destination port). Multiple QUIC packets can be coalesced into one UDP datagram. Multiple QUIC connections may be multiplexed on the same 5-tuple.
QUIC has a data frame definition that supports multiple parallel data streams multiplexed on a single QUIC connection. For each stream QUIC now only supports reliable and in-order delivery. However, the QUIC layer is capable of delivering to the higher layer each stream independently, thus it avoids blocking the delivery of any of the other streams when a packet loss contains only part of a stream. Note that to achieve this efficiency the implementation needs to pay attention to pack payload from one stream into a single QUIC packet.
A sender multiplexes one or more frames into a QUIC packet. A sender can wait for a short period of time to bundle multiple frames into the same QUIC packet, e.g. to minimize the computational costs of packets sending. Frames inside a QUIC packet can be of different types.
The HTTP mapping for QUIC named HTTP/3 defined in IETF draft-ietf-quic-http-13 [7] utilizes this stream concept when realizing the different HTTP/2 (See IETF RFC 7540 [13]) streams. HTTP over QUICHTTP/3 also had to improve the HTTP header compression scheme HPACK (See IETF RFC 7541 [14] into QPACK (See IETF draft-ietf-quic-qpack-01 [10]). With these changes HTTP/3 can deliver independent requests and responses in the order they are successfully delivered to endpoints, without head of line blocking between HTTP/3 streams which would be the case for HTTP/2 over TCP.
[bookmark: _Toc531930758]5.3.3	Improved Recovery and Acknowledgement
The QUIC definition of its packet format and acknowledgement frame results in several improvements over TCP. The packet number is transmission-time ordered and strictly increasing. QUIC never retransmits a particular packet, only the lost data frames that need to be retransmitted. QUIC facilitates better way to calculate RTT by encoding the delay between packet reception and transmission of the acknowledgement. The QUIC acknowledgment also supports a very larger number of received and gap ranges.
Compared to TCP, QUIC will not be limited to a three blocks of selective acknowledgement (SACK) when using the timestamp option. The strict packet numbers and explicit acknowledgement removes ambiguity between which packet is lost and which is acknowledged. Avoiding any unnecessary retransmissions of data that have reached the receiver. QUIC also avoids the retransmission uncertainty if the received packet was a delayed or retransmitted. QUIC's RTT samples are more accurate than what TCP can provide due to no ambiguity about which packets are used in measurement as well as the receiver side delay can be taken into account.
The current QUIC version defines a baseline congestion controller based on NewReno (See IETF RFC 6582 [18]), however it uses the more accurate reporting draft-ietf-quic-recovery [8]. QUIC also uses some additional modern loss recovery mechanisms by default, such as F-RTO (See IETF RFC 5682 [16]), and Tail Loss Probing (See IETF draft-dukkipati-tcpm-tcp-loss-probe-01 [17]). These improvements give QUIC a better recovery mechanism.
[bookmark: _Toc531930759]5.3.4	Encrypted and Integrity Protected Transport details
QUIC uses TLS 1.3 (See IETF draft-ietf-quic-tls-13 [6], IETF draft-ietf-tls-tls13-28RFC 8446 [12]), for key establishment, while QUIC has its own encryption and integrity layer that protects the QUIC packets. Each QUIC packet has a packet header, using a short or a long format with a small number of fields that are unencrypted, but integrity protected. It is primarily the connection ID, if present, that is unencrypted and three reserved bits for experimentation in the short header. Even the packet number is encrypted using an independent mechanism from the payload.
The encryption and integrity help provide confidentiality, privacy and source authenticity for the user of QUIC. However, the protection is also intended to prevent any middlebox in the network from interfering with the protocol, nor make assumptions about what the possible values any specific bit in the UDP payload can take. Ossification of the network has prevented a lot of improvements from being applied to TCP as middleboxes would either block or remove such changes.
Compared to TCP, this level of encryption does make certain type of network performance monitoring using middlebox basically impossible. Due to this , there are ongoing discussion of QUIC includes an intentional monitoring support bits, like called the latency spin bit (See IETF draft-ietf-quic-spin-exp-00 [15]), intended to enable middlebox to measure round-trip time between the middlebox and either endpoint if enabled by both end-points.
[bookmark: _Toc531930760]5.3.5	Connection Setup Improvements
QUIC is capable of completing establishment of a connection between a client and a server in one and half RTT. The protocol combines TLS (See IETF draft-ietf-tls-tls13-28RFC 8446 [12]) handshake with transport protocol level mechanisms to achieve this. A client's request to a server can be included after one RTT and be sent combined with the last step of the crypto handshake from the client to the server.

Holding state in the server for the initial connection establishment packets prior to having verified the client's return path can expose the server to a denial of service risk. Servers that like to mitigate that risk can use the Retry packet to verify the path and not hold any state for the first round-trip.

How big improvement this is depends on what one compares against. As 3GPP TS 33.310 makes support for TLS 1.3 (See IETF RFC 8446draft-ietf-tls-tls13-28 [12]) mandated from Rel-15 it is reasonable to compare with both TLS 1.2 (See IETF RFC 5246 [11]) and TLS 1.3. TLS 1.2 session resumption requires that the client has talked to the server recently enough, so it still has session state stored. The below table indicates number of RTTs until the first HTTP request can be sent by the client.

Table 5.3.5-1: Number of RTTs until first HTTP request
	Protocol
	New Connection
	Connection State Exists

	TCP/TLS 1.2
	3
	2

	TCP/TLS 1.3
	2
	2

	QUIC
	1
	1

QUIC can achieve faster connection establishment times until an HTTP request has been sent than existing TLS and TCP combinations. This improvement is significant when establishing a new connection, but not when clients have a long lived one to the server.
[bookmark: _Toc531930761]5.3.6	0-RTT Data
TLS 1.3 [912] includes support for early data or 0-RTT data, as it is also called. This is potentially usable by both HTTP/2 over TLS1.3/TCP as well as QUICHTTP/3 over QUIC. This functionality can only be used when client and server share a Pre-Shared Key (PSK), which can be arranged out of band or exist from an earlier connection. 0-RTT data has other security properties than for data sent after the handshake completes. Data sent as 0-RTT data will be possible to replay by an attacker that has seen the client to server exchange. Therefore, the use of 0-RTT data requires that the data is safe to replay. When using HTTP requests as 0-RTT data, the request performed must be one that is idempotent. Server may refuse to accept 0-RTT data for this reason.
[bookmark: _Toc531930762]5.3.7	Connection ID
QUIC uses two sets of connection IDs, one for the server and one for the client to identify a particular connection for an endpoint. This solution makes the connection not hard bound to a particular 5-tuple (Source and Destination IP, protocol, and source and destination port), instead the connection can be moved between different network interfaces on both client and server side. The protocol has a feature for migrating connections from using one 5-tuple to another, see subclause 5.3.8. When knowingly changing the used 5-tuple a new connection ID is supposed to be used. The peers exchange additional connection IDs when needed to ensure that the peer have one or more previously unused CIDs that can be used in case of connection migration.
The connection ID provides certain flexibility in how the implementers realize front-end load-balancers for QUIC.
[bookmark: _Toc531930763]5.3.8	Connection Migration
QUIC allows its connection to migrateion to be happened while the HTTP/3 session progresses. This means for a client with multiple network interfaces an ongoing QUIC session can be moved to newly validated path via a newly discovered network interface, for example, in the case of a data session handover from WLAN to a 3GPP radio access technology. This is possible as QUIC sessions are identified by a set of connection IDs hence a particular QUIC session is not tightly coupled with a specific client IP address and port number. Hence, iIf a network interface appears with new IP addresses or an existing one disappears but the client has alternative network interfaces, the QUIC session does not need to be established again. The QUIC session can continue on a new interface with a new connection ID from the previously communicated set of connection IDs.
It is possible that the server also has multiple IP addresses and has some preferences on which interface it would like to serve a particular client for load balancing or other management. Currently, QUIC does not support change of server IP address in the middle of an ongoing session however, the server preferred address can be conveyed to the client during the TLS handshake as "preferred_address" transport parameter. If the new path to the preferred server address is valid then client sends all the future packets to the new server address. Here the client also uses a new connection ID for the new connection to the server's preferred address.
[bookmark: _Toc531930764]5.3.9	Stream Prioritization
Being a multiplexed transport protocol, QUIC supports stream prioritization for boosting the application performance. However, QUIC itself neither provides mechanism to negotiate prioritization information nor implements any strict prioritization scheme. It relies on the application to provide priority information that QUIC will follow when it comes to packet transmission or retransmission. HTTP/3 uses the same prioritization mechanism as HTTP/2.
[bookmark: _Toc531930765]5.3.10	Flow Control
Flow control is a mechanism to set boundaries to the senders to avoid overwhelming receiver with data that the receiver cannot process. Like TCP, QUIC deploys connection level flow control, moreover, it applies a secondary stream level flow control to prevent a particular stream from consuming the receiver buffer for a connection.
[bookmark: _Toc531930766]5.3.11	Protocol Versioning
QUIC has a 32-bit version field. It can be expected that QUIC will eventually exists in a number of proprietary and standardized versions. IETF is currently working on defining version 0x00000001. There exists a mechanism for the client to ask the server to enumerate all versions it support. The client when requesting to create a connection it will indicate the version desired to use. If supported then that is what will be used, otherwise it triggers the version negotiation. Some of the non-encrypted fields are defined as not being changeable independent of version as defined by the document for invariants (See IETF draft-ietf-quic-invariants-01 [9]).
The QUIC versioning enables a very large degree of flexibility for future changes of QUIC. All aspects except for the invariants can be changed. This enables the tuning of QUIC to a specific use case or implementation of future improvements in transport protocol technology. This flexibility also indicates the need to be explicit about which QUIC version(s) that are to be supported by a specific SBI. Any analysis of benefits and downsides of QUIC must be explicit about which version is discussed.
[bookmark: _Toc531930767]5.3.12	QUIC Extensibility
QUIC payloads are consists of one or more frames. Each frame starts with frame types followed by type specific flags. All the streams with data are carried over the STREAM frame type. QUIC's current specification defines a number of essential frame types. However, new frame types can be created and can be even application specific.
QUIC allows extensions to the protocol within the constraints of the protocol invariants (see properties of the QUIC transport protocol that are expected to remain unchanged as new versions of the protocol are developed, in IETF draft-ietf-quic-invariants-01 [9]). Extensions can change the semantics of existing protocol components, but they need to be negotiated before being used. Permitted extensions include new frame types, new settings, error codes and uni-directional streams. This gives QUIC a unique way of to be extensible and customizable.
The usage of new frame types does not necessarily imply using a new protocol version. A peer can use transport parameters to indicate support to the peer that it can use a new frame type. However, this has the downside that the support of a certain frame type cannot be determined before establishing the transport connection; on the other hand, using a specific protocol version can be leveraged by a peer to determine this support prior to establishing the connection.
[bookmark: _Toc531930768]5.3.13	Connection Configuration
QUIC allows a connection to be configured in a particular way with a set of transport parameter and frames. An important difference to HTTP/2 is that in both HTTP/3 and QUIC, settings are exchanged only at the beginning of the connection and cannot be changed after that. QUIC frames are used to configure how endpoints communicate. For example - the PADDING frame allow to vary the packet size, MAX_STREAM_ID frame indicates the maximum bidirectional or unidirectional stream ID permitted to open for the connection. Moreover, new transport parameters and frames can be added to extend the configuration.
[bookmark: _Toc531930769]5.3.14	User-Land Implementations
User space implementations of QUIC do not require elevated permissions. This allows application to include a QUIC implementation without any operating system changes. This simplifies deployment of QUIC, where only the application intending to use QUIC needs to be updated. This flexibility can also be used to fine tune the protocol behaviour to a particular application. However, there exists some risk with this, as even if an implementation is following the requirement of a certain QUIC version, the choices to optimize the implementation may result in poorer performance between two differently optimized implementations.
The implementation in user space also results in certain challenges that can affect performance. Efficiency of the API towards the UDP receive and send functions is one alternativesuch case. Other complications can be access to high performance timers and operating system’s scheduling granularity.
[bookmark: _Toc531930770]5.3.15	Pluggable Sender Side Congestion Control
As QUIC implementation can reside in an application, it allows more experiment with congestion control algorithms. Now depending on the operational environment, network and service requirement very specific congestion control algorithm can be deployed in the sender as long as the information in the acknowledgement from receiver is sufficient.
[bookmark: _Toc531930771]5.3.16	Checking that the QUIC connection is alive
Another difference with HTTP/2 and TCP is that each QUIC endpoint declares an idle timeout during the handshake. If the connection remains idle (no packets received) for longer than the advertised idle timeout, the peer will assume that the connection has been closed.
HTTP/3 clients are expected to use QUIC PING frames to keep connections open if necessary, to verify that their peers are still alive or to check reachability to the peer. Without using QUIC PING frames, an inactive connection will time out. The frequency of sending PING frames is controlled by applications.
[bookmark: _Toc531930772]5.3.17	62 bits stream identifiers
QUIC stream identifiers are coded with 62 bits, instead of 31 bits with HTTP/2. However, HTTP/3 clients will consume 4 stream IDs per HTTP request that is sent.
Stream ID exhaustion becomes nearly impossible unlikely during the lifetime of a QUIC connection. Instead the QUIC connection lifetime limiting factor are more likely the 62 bits Packet Numbers per direction. When the packet number reaches its maximum number the QUIC connection must be terminated. This The longer potential lifetime may simplify the management of connections in 5GC.
[bookmark: _Toc531930773]5.4	Features of QUIC Applicable to 3GPP SBI
Editor's Note: This subclause will contain the features of QUIC that are applicable to 3GPP 5GC SBI.
[bookmark: _Toc531930774]5.4.1	General
This sub-section reviews the features of HTTP/3 and QUIC that are applicable to 3GPP SBI and under which cases and conditions they are applicable.
[bookmark: _Toc531930775]5.4.2	Framing and Multiplexing
This feature allows QUIC to multiplex multiple streams in to a single connection and avoid head of line blocking. The upper layer protocols can use the QUIC transport in efficient ways to prioritize, parallelize and even cancel standing data sent or received without having to manage multiple connections. Hence, to get the most of a QUIC connection this feature is important. When it comes to SBI, there are definitely cases where one NF consumer will have number of multiple standing requests to one of the NF providers. The HTTP/3 and QUIC framing and multiplexing provides essential support to perform the task efficiently. The efficiency gain in HTTP/3 and QUIC, compared to HTTP/2 over TLS/TCP, exists only when the transport connection is subject to packet loss. This is when TCP's head of line blocking will not allow releasing received data to higher layer, even if the data is completely received for independent HTTP/2 requests or responses.
* * * Next Change * * * *
[bookmark: _Toc531930778]5.4.5	Connection ID and Connection Migration
The connection ID provides certain flexibility in how the implementers realize front-end load-balancers for QUIC as the QUIC connection is not bound to 5 tuples (protocols and ports). In the case of SBI, both for cloud native implementation or bare metal implementation, this connection ID will provide the ability to establish network interface agonistic connection and move the connect between the interfaces as required without terminating the QUIC connection.
Server-side migration is currently only specified to be done shortly after connection handshake using the Server Preferred Address mechanism discussed in Section 9.66.12 of IETF draft-ietf-quic-transport-13 [5]. This mechanism requests that the client sends the packet destined to the server to this preferred address instead of the original one. Future versions or extensions may specify mid connection server side migration.
Client-side migration may occur at any point after the handshake has completed. This can be done intentionally by the client when another network interface has become available, where it first probes the new path from this other interface to the server, and after path verification starts using non-probing packet, thus completing the migration. It can also occur implicit, due to a NAT rebinding where the server-side observable source address and port has changed due to this rebinding. Here the use of non-probing packets results in immediate path migration to the new path, and at the same time the server initiates a path validation.
* * * Next Change * * * *

[bookmark: _Toc531930783]5.6	Comparison of Applicable Features with R15 Transport
Table 5.6-1 provides a comparison of the features supported by HTTP/3 over QUIC that are applicable to the 5GC SBI with HTTP/2 over TLS/TCP, based on the requirements from Transport Protocol for 3GPP 5GC SBI defined in subclause 5.2 and additional evaluation criteria.
Table 5.6-1: Comparison of HTTP/QUIC and HTTP/2
	Requirement/ Evaluation Criterion
	HTTP/2 over TLS/TCP

	HTTP/QUIC

	R1. Reliable message delivery

	TCP supports reliable and order-of-transmission delivery of data.
	QUIC supports reliable and order-of-transmission delivery of data per stream.

	R2. Flow control and congestion control mechanism

	Flow control is supported at connection and stream levels.

TCP provides end-to-end congestion control, but with significant throughput reduction in case of packet loss.

	Flow control is supported at connection and stream levels.
QUIC provides a congestion control mechanism based on TCP NewReno. Performance is FFS.

	R3. Support of connection semantics

	One HTTP connection maps to one TCP connection.
	How HTTP/3 maps to a QUIC connection is FFS.

	R4. Failure to deliver one message shall not block subsequent messages

	Head-Of-Line (HOL) blocking occurs if TCP segments get lost, delaying the delivery of all subsequent HTTP requests/responses until the lost segments are retransmitted.
	QUIC avoids blocking the delivery of data for any other streams when a packet loss contains only part of a stream.

	R5. Transport protocol supports mechanisms to authenticate peer endpoint and to secure transfer of application messages

	Authentication and secure transfer of application messages are provided by TLS (unless security is provided by other means).

NF service access authorization relies on OAuth2 using TLS.

	QUIC uses TLS 1.3 for key establishment, but it has its own encryption and integrity layer that protects the QUIC packets.

NF access authorisation is FFS.

	A1. Framing and Multiplexing
	HTTP/2 supports multiplexing multiple parallel requests in separate streams in a non-blocking fashion (at HTTP level) over the same TCP connection.

See also R4 for HOL at TCP level.
	HTTP/3 over QUIC supports multiplexing of multiple parallel requests in separate streams in a non-blocking fashion over the same QUIC connection.

	A2. Connection Setup Improvements
	
	By combining connection setup and TLS handshakes, QUIC improves connection setup latency and security allowing 0-RTT connection setup. However, the precondition of the improvement is that the NF service consumer has had an earlier connection with the NF service provider so that it can reuse the earlier learnt connection settings including the security keys for 0-RTT. When using stateless services, no earlier connection to the same service instance can be assumed. In addition, if the connection is persistent the impact of 0-RTT connection setup is minimal to the overall performance.

	A3. Failover to Alternate Path
	TCP does not support multi-homing.

Failover to alternate paths can be supported by setting up additional TCP connections.

	QUIC supports client-side migration after the handshake has completed, and server-side migration shortly after the connection handshake, giving some flexibility to move the connection between interfaces without terminating the QUIC connection.

Failover to alternate paths can also be supported by using additional QUIC connections.

	A4. Low Response Time
	Significant throughput reduction by TCP in overload and TCP head-of-line blocking are potential issues.
	Throughput reduction due to congestion response for QUIC is similar to TCP’s. QUIC based transport avoids head of-line blocking.

	A5. Scalability
	FFS
	FFS

	A6. Time of Availability of used standards
	Already available.
	Planned completion by July 2019.

	A7. Ease of troubleshooting and Monitoring
	Many tools exist to trace/monitor HTTP REST APIs.

If TLS end-to-end encryption is used, this renders centralized logging at intermediates impossible.

An HTTP response follows the same path as its request as it is sent on the same TCP connection.
	Many tools exist to trace/monitor HTTP REST APIs, but less widespread support for QUIC so far.

QUIC requires end-to-end encryption that would render centralized logging at intermediates impossible or much more complex.

An HTTP response follows the same path as its request as it is sent on the same QUIC connection.

	A8. Ease of traversal of carrier-grade ALG/NAT/firewall
	Need to configure operator-grade firewalls to pass TCP/TLS/HTTP. For bidirectional communication, configuration for two connections may be required, but security gateways can reduce the number of required connections (see 3GPP TS 33.210 [24]).
	Need to configure operator-grade firewalls to pass UDP/QUIC. For bidirectional communication, configuration for two connections may be required, but security gateways can reduce the number of required connections (see 3GPP TS 33.210 [24]).

	A9. Impacts to GSMA GRX/IPX
	Support being defined for Rel-15
(see GSMA NG 113 [25]).
	No HTTP/3 over QUIC support so far.

	A10.	Use of proxies

	HTTP/2 supports the use of proxies in the path.
	HTTP/3 Proxy functionality still at very early stage (see subclause 6.2).

	A.11 Idle HTTP connections
	PING frames are used to test whether a connection is still alive.
	PING frames are used to test whether a connection is still alive and to keep the connection alive.
QUIC endpoint declares an idle timeout during the handshake. If the connection remains idle (no packets received) for longer than the advertised idle timeout, the peer will assume that the connection has been closed.

	A.12 Availability of standard APIs (e.g. socket APIs)
	Many libraries to choose from for HTTP/2.
	QUIC support is not yet so widespread.

	A.13 Stream IDs
	HTTP/2 stream identifiers are coded with 31 bits. Stream IDs can exhaust during the lifetime of the HTTP/2 connection, which complexifies the management of connections.
	QUIC stream identifiers are coded with 62 bits. Stream IDs exhaustion becomes nearly impossible during the lifetime of a QUIC connection, which simplifies the management of connections.

Editor's Note: How Monitoring (A7) may be enhanced by the QUIC Latency Spin Bit (see draft-ietf-quic-spin-exp-01 [15]) is FFS.

* * * End of Changes * * * *

