3GPP TSG-CT WG3 Meeting #73
                                                               C3-130677
Chengdu, China, 20 - 24 May 2013
Source:
Tekelec, Verizon, Cisco, Nokia Siemens Networks, Ericsson, Alcatel-Lucent
Title:
Discussion on race conditions in Gx based applications

Agenda item:
12.10

Document for:
INFORMATION

Introduction 

Diameter PCC applications based on Gx (Gx, Gxx, Sd, S9) allow the server (PCRF for Gx, Gxx, Sd, H-PCRF for S9) to update a session in two ways: unsolicited  and solicited. The PCRF can push policy decisions and provision event triggers in an unsolicited fashion using an RAR. It can also install policy decisions in a solicited manner by responding to a CCR sent by the client (BBERF for Gxx, PCEF for Gx, TDF for Sd, V-PCRF for S9). 

The client and the server can initiate transactions that modify the state of the session independently (e.g. CCR from the client and RAR from the server) and potentially concurrently. Additionally, there may be Diameter agents in between the client and server (e.g. DRA or in general Diameter relays/proxies) that could cause messages to be delivered out of order. This can lead to race conditions that may result in the wrong information maintained by the client and/or server for a session. 
Note that race conditions occur in different ways based on the application. Also, their impact is specific to the application. For example, even though Gx is based on DCCA (RFC 4006), Gx is much more vulnerable to race conditions as Gx allows sessions to be updated based on RARs and CCAs whereas DCCA only allows the server to update the session based on a CCA. The RAR is merely used to solicit the client to send a CCR. 

The remainder of the document expands on a few examples of race conditions applicable to the Gx family of applications that showcase the potential for the wrong information to be applied to a session. It also describes a solution specific to the Gx family of applications that will allow the client and server to handle these race conditions in a deterministic fashion ensuring that the client and server do not end up with outdated information.
Discussion

In order to better illustrate the race conditions mentioned above, let us look at a few examples that could cause the session to end up with stale information (e.g. outdated rules).

Examples

Scenario 1: Messages received by the client out of order

In this case, the server responds to a CCR with CCA, then sends an RAR to further update the session based on some trigger. The client however receives the RAR before the CCA. This case can happen for instance when Diameter agents are between the client and server and the messages are re-ordered on their way to the client.


In this case, if the CCA contained information that was updated in the RAR (e.g. rule update, new event triggers), the client will be left with a session containing stale information without the knowledge of the server.
Scenario 2: Requests from client and server cross on the wire
In this case, the client and server initiate requests to update the session concurrently. The client in this case cannot distinguish the below call flow from the one described in Scenario 1. As such, it cannot on its own, without coordination with the server, deterministically update the session with the latest information based on the RAR and CCA. 

Scenario 3: Requests from client and server cross on the wire with re-ordering of messages
In this example, a CCR and an RAR are initiated concurrently. However, the RAR and CCA are re-ordered in such a way that the client wouldn’t even notice that there was a race condition. In this case, the client will end up with outdated information maintained for the session.


In order to deterministically update sessions when race conditions occur, standardized procedures need to be introduced to the Gx family of applications to ensure the client and server always end up updating the session with the latest information.

Currently, there are no such procedures defined in 3GPP’s PCC specifications. 

Below is a proposed solution to this problem.

Solution

Below are the solution principles: 

Upon session establishment, if a node supports the procedures below and is configured to comply with them, it shall advertise such support by setting the corresponding PendingTransaction (to be defined) feature bit in the Supported-Features.
1. On receipt of a Diameter request for an existing Diameter session, the recipient Diameter node shall check if it has an ongoing transaction on that session:
a. If there are no ongoing transactions on the session, the node shall process the incoming request normally. 
b. If there is an ongoing transaction on the session and optionally, if the recipient node cannot determine that the incoming request can be safely handled without creating a state mismatch:
1. The client shall reject the incoming request with a Diameter experimental result code of DIAMETER_PENDING_TRANSACTION (to be defined). 
2. The server shall either reject the incoming request with a Diameter experimental result code of DIAMETER_PENDING_TRANSACTION or  shall wait for one of the following conditions to occur:
a. The ongoing transaction completes. In this case, the session is updated at the server based on the completion of the ongoing transaction and afterwards, the incoming request (e.g. CCR) is processed normally based on the updated session state.

b. The waiting period has exceeded its allotted time. In this case, the server shall reject the incoming request with a Diameter experimental result code of DIAMETER_PENDING_TRANSACTION.
2. On receipt of a DIAMETER_PENDING_TRANSACTION result code, a client shall retry the request immediately or start a retry timer. On the other hand, if a server had rejected a request from the client with a DIAMETER_PENDING_TRANSACTION, the server should not retry the failed request until it receives the re-attempted request from the client. This is to avoid having both the client and server concurrently retry their requests. In all other cases, if the session on the client still needs to be updated, the server shall retry the request immediately or start a retry timer. 
3. On expiry of the retry timer, if the session at the remote node still needs to be updated, the local node shall send the request to update the session with the latest up-to-date information. 
4. Nodes should limit the number of times they re-attempt the same request due to receipt of a DIAMETER_PENDING_TRANSACTION. 

5. The only exception to the rules above is a session termination request (CCR-T) or a request for session release (e.g. RAR with Session-Release-Cause). In both cases, the request should be handled immediately.
Below are call flows showcasing how the proposed solution deterministically handles the race conditions described earlier. It is assumed in all cases that the client and server had advertised support for the “PendingTransaction” feature. Also, race condition cases where a recipient node determines that an incoming request can be handled safely without causing a state mismatch are outside the scope of this section. 
Scenario 1: Messages sent in sequence but received out of order at client
In this case, the server responds back to a CCR by sending a CCA and then initiates an RAR.  However, the messages are received out of order and RAR is received at the client before the CCA. The client rejects the RAR with PENDING_TRANSACTION.  
Since the server has already replied to the CCA, it can send the RAR immediately or start a timer and retry the RAR upon expiry of the timer.

Scenario 1a: Messages sent in sequence but received out of order at server
In this case, the client responds to the RAR with an RAA and then sends a CCR. However, the messages are received out of order at the server. The handling would be similar to scenario 1 except that the client and server roles are reversed, wherein the client would retry the CCR immediately or retry after expiry of a timer.
Scenario 2: Requests from client and server cross on the wire 
In this case, the client and server initiate requests to update the session concurrently. The client cannot distinguish the below call flow from the one described in Scenario 1. 
The client rejects the RAR with a DIAMETER_PENDING_TRANSACTION.The server receives a CCR while it had an outstanding RAR. The server can behave in one of different ways:

1. Wait for the RAA to be received before processing the CCR. Two sub cases are possible:
a. RAR transaction completes (RAA received or RAR times out).
b. Wait time is exceeded before the RAR transaction completes.
2. Reject the CCR with  DIAMETER_PENDING_TRANSACTION
The above cases are outlined below.

Scenario 2a: Server waits for RAR transaction to complete. Transaction completes before wait time is exceeded

Scenario 2b: server waits for RAR transaction to complete, but wait time is exceeded first

Scenario 2c: server rejects CCR

Scenario 3: Requests from client and server cross on the wire with re-ordering of messages
In this example, a CCR and an RAR are initiated concurrently. However, the RAR and CCA are re-ordered. It is also assumed that the server rejects the CCR with a DIAMETER_PENDING_TRANSACTION. 

If the server waits for the RAR transaction to be completed first before responding to the CCR, this race condition shouldn’t apply anymore. On the other hand, if the server rejects the CCR immediately, then the client can behave in two different ways:

a. Client retries the CCR immediately. 
b. Client starts a retry timer.
The two behaviors are further detailed below.
Scenario 3a: client retries the CCR immediately

After the client retries the CCR immediately, the procedures become similar to scenario 2c wherein the second CCR and RAR cross on the wire and both end up being rejected, which results in the server not retrying and the client retrying the CCR again and completing the exchange. 


Scenario 3b: client retries the CCR after a retry timer

In this case, the client doesn’t retry the CCR immediately after receiving the CCA with DIAMETER_PENDING_TRANSACTION. Instead, it starts a retry timer before resending the CCR, which should give enough time for the RAR to be received. As such, when the CCR is retried, it should succeed as the server shouldn’t have any ongoing transactions.

Scenario 4: CCR termination and RAR cross on the wire
Solution is similar to Scenario described in Solution 1.  In this case, the client sends a CCR termination concurrently with the server sending an RAR to update the session. Upon receipt of the CCR-T, the server will return success and terminate the session as opposed to rejecting the CCR with a PENDING_TRANSACTION.


Scenario 5: CCR update and RAR with Session-Release-Cause cross on the wire
Solution is similar to Scenario described in Solution 1.  In this case, the client sends a CCR update concurrently with the server sending an RAR with a Session-Release-Cause. Given that the server is requesting for the session to be released, the client will not reject the RAA. Instead, it will accept it and send a CCR termination message to terminate the session.  The Server can reject the CCR originally initiated by the Client using one of the existing diameter cause codes.


Conclusion

As outlined in this discussion paper, the Gx family of applications is vulnerable to race conditions and can malfunction in certain cases. As such, there needs to be corrections to the corresponding specifications to handle the race conditions gracefully and in a deterministic manner ensuring session state is always up to date on the client and server.

These corrections will be provided as CRs to the following specifications: TS 29.212, 29.213 and 29.215. 

Session updated with latest info. 



Client



Server



CCR



CCA



RAR



RAA



Session updated with potentially stale info. 



Figure � SEQ Figure \* ARABIC �1� CCA/RAR re-ordered



Client



Server



CCR



RAR



RAA



CCA



What should I do with this RAR? I was expecting a CCA! 



Is this CCA giving me the latest state of the session? 



Figure 2 CCR/RAR cross on the wire



Client



Server



CCR



RAR



RAA



CCA



The client is agnostic of the fact that there was a race condition. 



The client will apply stale/outdated information provided in the RAR! 



Figure 3 CCR/RAR cross on wire and CCA/RAR re-ordered



Session updated with latest info. 



Client



Server



CCR



CCA



RAR-1



RAA-1 (PENDING_TRANSACTION)



Figure 4 CCA/RAR re-ordered



Start retry timer or retry immediately



RAR-2



RAA-2 (SUCCESS)



Timer expires or retry immediately 



Client



Server



CCR-1



RAR



RAA (PENDING_TRANSACTION)



CCA(SUCCESS)



Figure 5 CCR/RAR cross on the wire – RAA received before server times out



RAR



RAA



The server processes the CCR normally and responds. Note that for optimization purposes, the CCA could contain all information needed to update the session, thus eliminating the need for the RAR.



If the CCA didn’t contain all the info needed to update the session, the server will send the remaining updates in the RAR.  



Server waits for RAR transaction to complete.  



Client



Server



CCR



RAR



RAA (PENDING_TRANSACTION)



CCA(PENDING_TRANSACTION)



Figure 6 CCR/RAR cross on the wire – CCR rejected by server as wait time exceeded



Start retry timer or resend immediately. 



Server could send all session updates in CCA.   



Server waits for RAR transaction to complete.  



Wait time is exceeded. Server rejects CCA with pending transaction. Server will not start a retry timer as the client is expected to retry the CCR. 



CCR



CCA



RAR



RAA



If the CCA didn’t contain all the info needed to update the session, the server will send the remaining updates in the RAR.  



Client



Server



CCR



RAR



RAA (PENDING_TRANSACTION)



CCA(PENDING_TRANSACTION)



Figure 7 CCR/RAR cross on the wire – CCR rejected by server due to outstanding RAR



Start retry timer or resend immediately. 



Server could send all session updates in CCA.   



Server rejects CCR 



CCR



CCA



RAR



RAA



If the CCA didn’t contain all the info needed to update the session, the server will send the remaining updates in the RAR.  



Client rejects RAR 



Server doesn’t retry as client is expected to do so.



Client



Server



CCR



RAR



CCA (PENDING_TRANSACTION)



Figure 8 CCR/RAR cross on the wire and CCA/RAR re-ordered



CCR-2



Procedures as per scenario 2c 



CCR retried immediately   



Client



Server



CCR



RAR



RAA (PENDING_TRANSACTION)



CCA (PENDING_TRANSACTION)



Retry timer is started.   



Figure 9 CCR/RAR cross on the wire and CCA/RAR re-ordered



Retry timer expires. CCR is sent.   



Server doesn’t retry as client is expected to do so.



CCR



CCA



RAR



RAA



Server could send all session updates in CCA.   



If the CCA didn’t contain all the info needed to update the session, the server will send the remaining updates in the RAR.  



Client



Server



CCR-T



RAR



RAA (UNKNOWN_SESSION_ID)



CCA (SUCCESS)



CCA success is sent as CCR-T takes precedence  over the outstanding RAR.



Figure 10 CCR-T/RAR cross on the wire 



Client



Server



CCR



RAR (Session-Release-Cause)



RAA (SUCCESS)



CCA (PENDING_TRANSACTION)



Figure 11 CCR /RAR (Session-Release-Cause) cross on the wire 



RAA is accepted as RAR includes Session-Release-Cause. Client doesn’t restart a timer but instead immediately sends a CCR termination.   



CCR-T



CCA-T (SUCCESS)





