Page 1

3GPP TSG-CT WG3 Meeting #97
C3-183431
Osaka, Japan, 21 May - 25 May 2018
	5PCR-Form-v0.3

	PSEUDO CR

	
	

	(

	Spec. number:
	29.122
	Current version:
	1.1.0
	(

	Title:
(

	Updates to OpenAPI file guidelines

	
	

	Source:
 (

	Nokia, Nokia Shanghai-Bell

	
	

	Work item code:
(

	NAPS-CT
	

	
	

	Reason for (

change:

	Missing Information how to describe Error responses, PATCH and enumerations in OpenApi files.

	
	

	Summary of

change: (

	Updates alligned with TS 29.501 for 5GC, also incorporating related changes proposed to the present meeting in C3-183102 and C3-18105.

	
	

	Consequences (

if not agreed:
	Missing Information how to describe Error responses, PATCH and enumerations in OpenApi files.

	
	

	Other specs (

	

	affected(if any):
	

	
	

	
	

	Other comments (

	

*** 1st Change ***
5.2.9
Conventions for Open API specification files

5.2.9.1
General

T8 Open API specification files shall comply with the OpenAPI specification [27] and with the present subclause.
Each API shall be described in one Open API specification file. In addition, 3GPP specifications may contain Open API specification file with common data types.

For the purpose of referencing (see subclause 5.2.9.6), it is assumed that each Open API specification file contained in a 3GPP specification is stored as separate physical, that all Open API specification files are stored in the same directory on the local server, and that the files are named according to the conventions in subclause 5.2.9.6.

5.2.9.2
Formatting of OpenAPI files
The following guidelines shall be used when documenting OpenAPI files:

-
OpenAPI specifications shall be documented using YAML format (see YAML 1.2 [41]). For specific restrictions on the usage of YAML in OpenAPI, see OpenAPI 3.0.0 Specification [27].

-
The style used for the specification shall be "PL" (Programming Language).

-
The different scopes in the YAML data structures representing collections (objects, arrays…) shall use an indentation of two white spaces.

-
Comments may be added by following the standard YAML syntax ("#").
5.2.9.3
Structured data types
The OpenAPI specification [27] file shall contain a definition in the components/schemas section defining a schema with the name of the structured data type as key.

The schema shall contain:

-
"type: object";

-
If any attributes in the structured data type are marked as mandatory via a minimum cardinality greater than "0", a "required" keyword listing those attributes;

-
A "properties" keyword containing for each attribute in the structured data type an entry with the attribute name as key and;

1.
if the data type is "<type>"

a.
if the data type of the attribute is "string", "number", "integer", or "boolean", a type definition using that data type as value ("type: <data type>"); or

b.
otherwise a reference to the data type schema for the data type <data type> of the attribute, i.e. "$ref: '#/components/schemas/<data type>'" if that data type schema is contained in the same OpenAPI specification file and "$ref: '<filename>#/components/schemas/<data type>'" if that data type schema is contained in file <filename> in the same directory on the same server.

2.
if the data type is "array(<type>)":

a.
a type definition "type: array";

b.
an "items:" definition containing

i).
if the data type of the attribute is "string", "number", "integer", or "boolean", a type definition using that data type as value ("type: <data type>"); or

ii).
otherwise a reference to the data type schema for the data type <data type> of the attribute, i.e. "$ref: '#/components/schemas/<data type>'" if that data type schema is contained in the same OpenAPI specification file and "$ref: '<filename>#/components/schemas/<data type>'" if that data type schema is contained in file <filename> in the same directory on the same server.

c.
if the cardinality contained an integer value <m> as lower boundary, "minItems: <m>"; and

d.
if the cardinality contained an integer value <n> as upper boundary, "maxItems: <n>";

3.
if the data type is "map(<type>)";

a.
a type definition "type: object"; and

b.
an "additionalProperties:" definition containing

i).
if the data type of the attribute is "string", "number", "integer", or "boolean", a type definition using that data type as value ("type: <data type>"); or

ii).
otherwise a reference to the data type schema for the data type <data type> of the attribute, i.e. "$ref: '#/components/schemas/<data type>'" if that data type schema is contained in the same OpenAPI specification file and "$ref: '<filename>#/components/schemas/<data type>'" if that data type schema is contained in file <filename> in the same directory on the same server.

c.
if the cardinality contained an integer value <m> as lower boundary, "min Properties: <m>"; and

d.
if the cardinality contained an integer value <n> as upper boundary, "max Properties: <n>";

4.
"description: <description>", where <description> is the description of the attribute in the table defining the structured data type.

NOTE:
An omission of the "minProperties", and "maxProperties" keywords indicates that no lower or upper boundaries respectively, for the number of properties in an object are defined. An omission of the "minItems", and "maxItems" keywords indicates that no lower or upper boundaries, respectively, for the number of items in an array are defined.
Example:

Table 5.2.9.3-1: Definition of type ExampleStructuredType

	Attribute name
	Data type
	Cardinality
	Description

	exSimple
	ExSimple
	1
	exSimple attribute description

	exArrayElements
	array(string)
	0..10
	exArrayElements attribute description

	exMapElements
	map(ExStructure)
	1..N
	exMapElements attribute description

The data structure in table 5.2.9.3-1 is described in an OpenAPI specification file as follows:
components:

 schemas:

 ExampleStructuredType:

 type: object

 required:

 - exSimple
 - exMapElements
 properties:

 exSimple:

 $ref: '#/components/schemas/ExSimple'
 description: exSimple attribute description
 exArrayElements:

 type: array

 items:

 type: string

 minItems: 0
 maxItems: 10

 description: exArrayElements attribute description
 exMapElements:

 type: object
 additionalProperties:

 $ref: '#/components/schemas/ExStructure'

 minProperties: 1

 description: exMapElements attribute description

5.2.9.4
Info

The Open API specification file of an API shall contain an "info" field with the title and version set to the same values as chosen for the corresponding URL parts (see subclause 5.2.4) of that API.
Example:

info:

 title: Nxxx_Yyy

 version: v1

5.2.9.4a
externalDocs
Each OpenAPI specification shall provide in an "externalDoc" field the reference to only one 3GPP TS describing the API, including the version number, as illustrated below.
To achieve an automatic update of the TS version in the description, the Word "{ STYLEREF ZA * MERGEFORMAT }" field shall be used.
Example:

externalDocs

 description: 3GPP TS 29.122 V1.1.0 (2018-04) T8 reference point for Northbound APIs
 url: http://www.3gpp.org/ftp/Specs/archive/29_series/29.122/

5.2.9.5
Servers

As defined in subclause 5.2.4, the base URI of an API consists of {apiRoot}/{apiName}/{apiVersion}. It shall be encoded in the corresponding Open API specification file as "servers" field with {apiRoot} as variable.
Example:

servers:

 - url: https://{apiRoot}/3gpp_Yyyy/v1

 variables:

 apiRoot:

 default: https://demohost.com

 description: apiRoot as defined in subclause subclause 5.2.4 of 3GPP TS 29.122, excluding the https:// part.
5.2.9.6
References to other 3GPP-defined Open API specification files
For the purpose of referencing, it shall be assumed that each Open API specification file contained in a 3GPP specification is stored as separate physical file, that all Open API specification files are stored in the same directory on the local server, and that the files are named according to the following convention: The file name shall consist of (in the order below):

-
the 3GPP specification number in the format "TSxxyyy";

-
an "_" character;

-
if the OpenAPI specification file contains an API definition, the API name as defined for corresponding base URL parts (see subclause 4.4) of that API.
-
if the OpenAPI specification file contains a definition of CommonData, the string "CommonData"; and

-
the string ".yaml".
Examples:

Reference to Data Type "Xxx" defined in the same file

$ref: '#/components/schemas/Xxx'
Reference to Data Type "Xxx" defined as Common Data in 3GPP TS 29.122:

$ref: 'TS29122_CommonData.yaml#/components/schemas/Xxx'
Reference to Data Type "Xxx" defined within API "Nxxx_Yyy" in 3GPP TS ab.cde:

$ref: 'TSabcde_Nxxx_Yyy.yaml#/components/schemas/Xxx'
5.2.9.7
Server-initiated communication
If an API contains notifications as described in subclause 5.2.5, it should be described as "callback" in Open API specification files.
Example:

paths:

 /subscriptions:

 post:

 requestBody:

 required: true

 content:

 application/json:

 schema:

 type: object

 properties:

 callbackUrl: # Callback URL

 type: string

 format: uri

 responses:

 '201':

 description: Success
 callbacks:
 myNotification: # arbitrary name

 '{$request.body#/callbackUrl}': # refers The callback URL in the POST

 post:

 requestBody: # Contents of the callback message

 required: true

 content:

 application/json:
 schema:
 $ref: '#/components/schemas/NotificationBody'
 responses: # Expected responses to the callback message

 '200':

 description: xxx
5.2.9.8
Describing the body of HTTP PATCH requests

In the OpenAPI Specification [27] file, the content field key of the Request Body Object shall contain "application/merge-patch+json". The content field value is a Media Type Object identifying the applicable patch body Schema Object. The patch body Schema Object may contain structured data types derived from the data types used in the schema to describe a complete representation of the resource in such a manner that attributes that are allowed to be modified are listed in the "properties" validation keyword.

NOTE 1:
A derived structured data type is beneficial if the data types used to describe a complete representation of the resource contains mandatory attributes, if attributes are allowed to be removed by the PATCH operation, or if a checking by the OpenAPI tooling that only allowed modifications are done via the "additionalProperties: false" keyword is desired. It also provides a clear description in the OpenAPI file to developers which modifications need to be supported.
As an alternative, the data types used in the schema to describe a complete representation of the resource may be used if any attributes that are allowed to be removed are marked as "nullable: true" in that schema.
Any attributes that are allowed to be removed shall be marked as "nullable: true" in the patch body Schema Object.

The "additionalProperties: false" keyword may be set.

NOTE 2:
The "additionalProperties: false" keyword enables the OpenAPI tooling to check that only allowed modifications are done. Extensions of the object in future releases are still possible under the assumption that the supported features mechanism is used to negotiate the usage of any new attribute prior to the PATCH invocation. If new optional attributes are expected to be introduced without corresponding supported feature or if PATCH can be used as first operation in an API, the usage of the "additionalProperties: false" keyword is not appropriate.
5.2.9.9
Error Responses
As described in subclause 5.2.6, T8 APIs use valid HTTP response codes as error codes in HTTP responses and may include a "ProblemDetails" data structure specified in subclause 5.2.1.2.13 or an application-specific data structure.
Subclause 5.2.6,specifies HTTP status code per HTTP method which are mandatory, optional of conditional to be supported 5GC SBI APIs. OpenAPI files should include at least the mandatory status codes in that table.
For the purpose of referencing, HTTP error responses with "ProblemDetails" data structure are specified as part of the CommonData OpenAPI file in Annex A.2.

Example:

In the example below, the 400, and 500 and default error response descriptions are referenced.

paths:

 /users:

 get:

 responses:

 '200':

 content:

 application/json

 schema:

 $ref: '#/components/schemas/ExampleGetBody'

 '400':

 $ref: 'TS29122_CommonData.yaml#/components/responses/400'

 '500':

 $ref: 'TS29122_CommonData.yaml#/components/responses/500'

 default:

 $ref: 'TS29122_CommonData.yaml#/components/responses/default'
The following definitions provided in Annex A,2 are used in that example:

components:

 responses:

 '400':

 description: Bad request

 content:

 application/problem+json:

 schema:

 $ref: '#/components/schemas/ProblemDetails'

 '500':

 description: Internal Server Error

 content:

 application/problem+json:

 schema:

 $ref: '#/components/schemas/ProblemDetails'

 default:

 description: Generic Error
 content:

 application/problem+json:

 schema:

 $ref: '#/components/schemas/ProblemDetails'

5.2.9.10
Enumerations
For enumerations, the OpenAPI specification [27] file shall contain a definition in the components/schemas section defining a schema with the name of the enumeration as key.

The schema

-
shall contain the "anyOf" keyword listing as alternatives:

1.
the "type: string" keyword and the "enum" keyword with a list of all defined values for the enumeration; and

2.
the "type: string" keyword and the "description" keyword with a description stating that the string is only provided for extensibility and is not used to encode contents defined in the present version of the specification. and

-
may contain a description listing the defined values of the enumeration together with explanations of those values.

NOTE:
The "enum" keyword restricts the permissible values of the string to the enumerated ones. This can lead to extensibility problems when new values need to be introduced.
Example:

Table 5.2.9.10-1: Enumeration ExampleEnumeration

	Enumeration value
	Description
	Applicability

	One
	Value One description
	

	Two
	Value Two description
	

The data structure in table 5.2.9.10-1 is described in an OpenAPI specification file as follows:
components:

 schemas:

 ExampleEnumeration:

 anyOf:

 - type: string

 enum:

 - One

 - Two

 - type: string

 description: >

 This string provides forward-compatibility with future

 extensions to the enumeration but is not used to encode

 content defined in the present version of this API.

 description: >

 Possible values are

 - One: Value One description

 - Two: Value Two description

*** End of Changes ***
�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 29.163. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the version of the draft specification here. This number is the version of the draft specification to which the PCR was written and (normally) to which it will be applied if it is agreed. Make sure that the latest version of the draft specification is used when creating the PCR. If unsure what the latest version is, go to http://www.3gpp.org/ftp/specs/latest-drafts/� HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ���

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the PCR. It should be no longer than one line.

One or more organizations (3GPP Individual Members) which drafted the PCR and are presenting it to the Working Group.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. A list of work item acronyms can be found in the 3GPP work plan and/or the meeting agenda�

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this PCR were to be rejected.

�PAGE \# f"'Page: '#'�'" �� If other specs are affected by this change, then indicate the TS/TR number and the tdoc numbers of the relevant (P)CRs

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to agree to the PCR. This could include special conditions which are not listed anywhere else above.

