
3GPP TSG CT WG4 Meeting #86
C4-186599
West Palm Beach, USA, 20th – 24th August 2018
was C4-186424

was C4-186329

was C4-186160
Source:
Huawei
Title:
JOSE Protected Message Forwarding API on N32-f
Spec:
3GPP TS 29.cde v0.1.0
Agenda item:
7.2.1.16
Document for:
Agreement
1. Introduction
This PCR specifies the API for JOSE protected message forwarding over N32-f
2. Reason for Change
1. Specify the API for JOSE protected message forwarding over N32-f
3. Conclusions

<Conclusion part (optional)>

4. Proposal

It is proposed to agree the following changes to 3GPP TS 29.cde v0.1.0.
* * * First Change * * * *

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
3GPP TS 23.501: "System Architecture for the 5G System; Stage 2".

[3]
3GPP TS 23.502: "Procedures for the 5G System; Stage 2".

[4]
3GPP TS 29.500: "5G System; Technical Realization of Service Based Architecture; Stage 3".

[5]
3GPP TS 29.501: "5G System; Principles and Guidelines for Services Definition; Stage 3".

[6]
3GPP TS 33.501: "Security architecture and procedures for 5G system".

[7]
IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)".
[8]
IETF RFC 8259: "The JavaScript Object Notation (JSON) Data Interchange Format".
[9]
IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content".
[10]
IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing".
[11]
IETF RFC 793: "Transmission Control Protocol".
[m]
3GPP TS 29.571: "5G System; Common Data Types for Service Based Interfaces; Stage 3".
[n]
IETF RFC 7516: " JSON Web Encryption (JWE)".
[p]
IETF RFC 7515: " JSON Web Signature (JWS)".
[q]
3GPP TS 29.502: "5G System; Session Management Services; Stage 3".
[r]
IETF RFC 2387: "The MIME Multipart/Related Content-type".
[s]
IETF RFC 2045: "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies".
[t]
IETF RFC 6901: "JavaScript Object Notation (JSON) Pointer".
* * * Next Change * * * *

6.2
JOSE Protected Message Forwarding API on N32

6.2.1
API URI

URIs of this API shall have the following root:

{apiRoot}/{apiName}/{apiVersion}/

where "apiRoot" is defined in subclause 4.4.1 of 3GPP TS 29.501 [5], the "apiName" shall be set to "n32f-forward" and the "apiVersion" shall be set to "v1" for the current version of this specification.
6.2.2
Usage of HTTP

6.2.2.1
General

HTTP/2, as defined in IETF RFC 7540 [7], shall be used as specified in subclause 4.3.2.1.

HTTP/2 shall be transported as specified in subclause 4.3.3.

HTTP messages and bodies for the JOSE protected message forwarding API on N32-f shall comply with the OpenAPI [15] specification contained in Annex A.

6.2.2.2
HTTP standard headers
6.2.2.2.1
General
The HTTP standard headers as specified in subclause 4.3.2.2 shall be supported for this API.
6.2.2.2.2
Content type

The JSON format shall be supported. The use of the JSON format (see IETF RFC 8259 [8]) shall be signalled by the content type "application/json" or "application/problem+json". See also subclause 5.3.4.
6.2.2.3
HTTP custom headers
6.2.2.3.1
General

In this release of the specification, no specific custom headers are defined for the JOSE protected message forwarding API on N32.

For 3GPP specific HTTP custom headers used across all service based interfaces, see subclause 4.3.2.3.

* * * Next Change * * * *

6.2.3
Resources

6.2.3.1
Overview

There are no resources in this version of this API. All the operations are realized as custom operations without resources.

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	

	
	
	
	
	

* * * Next Change * * * *

6.2.4
Custom Operations without Associated Resources

6.2.4.1
Overview

Table 6.2.4.1-1: Custom operations without associated resources

	Custom operation URI
	Mapped HTTP method
	Description

	{apiRoot}/n32f-forward/v1/n32f-process
	POST
	This is the N32f forwarding API used to forward a reformatted and JOSE protected message to a receiving SEPP.

	
	
	

6.2.4.2
Operation: JOSE Protected Forwarding

6.2.4.2.1
Description

This custom operation is used between the SEPPs to forward the reformatted and JOSE protected HTTP/2 message on N32-f. The HTTP method POST shall be used on the following URI:

URI: {apiRoot}/n32f-forward/v1/n32f-process

This operation shall support the resource URI variables defined in table 6.1.4.2.1-1.

Table 6.1.3.2.1-1: URI variables for this Operation
	Name
	Definition

	apiRoot
	See subclause 6.1.1.

6.2.4.2.2
Operation Definition

This operation shall support the request data structures and response codes specified in tables 6.2.4.2.2-1 and 6.2.4.2.2-2.

Table 6.2.4.2.2-1: Data structures supported by the POST Request Body on this resource

	Data type
	P
	Cardinality
	Description

	N32fReformattedReqMsg
	M
	1
	This IE shall contain the reformatted HTTP/2 message comprising the plain text part, encrypted information, meta data and modification chain information. See subclause 6.2.5.2.2.

Table 6.2.4.2.2-2: Data structures supported by the POST Response Body on this resource

	Data type
	P
	Cardinality
	Response

codes
	Description

	N32fReformattedRspMsg
	M
	1
	200 OK
	

 This represents the successful processing of the reformatted JOSE protected message at the responding SEPP. The responding SEPP shall provide the reformatted and JOSE protected content of the corresponding HTTP/2 response message.

	ProblemDetails
	M
	1
	4xx / 5xx
	All the mandatory to support 4xx and 5xx status codes as specified in subclause 5.2.7.1 and their corresponding application errors specified in subclause 5.2.7.2 of 3GPP TS 29.500 4] shall be supported.

* * * Next Change * * * *

6.2.5
Data Model

6.2.5.1
General

This subclause specifies the application data model supported by the API.

Data types that may be common to multiple APIs (offered by the same or different NFs) should be specified in a new separate TS (similar approach as for TS 29.230 for Diameter AVPs). The data types for carrying the reformatted JSON message need to be defined here.

Table 6.3.5.1-1 specifies the data types defined for the N32 interface.

Table 6.2.5.1-1: N32 specific Data Types

	Data type
	Section defined
	Description

	N32fReformattedReqMsg
	6.2.5.2.2
	

	N32fReformattedRspMsg
	6.2.5.2.3
	

	AuthenticatedBlock
	6.2.5.2.a
	

	ClearTextBlock
	6.2.5.2.b
	

	RequestLine
	6.2.5.2.c
	

	HttpHeader
	6.2.5.2.d
	

	HttpPayload
	6.2.5.2.e
	

	MetaData
	6.2.5.2.f
	

	Modifications
	6.2.5.2.g
	

	FlatJweJson
	6.2.5.2.h
	

	FlatJwsJson
	6.2.5.2.i
	

	IndexToEncryptedValue
	6.2.5.2.j
	

	EncodedHttpHeaderValue
	6.2.5.2.k
	

Table 6.1.5.1-2 specifies data types re-used by the N32 interface protocol from other specifications, including a reference to their respective specifications and when needed, a short description of their use within the Namf service based interface.

Table 6.2.5.1-2: N32 re-used Data Types

	Data type
	Reference
	Comments

	HttpMethod
	6.1.5.3.y
	

	PatchItem
	3GPP 29.571 [m]
	

	UriScheme
	3GPP 29.571 [m]
	

	Fqdn
	3GPP 29.571 [m]
	

6.2.5.2
Structured data types

6.2.5.2.1
Introduction

This subclause defines the structures to be used in the N32 Initial Handshake API.

6.2.5.2.2
Type: N32fReformattedReqMsg

Table 6.2.5.2.2-1: Definition of type N32fReformattedReqMsg
	Attribute name
	Data type
	P
	Cardinality
	Description

	reformattedData
	FlatJweJson
	M
	1
	This IE shall contain the integrity protected reformatted block as well as the ciphered part of the reformatted block of the HTTP/2 request message sent between NF service producer and consumer.

The SEPP shall reformat the HTTP/2 request message as:

· The part of original HTTP/2 request message headers and the payload that needs to be only integrity protected is first reformatted into "DataToIntegrityProtectBlock" and then fed as input for the "aad" parameter of the FlatJweJson after subjecting to BASE64URL encoding.

The part of the original HTTP/2 request message headers and payload that require integrity protection and ciphering is first reformatted into "DataToIntegrityProtectAndCipherBlock" and then fed as input for JWE ciphering and the JWE ciphered block is then BASE64URL encoded and set into the "ciphertext" parameter of the FlatJweJson.

	modificationsBlock
	array(FlatJwsJson)
	C
	0..1
	This IE shall be included if the IPXes on path are allowed to apply modification policies and if they have any specific modification to be applied on the message contained in the authenticatedBlock.

	
	
	
	
	

6.2.5.2.3
Type: N32fReformattedRspMsg

Table 6.2.5.2.3-1: Definition of type N32fReformattedRspMsg

	Attribute name
	Data type
	P
	Cardinality
	Description

	reformattedData
	FlatJweJson
	M
	1
	This IE shall contain the integrity protected reformatted block as well as the ciphered part of the reformatted block of the HTTP/2 response message sent between NF service producer and consumer.

The SEPP shall reformat the HTTP/2 response message as:

· The part of original HTTP/2 response message headers and the payload that needs to be only integrity protected is first reformatted into "DataToIntegrityProtectBlock" and then fed as input for the "aad" parameter of the FlatJweJson after subjecting to BASE64URL encoding.
· The part of the original HTTP/2 response message headers and payload that require integrity protection and ciphering is first reformatted into "DataToIntegrityProtectAndCipherBlock" and then fed as input for JWE ciphering and the JWE ciphered block is then BASE64URL encoded and set into the "ciphertext" parameter of the FlatJweJson.

	modificationsBlock
	array(FlatJwsJson)
	C
	1..N
	This IE shall be included if the IPXes on path are allowed to apply modification policies and if they have any specific modification to be applied on the message contained in the authenticatedBlock.

6.2.5.2.a
Type: DataToIntegrityProtectAndCipherBlock
Table 6.2.5.2.a-1: Definition of type DataToIntegrityProtectBlock
	Attribute name
	Data type
	P
	Cardinality
	Description

	dataToEncrypt
	array(object)
	M
	1..N
	This IE shall contain the input for ciphering as a JSON object block containing an array of free form objects with each entry of the array containing the value of a HTTP header to be encrypted or the value of a JSON attribute to be encrypted.

6.2.5.2.b
Type: DataToIntegrityProtectBlock
Table 6.2.5.2.b-1: Definition of type ClearTextBlock
	Attribute name
	Data type
	P
	Cardinality
	Description

	metaData
	MetaData
	C
	0..1
	This IE shall be included if the SEPP encodes additional information for replay protection. When present this IE shall contain the meta data information needed for replay protection.

	requestLine
	RequestLine
	C
	1
	This IE shall be included when a JOSE protected API "request" is forwarded over N32-f. When present, this IE shall contain the request line of the HTTP API request being reformatted and forwarded over N32-f.

	statusLine
	string
	C
	0..1
	This IE shall be included when a JOSE protected API "response" is forwarded over N32-f. When present, this IE shall contain the status line of the HTTP API response being reformatted and forwarded over N32-f.

	headers
	array(HttpHeader)
	C
	1..N
	This IE shall be included when a JOSE protected API request / response contains HTTP headers. When present this IE shall contain the encoding of HTTP headers in the API request / response.

	payload
	array(HttpPayload)
	C
	1..N
	This IE shall be included when a JOSE protected API request / response contains JSON payload that needs to be sent in clear text. When present this IE shall contain the encoding of JSON payload in the API request / response.

6.2.5.2.c
Type: RequestLine
Table 6.2.5.2.c-1: Definition of type RequestLine
	Attribute name
	Data type
	P
	Cardinality
	Description

	method
	HttpMethod
	M
	1
	This IE shall contain the HTTP method of the API invoked by the NF service consumer / producer behind the SEPP towards its peer NF service in the other PLMN.

	scheme
	UriScheme
	M
	1
	This IE shall contain the HTTP scheme of the API.

	authority
	string
	M
	1
	This IE shall contain the authority part of the URI of the API being invoked.

	path
	string
	M
	1
	This IE shall contain the path part of the URI of the API being invoked.

	protocolVersion
	string
	M
	1
	This IE shall contain the HTTP protocol version. The version shall be 2 in this release of this specification.

	queryFragment
	string
	C
	0..1
	This IE shall contain the query fragment part of the API, if available.

6.2.5.2.d
Type: HttpHeader

Table 6.2.5.2.d-1: Definition of type HttpHeader

	Attribute name
	Data type
	P
	Cardinality
	Description

	header
	string
	M
	1
	This IE shall contain the name of the HTTP header to encoded.

	value
	EncodedHttpHeaderValue
	M
	1
	This IE shall contain the value of the HTTP header. The value of the HTTP header shall be encoded as:
· HttpHeaderValue structure specified in subclause 6.2.5.2.j if the HTTP header is not to be encrypted.

· IndexToEncryptedValue structure specified in subclause 6.2.5.2.k if the value of the HTTP header is to be encrypted.

6.2.5.2.e
Type: HttpPayload
Table 6.2.5.2.e-1: Definition of type HttpPayload
	Attribute name
	Data type
	P
	Cardinality
	Description

	iePath
	string
	M
	1
	This IE identifies the JSON pointer representation (see IETF RFC 6901 [t]) of full JSON path of the IE to be encoded. IEs that are of type object shall be flattened into each individual attribute's full JSON path and the HttpPayload IE shall only contain the final leaf attribute IE path and its corresponding value.

	ieValueLocation
	IeLocation
	M
	1
	This IE shall identify where the IE value is located - i,e in the JSON body or in the multipart message part.

	value
	object
	M
	1
	This IE shall contain the value of the IE corresponding to "iePath", encoded as a free form object.
If the value of this IE is encrypted, then the value part shall be encoded as
{
"encBlockIndex": <array index in DataToIntegrityProtectAndCipherBlock>
}
(see subclause 6.2.5.2.a).
If the value of this IE is a RefToBinary data type (see 3GPP TS 29.571 [m], then value shall contain the value of the Content-ID header field of the referenced binary body part.
The referenced binary body part of the multipart/related message shall be either encrypted or not encrypted depending on the protection policy exchanged between the SEPPs.
If the referenced binary body part is required to be encrypted, then the binary part is first base64 encoded into a byte array and then inserted into the "DataToIntegrityProtectAndCipherBlock". Then two HttpPayload instances with the following values shall be added immediately after this HttpPayload instance in the "DataToIntegrityProtectBlock"

{
 "iePath": <JSON Pointer of RefToBinary type IE that is referring to the multipart binary parth>/contenttype
 "ieValueLocation": "MULTIPART_BINARY"

 "value": <value of the content type of multipart binary>
},

{
 "iePath": <JSON Pointer of RefToBinary type IE that is referring to the multipart binary parth>/data,
 "ieValueLocation": "MULTIPART_BINARY"
"value": {"encBlockIndex": <array index in DataToIntegrityProtectAndCipherBlock that contains the byte array>}

}
If the referenced binary body part is not required to be encrypted, then the binary part is first base64 encoded into a byte array and then inserted as new instance of HttpPayload IE in " DataToIntegrityProtectBlock" as

{
 "iePath": <JSON Pointer of RefToBinary type IE that is referring to the multipart binary parth>/contenttype
 "ieValueLocation": "MULTIPART_BINARY"

 "value": <value of the content type of multipart binary>

},
{

 "iePath": <JSON path of RefToBinary type IE that is referring to the multipart binary parth>/data,
 "ieValueLocation": "MULTIPART_BINARY"

"value": <base64 encoded byte array>
}

See NOTE 1.

	NOTE 1:
In this release of this specification only N16 interface has binary content and there is no sensitive information carried over N16 interface. Consequently ciphering of binary part is not required in this release of this specification. The encoding specified here is to provide a N32-f framework in a future proof manner so that if a binary part need to be encrypted in future this structure can be used.

6.2.5.2.f
Type: MetaData
Table 6.2.5.2.f-1: Definition of type MetaData
	Attribute name
	Data type
	P
	Cardinality
	Description

	n32fContextId
	string
	M
	1
	This IE shall contain the n32fContextId provided by the initiating SEPP to the responding SEPP during the parameter exchange procedure (see subclause 5.2.3).

	requestId
	string
	C
	0..1
	This IE identifies a particular request that is transformed by the SEPP.

	nextHopId
	Fqdn
	C
	0..1
	This IE shall be included if available. When included this IE identifies the next hop in the message forwarding.

Editor's Note: The need for requestId is FFS. The purpose of requestId is for IPX to match requests with responses. However HTTP/2 stream ID can be used. IPX can map the stream ID received on one side to stream ID it used on the other side to map the subsequent response it receives on other side to the pending request on one side.
Editor's Note: Purpose of NextHopId is FFS
6.2.5.2.g
Type: Modifications

Table 6.2.5.2.g-1: Definition of type Modifications

	Attribute name
	Data type
	P
	Cardinality
	Description

	operations
	array(PatchItem)
	C
	0..1
	This IE shall be included if an intermediary IPX inserts modification instructions on the JSON data carried in the "authenticatedBlock" part of the N32-f forwarded message. For the first modifications entry, this IE shall not be included, since the first entry is inserted by the SEPP.

	identity
	Fqdn
	M
	1
	This IE shall contain the identity of the entity inserting the modifications entry. The identity shall be encoded in the form of an URI.

	nextHopIdentity
	Fqdn
	M
	1
	This IE shall contain the identity of the next hop intermediary. The identity shall be encoded in the form of an URI.

6.2.5.2.h
Type: FlatJweJson
Table 6.2.5.2.h-1: Definition of type FlatJweJson
	Attribute name
	Data type
	P
	Cardinality
	Description

	protected
	string
	C
	0..1
	This IE shall be present if there is a JWE Protected Header part of the JOSE header to encode as specified in IETF RFC 7516 [n]. When present, this IE shall contain the BASE64URL(UTF8(JWE Protected Header)) encoding of the JWE protected header.

	unprotected
	object
	C
	0..1
	This IE shall be present if there is a JWE unprotected header part of the JOSE header that is shared across recipients, to encode as specified in IETF RFC 7515 [p]. This value is represented as

an unencoded free form JSON object, rather than as a string. These Header Parameter values are not integrity protected.

	header
	object
	C
	0..1
	This IE shall be present if there is a JWE unprotected header part of the JOSE header that is specific for the recipient, to encode as specified in IETF RFC 7515 [p]. This value is represented as

an unencoded free form JSON object, rather than as a string. These Header Parameter values are not integrity protected.

	encrypted_key
	string
	C
	0..1
	This IE shall be present when the JWE Encrypted Key for the recipient is non empty. When present this IE shall contain BASE64URL(JWE Encrypted Key).

	aad
	string
	C
	0..1
	This IE shall be present when the JWE AAD value is non-empty as specified in IETF RFC 7515 [p]. When present, this IE shall contain BASE64URL encoding of the DataToIntegrityProtectBlock JSON object (see subclause 6.2.5.2.b).

	iv
	string
	C
	1
	This IE shall be present when the JWE Initaitlization Vector is non-empty as specified in IETF RFC 7515 [p]. When present, this IE shall contain the BASE64URL(JWE Initialization Vector).

	ciphertext
	string
	M
	1
	This IE shall contain BASE64URL(JWE Ciphertext). The input for JWE ciphering is the DataToIntegrityProtecAndCiphertBlock (see subclause 6.2.5.2.b).

	tag
	string
	C
	0..1
	This IE shall be present when the JWE Authentication Tag value is non-empty as specified in IETF RFC 7515 [p]. When present, this IE shall contain the BASE64URL(JWE Authentication Tag).

6.2.5.2.i
Type: FlatJwsJson

Table 6.2.5.2.i-1: Definition of type FlatJwsJson

	Attribute name
	Data type
	P
	Cardinality
	Description

	payload
	string
	M
	1
	This IE shall contain the BASE64URL encoding of the Modifications JSON object (see subclause 6.2.5.2.g).

	protected
	string
	C
	0..1
	This IE shall be present if there is a JWS Protected Header part of the JOSE header to encode as specified in IETF RFC 7515 [p]. When present, this IE shall contain the BASE64URL(UTF8(JWS Protected Header)) encoding of the JWS protected header.

	header
	object
	C
	0..1
	This IE shall be present if there is a JWS unprotected header part of the JOSE header to encode as specified in IETF RFC 7515 [p]. This value is represented as

an unencoded free form JSON object, rather than as a string. These Header Parameter values are not integrity protected.

	signature
	string
	M
	1
	This IE shall contain the BASE64URL encoded value of the calculated JWS signature.

6.2.5.2.j
Type: IndexToEncryptedValue
Table 6.2.5.2.j-1: Definition of type IndexToEncryptedHttpHeader
	Attribute name
	Data type
	P
	Cardinality
	Description

	encBlockIndex
	Uinteger
	M
	1
	Index to the value in DataToIntegrityProtectAndCipherBlock

6.2.5.2.k
Type: EncodedHttpHeaderValue

Table 6.2.5.2.k-1: Definition of type EncodedHttpHeaderValue as a list of "mutually exclusive alternatives"
	Data type
	Cardinality
	Description
	Applicability

	string
	1
	HTTP header value represented as header name and value pair
	

	IndexToEncryptedValue
	1
	Index to encrypted HTTP header in the DataToIntegrityProtectAndCipherBlock
	

6.2.5.3
Simple data types and enumerations

This subclause will define simple data types and enumerations that can be referenced from data structures defined in the previous subclauses.

6.2.5.3.1
Introduction

This subclause defines simple data types and enumerations that can be referenced from data structures defined in the previous subclauses.

6.2.5.3.2
Simple data types

The simple data types defined in table 6.1.5.3.2-1 shall be supported.

Table 6.2.5.3.2-1: Simple data types

	Type Name
	Type Definition
	Description

	
	
	

6.2.5.3.3
Enumeration: <EnumType1>

The enumeration <EnumType1> represents <something>. It shall comply with the provisions defined in table 6.2.5.3.3-1.

Table 7.3.5.3.3-1: Enumeration < EnumType1>

	Enumeration value
	Description

	
	

6.2.5.3.4
Enumeration: <EnumType2>

And so on if there are more enumerations to define.

* * * Next Change * * * *

Annex B (informative):
Examples of N32-f Encoding

B.1
General

This Annex provides some example encodings of HTTP/2 request and response messages initiated by NF service consumer / producer when they are reformatted and sent over N32-f
B.2
Input Message Containing No Binary Part

Consider the following example:

-
Some headers of the input HTTP/2 message need to be integrity protected and ciphered.
-
Some payload part of the input HTTP/2 message need to be integrity protected and ciphered.

-
The input HTTP/2 message has no multipart/related binary content.

-
The headers and payload that are not required to be integrity protected and ciphered in the input HTTP/2 message need to be only integrity protected.

The N32fReformattedReqMessage for this example looks like

"reformattedData": {
 "protected": BASE64URL(UTF8(JWE Protected Header),
 "unprotected": <non integrity protected shared JOSE headers>,
 "header": <non integrity protected recipient specific JOSE headers>,
 "encrypted_key": BASE64URL(JWE Encrypted Key),
 "aad": BASE64URL(DataToIntegrityProtectBlock),
 "iv": BASE64URL(JWE Initialization Vector),
 "ciphertext": BASE64URL(JWE CipherText(DataToIntegrityProtectAndCipherBlock),
 "tag": BASE64URL(JWE Authentication Tag)
}
The DataToIntegrityProtectBlock for this example looks like

{

 "metaData": {"n32fContextId": <the n32fcontext Id of receiving SEPP>, "nextHopId": <FQDN of IPX>},

 "requestLine":
 {
 "method": <http method of the NF service API>,
 "scheme": <http scheme of the NF service API>,

 "authority": <authority part of the NF service API URI>,

 "path": <path part of the NF service API URI>,

 "protocolVersion": <HTTP protocol version>,

 "queryFragment": <query fragment of the NF service API, if available>
 },
 "headers":
 [

 {

 "header": <name of HTTP header 1>,

 "value": {"headerval": <string carrying value of the header>}

 },
 {

 "header": <name of HTTP header 2>,

 "value": {"encBlockIndex": 1}

 }
],
 "payload":

 [

 {
 "iePath": <JSON Pointer of IE 1>,
 "ieValueLocation": "BODY",

 "value": <value of IE>
 },

 {
 "iePath": <JSON Pointer of IE 2>,

 "ieValueLocation": "BODY",

 "value": {"encBlockIndex": 2}
 }
]
}
The DataToIntegrityProtectAndCipherBlock for this example looks like

{

 "dataToEncrypt":
 [

 {<value of HTTP header 2>},

 {<value of payload 2>}
]

}
B.3
Input Message Containing Multipart Binary Part

Consider the following example:

-
Some headers of the input HTTP/2 message need to be integrity protected and ciphered.

-
Some payload part of the input HTTP/2 message need to be integrity protected and ciphered.

-
The input HTTP/2 message has two multipart/related binary content out of which one binary content needs to be integrity protected and ciphered while the other is only required to be integrity protected.

-
The headers and payload that are not required to be integrity protected and ciphered in the input HTTP/2 message need to be only integrity protected.

The N32fReformattedReqMessage for this example looks like

"reformattedData": {

 "protected": BASE64URL(UTF8(JWE Protected Header),

 "unprotected": <non integrity protected shared JOSE headers>,

 "header": <non integrity protected recipient specific JOSE headers>,

 "encrypted_key": BASE64URL(JWE Encrypted Key),

 "aad": BASE64URL(DataToIntegrityProtectBlock),

 "iv": BASE64URL(JWE Initialization Vector),

 "ciphertext": BASE64URL(JWE CipherText(DataToIntegrityProtectAndCipherBlock),

 "tag": BASE64URL(JWE Authentication Tag)
}

The DataToIntegrityProtectBlock for this example looks like

{

 "metaData": {"n32fContextId": <the n32fcontext Id of receiving SEPP>, "nextHopId": <FQDN of IPX>},

 "requestLine":

 {

 "method": <http method of the NF service API>,

 "scheme": <http scheme of the NF service API>,

 "authority": <authority part of the NF service API URI>,

 "path": <path part of the NF service API URI>,

 "protocolVersion": <HTTP protocol version>,

 "queryFragment": <query fragment of the NF service API, if available>

 },

 "headers":

 [

 {

 "header": <name of HTTP header 1>,

 "value": {"headerval": <string carrying value of the header>}

 },

 {

 "header": <name of HTTP header 2>,

 "value": {"encBlockIndex": 1}

 }

],

 "payload":

 [

 {

 "iePath": <JSON Pointer of IE 1>,

 "ieValueLocation": "BODY",

 "value": <value of IE>

 },

 {

 "iePath": <JSON Pointer of IE 2 - which is a RefToBinary type IE>,

 "ieValueLocation": "BODY",

 "value": <value of the Content ID>
 },
 {

 "iePath": <JSON Pointer of IE 2 - which is a RefToBinary type IE>/contenttype,

 "ieValueLocation": "MULTIPART_BINARY",

 "value": <value of the Content Type>

 },
 {

 "iePath": <JSON Pointer of IE 2 - which is a RefToBinary type IE>/data,

 "ieValueLocation": "MULTIPART_BINARY",

 "value": <BASE 64 encoded byte array of the binary part>

 }
 {

 "iePath": <JSON Pointer of IE 3 - which is a RefToBinary type IE>,

 "ieValueLocation": "BODY",

 "value": <value of the Content ID>

 },
 {

 "iePath": <JSON Pointer of IE 2 - which is a RefToBinary type IE>/contenttype,

 "ieValueLocation": "MULTIPART_BINARY",

 "value": <value of the Content Type>

 },
 {

 "iePath": <JSON Pointer of IE 3 - which is a RefToBinary type IE>/data,

 "ieValueLocation": "MULTIPART_BINARY",

 "value": {"encBlockIndex": 2}
 }
]
}
The DataToIntegrityProtectAndCipherBlock for this example looks like

{

 "dataToEncrypt":
 [

 {<value of HTTP header 2>},

 {<byte array containing BASE 64 encoding of the binary part>}

]

}
* * * End of Changes * * * *

_1591683910.vsd
//{apiRoot}/n32-message/v1

/forward

