3GPP TSG CT WG4 Meeting #38
C4-080062
Puerto Vallarta, MEXICO, 28th Jan – 1st Feb 2008
Source:
Alcatel-Lucent
Title:
Study of IMS Application Server Service Data Descriptions for AS interoperability TS
Agenda item:
6.2.3
Document for:
INFORMATION

The definition of service data must be extendable to additional features.

This contribution proposes a set of rules that ASs must obey in order to be compatible with future changes and allowing backward compatibility.

This contribution provides an approach to extensibility when an information efficient schema is utilized.
3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Within GSM MAP, operations and parameters were defined. Parameters rely heavily on sub parameters.

In this service data description mapping, the operations correlate to diameter Sh Read/Write/Subscribe/Notify, and therefore will not be specified. We define ‘Releases’ consistent with the base parameter structure. Releases begin with a release identifier and release length. The length points to the end of data definition for the release. This is either the end of the defined database or the beginning of a subsequent release.

	Term
	Definition

	Database
	An independent table that is written to the HSS. This is a collection of data accessed through a common mechanism. It is stored and administered as one entity.

Each database has a unique ServiceIndication. Each may be included within a Diameter Sh request, but recent Sh commands allow multiple queries within the same Request. Diameter Sh error scenarios do allow successful read operations with failures simply omitted, so care must be taken when separating data into distinct databases.

	Release
	The versioning of a database that defines new content definition. Each Release has a release ID and is accompanied by a length parameter so that multiple releases can be parsed even by an AS not familiar with the contents of a specific release.
Data contained within a Release can be categorized into various structured types, bitmap, string, and varbyte are some examples.

7
Reuse and extension
Editor’s note: This section will recommendations for how the framework defined for the service data schema can be reused, extended and persevered through an upgrade for subsequent service definitions.

7.1
Introduction

Extensibility allows applications to function during changes in the surrounding architectures. Backward compatibility deals with the requirements that must be in place prior to extending data for services. This section addresses both.

Application servers must allow data extensions to coexist with an operational definition of the data. Restricting the definition of services is not viable, so it must be possible to add TAS data. Allowances for data extension and backward compatibility are discussed further in section 7.4.
7.2
Extensibility of IMS Application Server Service Data Descriptions
7.2.1
Extensibility – adding data sets.
Even established telephony services must change over time. For example, law enforcement act, emergency services, and priority service have changed even the basic telephony services. This extensibility section deals with the definition of the data into blobs, and the options for extending services.

For simpler storage and retrieval, service features may be combined into a group or groups. Larger groups should be expected as a result of initial maturity of many service definitions. Since the data is communicated to the HSS via transparent data, these should be grouped into Transparent Data blobs, and identified by Service Indication name. The blob defined by a distinct service indication is herein referred to as a database.

The service data descriptions contained in one database may be a complete service suite definition, or can be viewed as a portion of a service definition. The remaining portion of a service definition may be comprised of elements specific to a particular architecture (e.g. WLAN, CDMA etc.), or a subsequent addition to standardised service definitions, or proprietary extensions. The principle of extensibility should be applicable to all afore-mentioned cases.
An example figure 7.2 below considers the database contents for a distinct service. Each of the darker services blocks (databases) represent an HSS transparent data blob with a distinct service indication. Multiple databases may be applied to represent a service suite on an application server.

On the left, the representation depicts the grouping of mature TAS services. It represents that additional services be located in an extension database, ‘services2’. Note that Services2 does not repeat data from the Services1 and cannot serve a subscriber on its own, but instead extends the TAS services in a group.

On the right, notice that many of the services defined within the Services2 structure were also defined in the Services1 structure. With this association, if any Services1 data remains required, there will be dead data also conveyed. Instead, we should create data so that established features are collected in one database and outlier features, new features and low penetration features are separated. In this way, when/if data is made obsolete, it is more likely isolated in structures that aren't required by all users. In summary, data associated with a base functionality should be extended, rather than redefined.

Additionally, extensions to the basis of Services1 (e.g. Services4) if generated in a distinct database, should also be extended by reference. This could be within a structure like Services2 or within a new extension similar to Services5.

All ASs capable of operating in a network will semantically understand the agreed upon ‘3GPP Services’ data. Other ASs may recognize the extensions if appropriate.

7.2.2
Extensibility within defined datasets.

Databases may be expanded to keep similar features intact. This is possible without predefining spare fields. Rules for the extensions are dependent upon the agreed upon schemas. Backward compatibility rules must also be built into the schemas.

[image: image1]
Figure 7.2, Analysis of Extension databases: Inference and explicit

7.2.3
Syntactic and Semantic recognition.
When detected in any application server, databases that are syntactically parsed, but not completely semantically understood by that application should follow strict extensibility rules. These must preserve unrecognized data for application servers that may later receive this data and understand it. This allows newer applications to extend data versions when new data is required, and requires the previous version of application server to permit the additions. Syntactically all ASs must be capable of identifying unrecognized data. Further, upon updating data in the HSS, an AS must also convey the unrecognized data integrated with any recognized data changes.

7.2.v

Extensibility for information efficient data definitions.
In section 7.2.2 we note that a database (associated with a specific ServiceIndication) can be expanded to keep related data together. This may be necessary when adding to a feature. For example, (referring to Figure 7.2) the "Call Forwarding All" addition of the ping ring feature could be accomplished within the database (e.g. ServiceIndication=Services1) that initially defined CFA. If this is done, the addition/definition of ServiceIndication=Services 2 would not be necessary.

The following is a set of rules that are necessary to facilitate extensions. These rely on the definitions in Section 3.1 and they apply for extensions within a ServiceIndication:

1. Additions to a database MUST occur either in

· Additional releases, or

· Re-use of existing spare fields within a defined release.

2. Each additional release MUST include an advertised release name and size

3. All applications must retain all release information. When unknown releases exist, and when writing known releases an AS must sequentially restore unknown releases with no changes.

4. New data can be in new release segments or new databases (Service Indication).

5. Additions to a release MUST not allow deletion of previously defined data.

6. Additions to a database must be 4-byte aligned

7. Add on feature definitions should add additional releases to the same database to keep like data in the same Service Indication.

8. Proprietary/Significant unrelated functionality should identify new ServiceIndications

Refer to Figure 7.2.v1 and Figure 7.2.v2 for distinctions on adding data in the same database (ServiceIndication) and adding additional databases.

Figure 7.2.v1 Adding to a Release

[image: image2]

[image: image3]
Figure 7.2.v2 Adding new functionality.
A new database (ServiceIndication) should be considered when significant unrelated feature functionality is added to an application server. This is especially true if low subscriber penetration is expected for the new data, because this allows the additional data size to be attributed to only the subscribers requiring the data.
An alternate design that would not define s new database is to create an optional release within the existing database. The optional property is also available with a new release within an existing database
The cohesion of the data along with its eventual growth needs (maximum possible size) may be the main criteria for selecting a new database versus extending the existing database with an optional release.
Additions to an existing database should be considered when the additional data is related to or used concurrently with data defined within the existing database (ServiceIndication). This allows the data to be stored within the same ‘blob’ and can ensure that related data is recalled concurrently. Database read/write exercises will atomically succeed or fail for each ServiceIndication, whereas multiple service indications may require retries in some error scenarios,

A release is not only a unit of new data, but is also a unit of optioning. For subsequent releases it should be possible to add multiple iterations of the same release into the database. This might be used for list management and growth. An example of this use and its efficiencies applies in the screening list example. If the "release" defines one or more numbers to screen against, but this subscriber has 3x the average number of screening entries, then the release that defines screening members may be repeated several times to accommodate the longer list within the same database.
7.2.w

Backward Compatibility for information efficient data definitions.

All future revisions must contain a mechanism for backward compatibility. The following list contains the basic guidelines to be included. Refer to section 4.1 for terminology used in this section.

The data as presented have assumed a set of nested structures, as a means of encapsulating related data, but this feature set has so few attributes in many cases that we will have very sparse structures.

Since we don’t go to extraordinary lengths to pack data (probably breaking local cohesion, as related data might be spread out based on its size), we will have bits and possibly bytes which are not used in the initial definition. The extensibility section implies that these bits may be used later, without going into detail about how. Given that releases (layouts) don't have versions, the only way this works is if

· All bits in the fixed section of release data shipped to a TAS MUST be preserved by the TAS when rewritten. (Implementation note: this doesn't require the TAS to store them; the database could be re-retrieved when an update is required, and the new data written over the old while preserving unchanged bits.)

· On creation, all those unused bits MUST be set to a known consistent value, and extensions which start to use the bits MUST accept that initial value as indicating disabled or inactive or whatever the appropriate default for the new use is. (Alternately, interpretation of those bytes can be controlled by some other data, without which those bits and bytes are ignored. There's a similar problem with the control data, but they could conceivably be in a new release.)

The inactive value MUST be 0, for bits and full bytes both. Proprietary extensions MUST NOT use bits (reserved or unused) in non-proprietary releases (segments).
7.2.5.1 7.2.w.1
Releases in databases
Releases in a database consist of a predefined set of data, defined at the time of a standard baseline version. An application server must process the first release. All subsequent release contents are optionally understood.

a. Optional releases MUST NOT become mandatory.

b. Mandatory releases MUST NOT become optional. The first release MUST be mandatory.

c. Additional mandatory releases MUST NOT be added to an existing database.

d. Additional optional releases may be added to an existing database.

e. Existing mandatory releases MUST NOT be removed from existing databases.

f. Application servers MUST ensure that any release content that is not understood when read is included intact if rewriting the database to the CSDB

g. The range of any release data for an existing sub-data component MUST NOT be reduced.

h. The meaning of any defined database content value MUST NOT be changed, though reserved and unused contents may be defined

i. The contents of reserved and unused entries in a database MUST be preserved when rewriting the database.

j. The minimum length of the data portion of a database is 4 bytes.

k. Releases are required to be 4 byte aligned.

l. The size of a database shall be a multiple of 4 bytes. This may be redundant, since releases are aligned to 4 byte boundaries. Base64 encoding has rules for determining the fill bits if these do not align on increments of 6 bits.

m. Enumeration value ranges MAY be extended within the defined fixed space limitations.

n. The order of subsequent release contents MAY be variable.

o. The length of each database may be variable, although subsequent definition versions may reuse unused or reserved fields.

p. The services bitmaps DM_TAS_SERVICE_STAT svcs_asgn, svcs_actv, and svcs_by_puid MAY identify all features for a subscription. They don’t need to be repeated in subsequent databases or in other releases of RLTAS_SERVICES.

q. Release structures may occur 0, 1 or more times. This allows variable number of (potentially) variable length byte definitions to exist.

r. Releases are defined with a Network Byte order (Big Endian) wherein the Most Significant byte of any multibyte data field is stored at the lowest memory address, which is also the address of the larger field.

7.2.w.2
New releases

a.
New optional releases may be added to existing databases after a recommendation has been published; however, network entities that do not recognize these new releases MAY ignore the functionality represented Ignoring the functionality does not imply that the data may be ignored when writing back to the CSDB. Information in a release MUST BE rewritten intact when replacing data. Ref Section 7.2.w.1 item f.

b.
New fields may be added to, or spare fields may be used in existing releases; however, network entities that do not recognize these new fields may ignore the feature functionality represented, but MUST retain these fields when re-writing the database.
Call Waiting

Call Blocking

Call Barring

Calling ID

Multiway/CONF

Communication Deflection

Deflection

CF Not Reachable

CFNRc

CF All

CFU

CF Not Logged In

CFNL

CF NoReply/No Resp

CFNR

CF Busy

CFB

Call Transfer

CT

spare?

Call Waiting

Call Blocking

Call Barring

Calling ID

Multiway/CONF

Communication deflection

Deflection

CF Not Reachable

CFNRc

CF All

CFU

CF NoReply/No Resp

CFNR

CF Busy

CFB

Call Transfer

CT

Services5

 (Proprietary extension)

Future A

Services4

 (Proprietary extension)

Future 1

Services3

Carrier Selection

DND

Services2

Services1

Explicit

CF NoReply/No Resp

CFNR

CF Busy

CFB

Call Transfer

CT

Services1

3GPP Services Data Extendibility

spare?

Calling ID

Multiway/CONF

Communication Deflection

Deflection

CF Not Reachable

CFNRc

CF All

CFU

CF Not Logged In

CFNL

Call Barring

Call Blocking

Call Waiting

spare?

Services2

CF All Ping Ring

 - PingRing

DND

Carrier Selection

Services3

Future 1

Services4

 (Proprietary extension)

Future A

Services5

 (Proprietary extension)

Future 1 extension

Extension

Use the same ServiceIndication when…

Populating unused fields

No new Release header required

Adding to existing features

Add Release header/length

Additions to existing features

typedef struct {

	DM_TAS_DB_HEADER_WITH_LEN svcs_hdr1

	DM_TAS_SERVICE_STAT svcs_asgn;

	DM_TAS_SERVICE_STAT svcs_actv;

	DM_TAS_SERVICE_STAT svcs_by_puid;

	DM_CALL_BARRING_PARM barring_parm;

	DM_CALL_BLOCKING_PARM blocking_parm;

	DM_CALL_TRANSFER_PARM transfer_parm;

	DM_TAS_FORWARD_TO vm_ftn;

	DM_CF_ALL_PARM cf_var_parm;

	DM_CF_BUSY_PARM cf_busy_parm;

	DM_CF_NO_RESPONSE_PARM cf_noresp_parm;

	DM_CF_DEFAULT_PARM cf_default_parm;

	DM_CARRIER_SEL_PARM carrier_sel_parm;

	DM_CALLING_ID_PARM clid_parm;

 	DM_MISC_BOOL_PARM ,misc_parm;

	DM_MULTIWAY_PARM multiway_parm;

	DM_AUTO_DIAL_PARM auto_dial_parm;

} RLTAS_SERVICES_RELEASE1

typedef struct {

	DM_TAS_DB_HEADER_WITH_LEN svcs_hdr2;

	DM_TAS_NEW_DATA add_me2;

 } RLTAS_SERVICES_RELEASE2

typedef struct {

	DM_TAS_DB_HEADER_WITH_LEN svcs_hdr3;

	DM_TAS_NEW_DATA add_me3;

 } RLTAS_SERVICES_RELEASE3

Additions with new features

Additions to existing features

typedef struct {

	DM_TAS_DB_HEADER_WITH_LEN new_feat_hdr;

	…;

	DM_TAS_NEW_DATA4 add_me4;

	…;

	DM_TAS_NEW_DATA5 add_me5;

} RLTAS_NEW_FEAT_AND_DATABASE;

typedef struct {

	DM_TAS_DB_HEADER_WITH_LEN svcs_hdr;

	DM_TAS_SERVICE_STAT svcs_asgn;

	DM_TAS_SERVICE_STAT svcs_actv;

	…;

	DM_MULTIWAY_PARM multiwaycall_parm;

} RLTAS_SERVICES-RELEASE1;

typedef struct {

	DM_TAS_DB_HEADER_WITH_LEN svcs_hdr2;

	DM_TAS_NEW_DATA add_me2;

} RLTAS_SERVICES-RELEASE2;

typedef struct {

	DM_TAS_DB_HEADER_WITH_LEN svcs_hdr3;

	DM_TAS_NEW_DATA add_me3;

} RLTAS_SERVICES-RELEASE3;

