
3GPP TSG CT WG4 Meeting #85
C4-184614
Osaka, Japan, 21st – 25th May 2018
Source:
Nokia, Nokia Shanghai-Bell, Orange
Title:
Pseudo-CR on API version numbers
Spec:
3GPP TS 29.501
Agenda item:
6.2.1.4
Document for:
Decision

2. Reason for Change
The version numbering Clause 4.3 on API versioning still contains the following editor´s note:
Editor’s note:

The exact compatibility between the TS versioning mechanism and the API one requires further study.
In fact, the API versioning seems not compatible with the way 3GPP TS are versioned:

Assume we have a TS 29.abc with version 15.0.0 containing an API with version v1.0.0

In REl-16 we add a new optional feature in a backward compatible manner. This yields TS version 16.0.0 and API v1.1.0

Now an essential correction needs to be applied in both Rel-15 and Rel-16 (again, assume this is backward compatible). This would yield TS versions 15.1.0 and 16.1.0

However, which version to apply to the API? As the changes are backward compatible, the mayor version remains v1, and the new versions could be v1.2.0 (for Rel-15) and v1.3.0. (for Rel-16). But the branch structure of 3GPP versioning con no longer be reflected leading to very counter-intuitive versioning: v1.2.0 is not based on v1.1.0 (as one would expect), nor is v1.3.0 based on v1.2.0.
The following possible solutions are proposed for discussion:

1. Number APIs with only major versions that are incremented only for backward incompatible changes. However, in addition the OpenAPI file documents the exact TS version, for instance using a specific link to 3GPP TS version using the OpenAPI externalDocs construct. This TS version could also be used in addition to the API version for the discovery of the supported versions.
2. Number APIs with a three-part number. The major (1st) number is incremented for backward incompatible changes. The minor (2nd) number of the API version corresponds to the 3GPP release and for backward compatible changes is only incremented one time for each release. All other backward compatible changes only lead to an increment of patch (3rd) number.

3. Number APIs with a four-part number. The major (1st) number is incremented for backward incompatible changes. The minor (2nd) number of the API version corresponds to the 3GPP release and also indicates whether a 3GPP Release is under development. The 3rd and 4th field are incremented for backward compatible changes minor and patch changes, respictively.

4. It is accepted that the API version numbers do not reflect a consecutive development and that the branches of 3GPP TS are not reflected. Related Explanations are added and possibly rules are defined how to assign minor version numbers if changes for several TS releases need to be agreed at the same plenary (e.g. lowest updated 3GPP Release obtains first free minor number)
Solution 1 avoids a double versioning and counter-intuitive versioning as described above.
Solution 2 has the advantage that it can reflect the 3GPP branch structure of TSs and avoids counter-intuitive versioning as described above. However, it seems not fully aligned with the typical way how version numbers are assigned for semantic versioning.

Solution 3 has the advantage that it can reflect the 3GPP branch structure of TSs and avoids counter-intuitive versioning as described above. It is also able to reflect all levels of semantic versioning.

Solution 4 is also not fully aligned with the typical way of assigning semantic versions, as consecutive versions may not be direct evolutions of each other.

It has been extensively discussed in the TR phase that the API version appearing in the URI is also incremented when a non-backward compatible change is done. This is an important part of the extensibility concept also using the supported feature mechanism. The current API versioning adheres to that principle with respect to the major versions (that are the only parts appearing in the URI). This aspect is deemed essential and therefore no solution altering that principle is proposed.

3. Conclusions

Solution 3 seems preferable and the PCR tries to implement that solution.
4. Proposal

It is proposed to agree the following changes to 3GPP TS 29.501 v1.1.1.
* * * First Change * * * *

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 29.500: "5G System; Technical Realization of Service Based Architecture; Stage 3".

[3]
IETF RFC 8259: "The JavaScript Object Notation (JSON) Data Interchange Format".

[4]
OpenAPI: "OpenAPI 3.0.0 Specification", https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md.

[5]
3GPP TS 29.571: "5G System; Common Data Types for Service Based Interfaces Stage 3".

[6]
IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content"
[7]
IETF RFC 7396: "JSON Merge Patch".
[8]
IETF RFC 6902: "JavaScript Object Notation (JSON) Patch".

[9]
IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax"
[10]
IETF RFC 5789: "PATCH Method for HTTP"
[11]
IETF RFC 8288: "Web Linking".
[12]
IANA: "HTTP Status Code Registry at IANA", http://www.iana.org/assignments/http-status-codes
[13]
IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)"
[14]
Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures. Doctoral dissertation, University of California, Irvine, 2000.
[15]
Erik Wilde, Cesare Pautasso, REST: From Research to Practice, Springer

[16]
YAML 1.2: "YAML Ain't Markup Language", http://yaml.org.
[17]
Semantic Versioning Specification: https://semver.org
[18]
3GPP TS 29.510: "5G System; Network Function Repository Services; Stage 3".
[19]
IETF RFC 7807: "Problem Details for HTTP APIs".
[20]
3GPP TS 29.502: "5G System; Session Management Services; Stage 3".

[21]
3GPP TS 29.509: "Authentication Server Services; Stage 3".
* * * Next Change * * * *

4.3
Version Control

4.3.1
Structure of API version numbers
4.3.1.1
API version number format
API version numbers shall consist of at least 4 fields, following a MAJOR.MINOR.PATCH pattern as described in the Semantic Versioning Specification [17] with enhancements to cover branches due to 3GPP Releases. Optionally, additional fields can be added after the fourth field.

At the first publication of the 3GPP Technical Specification defining the API, the version number of the API shall be set to "1.Rn.0.0", where n is the number of the 3GPP release.

Editor’s note:
It is for further study whether optional fields can be used.
4.3.1.2
Rules for incrementing field values
The fields of an API version number shall be incremented according to the following rules:

-
1st Field (MAJOR):
This numerical field shall be incremented when one or more backward incompatible changes to the API.

-
2nd Field (Release):
This field corresponds to an 3GPP release and indicates whether the 3GPP Release is still under development. For a 3GPP release that is not yet frozen (i.e. still under development), the field shall take the form "PreRn", where n is the 3GPP release number. For a 3GPP release that is frozen, the field shall take the form "Rn", where n is the 3GPP release number. When the first MAJOR, MINOR or PATCH change in an 3GPP Release is applied to an API, this number shall be set according to that 3GPP release. When a 3GPP Release is being frozen and an "PreRn" release field is assigned to an API, the release field shall be converted to "Rn",
NOTE 1:
If no change is applied to an API in a new 3GPP release, the API will maintain the release field of the last 3GPP release where it was changed.

-
3rd Field (MINOR):
This numerical field shall be incremented if one or more functionalities are added to the API in a backward compatible manner. This field shall be reset to "0" if the 1st or 2nd field is changed.
-
4th Field (PATCH):
This numerical field shall be incremented if one or more corrections are made to the OpenAPI [4] without requiring any change to the API. This field shall be reset to "0" if the 1st 2nd or 3rd field is changed.
NOTE 2:
An update of the TS version number in the externalDocs field of the OpenAPI file in the TS is not considered as a PATCH change.

Rules for determining backward incompatible changes are provided in Annex B.

NOTE 3:
A mechanism to negotiate the usage of optional features is defined in subclause 6.6 of 3GPP TS 29.500 [2].

Editor’s note:
It is for further study whether additional (optional) fields can be used.
4.3.1.3
Visibility of the API version number fields
The API version shall be indicated in the resource URI of every API, as described in subclause 4.4.1.
The API version shall be indicated as the concatenation of the letter "v" and the 1st field of the API version number.

The other fields shall not be included in the resource URI.
NOTE:
Including these digits in the URI would force the NF service consumer to select a specific sub-version, at the risk of seeing the request rejected if the NF service provider does not support it, while the request could have been served by ignoring unknown elements.

The fullAPI version number (i.e., containing all the fields) shall be visible in the OpenAPI specifications, in the "version" subfield of the "info" field, as as described in subclause 5.3.3.

Editor's note:
It is for further study if the full version number can be indicated by a specific version parameter of the Accept HTTP header used in HTTP requests and Content-Type header in the HTTP responses.
4.3.1.4
Relation to the Technical Specification version number
There is no one-to-one mapping between an API version number and the version number of the 3GPP Technical Specification defining this API.

A 3GPP Technical Specification specifies one or more APIs, which may have different versions.

A change in the 3rd field of a 3GPP TS version number (i.e. an editorial change) should not lead to a change in the version number of the APIs specified in the 3GPP TS.

A change in the 1st and 2nd fields of the 3GPP TS version number is likely to lead to at least a change in the minor version number of the APIs specified in the 3GPP TS.

For example, if version 15.4.1 of a 3GPP TS contains version 1.R15.1.1 of API A, B and C, version 16.1.1 of this 3GPP TS can contain version 1.R16.2.1 of API A (if all changes made are backward compatible), version 2.R16.1.1 of API B (if some changes are no backward compatible) and version 1.R15.1.1 of API C (if no changes were made).

Each OpenAPI specification shall provide the reference to the 3GPP TS describing the API, including the version number of the TS, as described in subclause 5.3.3a.

* * * Next Change * * * *

5.3.3
Info

The Open API specification file of an API shall contain an "info" field with the title set to the same value as chosen for the corresponding base URL parts (see subclause 4.4) of that API and with the version set as described in subclause 4.3.
Example:

info:

 title: Nxxx_Yyy

 version: 1.R15.0.0

5.3.3a
externalDocs
Each OpenAPI specification shall provide in an "externalDoc" field the reference to only one 3GPP TS describing the API, including the version number, as illustrated below.
Example:

externalDocs

 description: 3GPP TS Unified Data Management Services version 15.0.0

 url: http://www.3gpp.org/ftp/Specs/archive/29_series/29.503/29503-g00.zip

…

* * * End of Changes * * * *

