
3GPP TSG CT WG4 Meeting #85
C4-184498
Osaka, Japan, 21st – 25th May 2018
was C4-184318
Source:
Huawei
Title:
Resolve still open ENs
Spec:
3GPP TS 29.500v1.1.0
Agenda item:
6.2.1.3
Document for:
Agreement
3GPP TSG CT WG3 Meeting #97
C3-183436

Osaka, Japan, 21st – 25th May 2018

Source:
Huawei
Title:
Resolve still open ENs
Spec:
3GPP TS 29.500v1.1.0
Agenda item:
6.2.1.3
Document for:
Agreement
1. Introduction
<Introduction part (optional)>

2. Reason for Change
The following 3 ENs are proposed to be removed with the reasoning cited
	Sl.No
	Clause
	EN
	Reason to remove

	1
	4.3.2
	Editor's Note: It is FFS that NF Service Advertisement URL(s) are needed for service operations using HTTP methods without message body (GET/DELETE), usually such service operations do not create a service association between the consumer and producer.
	As already highlighted in the EN itself, GET and DELETE dont carry any payload and hence advertisement URI can't be carried. Also these HTTP methods are usually idempotent / stateless without creating any service association. Hence it is proposed to simply remove this EN and add in the paragraph description:
When invoking a service operation of a NF Service Producer that use HTTP methods with a message body (i.e PUT, POST and PATCH), the NF Service Consumer may provide NF Service Advertisement URL(s) in the service operation request, based on operator policy, if it expects that the NF Service Producer may subsequently consume NF service(s) which the NF Service Consumer can provide (as a NF Service Producer).

	2
	5.2.6
	Editor’ Note: It is FFS how the NF takes care to avoid simultaneous stream ID exhaustion on all the available HTTP/2 connections towards each peer.
	The currently specified text:

"The 3GPP NF shall take care to avoid simultaneous stream ID exhaustion on all the available HTTP/2 connections towards each peer. "

seems a good enough start to avoid stream ID exhaustion and it will not cause any interoperability issue if each NF ensures by some implementation means to not allow simultaneous exhaustion.
Hence it is proposed to remove this EN for R15 now. If a better solution for this can be found in later release, companies are free to propose the same in later releases.

	3
	Annex A
	Editor's Note: It is FFS to define how to reference formally an online book, from a 3GPP Technical Specification.
	The EN is proposed to be removed with the following NOTE
NOTE:
The reference link provided to the book can change and hence the name of the book is expected to be used for referring to the latest edition.

3. Conclusions

<Conclusion part (optional)>

4. Proposal

It is proposed to agree the following changes to 3GPP TS 29.500v1.1.0.
* * * First Change * * * *

4.3.2
NF Service Advertisement URI

When invoking a service operation of a NF Service Producer that use HTTP methods with a message body (i.e PUT, POST and PATCH), the NF Service Consumer may provide NF Service Advertisement URL(s) in the service operation request, based on operator policy, if it expects that the NF Service Producer may subsequently consume NF service(s) which the NF Service Consumer can provide (as a NF Service Producer).
When receiving NF Service Advertisement URI(s) in a service operation request, the NF Service Producer may store and use the Service Advertisement URL(s) to discover NF services produced by the NF Service Consumer in subsequent procedures, based on operator policy.

The NF Service Advertisement URI identifies the nfInstance resource(s) in the NRF which are registered by NF Service Producer(s).

An example of NF Service Advertisement URI could be represented as:

"{apiRoot}/nnrf-disc/nf-instances?nfInstanceId={nfInstanceId}".

NOTE:
The NF Service Advertisement URI can be used e.g. when different NRFs are deployed in the PLMN.

When applicable, the NF Service Advertisement URI(s) shall be carried in HTTP message body.

* * * Next Change * * * *

5.2.6
HTTP/2 Connection management
The HTTP request / response exchange mechanism as specified in sub-clause 8.1 of IETF RFC 7540 [7] shall be supported between the 3GPP NFs. An HTTP/2 endpoint shall support establishing multiple HTTP/2 connections (at least two) towards a peer HTTP/2 endpoint. The peer HTTP/2 endpoint is identified by host and port pair where the host is derived from the target URI (see subclause 6.1.1).
NOTE 1:
HTTP/2 connection redundancy allows transporting messages through diverse IP paths and improve 5GC resiliency.
As per subclause 8.1 of IETF RFC 7540 [7] a HTTP request / response exchange fully consumes a single stream. When the HTTP/2 Stream IDs on a given HTTP/2connection is exhausted, an HTTP/2 endpoint, shall establish another HTTP/2connection towards that peer HTTP/2 endpoints.

NOTE 2: As per IETF RFC 7540 [7], a stream ID once closed cannot be reused on the same HTTP/2 connection.

The 3GPP NF shall take care to avoid simultaneous stream ID exhaustion on all the available HTTP/2 connections towards each peer.

* * * Next Change * * * *

Annex A (informative):
Client-side Adaptive Throttling for Overload Control

This section contains an example algorithm to make an NF Service Consumer adjust the traffic rate sent to an NF Service Producer based on the number of received "rejects" of HTTP requests with a status code "503 Service Unavailable", or requests that have timed-out and the response was never received. This algorithm is described in the book "Betsy Beyer, et al; Google: Site Reliability Engineering" (https://landing.google.com/sre/book.html), chapter 21, "Handling Overload".
NOTE:
The reference link provided to the book can change and hence the name of the book is expected to be used for referring to the latest edition.

Each client (NF Service Consumer) keeps track of the following counters during a certain time window:
-
Requests: The number of requests that the client (NF Service Consumer) needs to handle. Under normal operation (no overload), all these requests are sent to the server (NF Service Producer). Under an overload situation, part of these requests are locally rejected by the client (and not sent to the server), and the rest of the requests are sent to the server.

-
Accepts: The number of requests accepted by the server (i.e., requests for which a response has been effectively received at the client, with a status code other than "503 Service Unavailable").
When there is no server overload, these values are equal.
When there is an overload status in the server, the rate between "Accepts" and "Requests" decreases progressively. When this rate falls below a certain point (given by an algorithm parameter named "K"), the client shall start dropping some requests locally and not send them to the server.

The local rejection of requests can be done by calculating a "Client request rejection probability", as:

[image: image1.png]requests — K X accepts,

max (0,
(requests + 1

)

So, for example, assuming that the K parameter is set at 1.5:

-
if the server accepts >67% of the traffic, and rejects <33% of the traffic, the client does not take any throttling action, and keeps sending to the server all the traffic it has available for processing

-
if, during a first time-window, the server accepts, e.g., only 60% of the requests, and rejects 40% due to overload, the application of this algorithm implies that the client must drop locally 10% of the requests (probabilistically), and only send to the server the remainder 90% of its traffic.

-
if, during a second time-window, the client keeps the same amount of available traffic to handle, but the server continues rejecting requests with same rate as before (40%) of the received requests, the application of the algorithm again, results in increasing the drop rate to 14.5%, and sending to the server only 85.5% of the available traffic.

The value of the parameter K, along with the size of the time window during which the total number of "requests" and "accepts" is accounted for, has a fundamental role on how the algorithm behaves. If K is higher, the algorithm is more "permissive", and the client does not start dropping requests locally until the rejection rate is higher (e.g., >50%, for K = 2); if K is lower, the algorithm is more "aggressive", and the client starts dropping requests sooner (e.g., K = 1.1 implies to start dropping requests as soon as the server rejects >10% of the requests).

* * * End of Changes * * * *
