3GPP TSG-CT WG3 Meeting #72
 C3-130165
San Jose Del Cabo, Mexico, 28 January – 1 February 2013
Source:
Tekelec
Title:
Race conditions in certain Diameter PCC applications
Agenda item:
12.6
Document for:
INFORMATION

Introduction

Diameter PCC applications such as Gx, Gxx, Sd and S9 allow the server (PCRF for Gx, Gxx, Sd, H-PCRF for S9) to update a session in two ways: unsolicited and solicited. The PCRF can push policy decisions and provision event triggers in an unsolicited fashion using an RAR. It can also install policy decisions in a solicited manner by responding to a CCR sent by the client (BBERF for Gxx, PCEF for Gx, TDF for Sd, V-PCRF for S9).

The client and the server can initiate transactions that modify the state of the session independently (e.g. CCR from the client and RAR from the server) and potentially concurrently. Additionally, there may be Diameter agents in between the client and server (e.g. DRA or in general Diameter relays/proxies) that could cause messages to be delivered out of order. This can lead to race conditions that may result in the wrong information maintained by the client and/or server for a session.
The remainder of the document expands on a few examples of race conditions that showcase the potential for the wrong information to be applied to a session. It also describes a solution that will allow the client and server to handle these race conditions in a deterministic fashion ensuring that the client and server do not end up with outdated information.
Discussion
In order to better illustrate the race conditions mentioned above, let us look at a few examples that could cause the session to end up with stale information (e.g. outdated rules).
Examples

Scenario 1: Messages received by the client out of order

In this case, the server responds to a CCR with CCA, then sends an RAR to further update the session based on some trigger. The client however receives the RAR before the CCA. This case can happen for instance when Diameter agents are between the client and server and the messages are re-ordered on their way to the client.

In this case, if the CCA contained information that was updated in the RAR (e.g. rule update, new event triggers), the client will be left with a session containing stale information without the knowledge of the server.
Scenario 2: Requests from client and server cross on the wire
In this case, the client and server initiate requests to update the session concurrently. The client in this case cannot distinguish the below call flow from the one described in Scenario 1. As such, it cannot on its own, without coordination with the server, deterministically update the session with the latest information based on the RAR and CCA.

Scenario 3: Requests from client and server cross on the wire with re-ordering of messages
In this example, a CCR and an RAR are initiated concurrently. However, the RAR and CCA are re-ordered in such a way that the client wouldn’t even notice that there was a race condition. In this case, the client will end up with outdated information maintained for the session.

In order to deterministically update sessions when race conditions occur, standardized procedures need to be introduced to PCC applications to ensure the client and server always end up updating the session with the latest information.
Currently, there are no such procedures defined in 3GPP or the IETF. Below is a solution proposal that if standardized, can be applied not only to PCC applications but also to other 3GPP applications that are vulnerable to such race conditions.
Solution Description

Below are the solution principles:

1. A Diameter node (e.g. PCRF, PCEF) will maintain only one outstanding transaction with the other endpoint of the session. On receipt of a Diameter request for an existing Diameter session, the recipient Diameter node shall check if it has any ongoing transaction on that session.

2. If the Diameter session has an ongoing transaction, the Diameter node shall reject the request with a Diameter experimental result code of DIAMETER_PENDING_TRANSACTION. This result code is not currently defined in Diameter specifications. This document proposes the addition of this result code as a transient error, i.e. 4xxx.

3. On receipt of a DIAMETER_PENDING_TRANSACTION result code, a client shall always start a retry timer. A server on the other hand should not start a timer if it had rejected a request from the client with a DIAMETER_PENDING_TRANSACTION and has not yet received the re-attempted request. This is to avoid having both the client and server concurrently starting timers. In all other cases, the server shall start a retry timer.

4. On expiry of the retry timer, each node will re-evaluate whether a request needs to be sent to update the session. If needed, the node shall send the request to update the session with the latest up-to-date information.
5. The only exception to the rules above is a session termination request (CCR-T) or a request for session release (e.g. RAR with Session-Release-Cause). In both cases, the request should be handled immediately.

Below are call flows showcasing how the proposed solution deterministically handles the race conditions described earlier.

Scenario 1a: Messages received by the client out of order

In this case, the server responds to a CCR with a CCA, then sends an RAR to further update the session. The client however receives the RAR before the CCA. The client rejects the RAR with a PENDING_TRANSACTION. This will ensure state consistency and will cause the server to re-send the RAR to update the session which will allow the client to update the session with the latest information.

Scenario 2a: Requests from client and server cross on the wire
In this case, the client and server initiate requests to update the session concurrently. The client in this case cannot distinguish the below call flow from the one described in Scenario 1. The client will reject the RAR. The server receives a CCR while it had an outstanding RAR. As such, it will reject the CCR as well. Upon receipt of the CCA with the PENDING_TRANSACTION, the client will start a retry timer for the CCR. However, the server won’t start a timer as it knows the client will retry the CCR, so it can wait for the CCR and then update the session in the CCA without having to send an RAR.

Scenario 3a: Requests from client and server cross on the wire with re-ordering of messages
In this example, a CCR and an RAR are initiated concurrently. However, the RAR and CCA are re-ordered. The server will reject the CCR with a PENDING_TRANSACTION, which will ensure that the client will re-send the CCR to get the latest session information. Note that in the call flow below, the client responds with a successful RAA as the RAR is received after the CCR/CCA transaction was rejected and as such was not outstanding. After the retry timer expiration, the client re-sends the CCR and gets the latest session information in the CCA from the server.

Scenario 4a: CCR termination and RAR cross on the wire
In this case, the client sends a CCR termination concurrently with the server sending an RAR to update the session. Upon receipt of the CCR-T, the server will return success and terminate the session as opposed to rejecting the CCR with a PENDING_TRANSACTION.

Scenario 5a: CCR update and RAR with Session-Release-Cause cross on the wire
In this case, the client sends a CCR update concurrently with the server sending an RAR with a Session-Release-Cause. Given that the server is requesting for the session to be released, the client will not reject the RAA. Instead, it will accept it and send a CCR termination message to terminate the session.

Next steps
The initial goals of this discussion paper are to :

· Bring awareness of the race condition issues impacting certain PCC applications

· Discuss and agree on proposed solution within the CT3 group

The next steps are to:

· Bring in contributions at the next meeting to implement the solution in the impacted PCC specifications
· Potentially widening the use of this work to other applications in 3GPP that share similar issues.

Session updated with latest info.

Client

Server

CCR

CCA

RAR

RAA

Session updated with potentially stale info.

Figure � SEQ Figure * ARABIC �1� CCA/RAR re-ordered

Client

Server

CCR

RAR

RAA

CCA

What should I do with this RAR? I was expecting a CCA!

Is this CCA giving me the latest state of the session?

Figure 2 CCR/RAR cross on the wire

Client

Server

CCR

RAR

RAA

CCA

The client is agnostic of the fact that there was a race condition.

The client will apply stale/outdated information provided in the RAR!

Figure 3 CCR/RAR cross on wire and CCA/RAR re-ordered

Session updated with latest info.

Client

Server

CCR

CCA

RAR-1

RAA-1 (PENDING_TRANSACTION)

Figure 4 CCA/RAR re-ordered

Start retry timer.

RAR-2

RAA-2 (SUCCESS)

Timer expires.

Client

Server

CCR-1

RAR

RAA (PENDING_TRANSACTION)

CCA-1(PENDING_TRANSACTION)

Figure 5 CCR/RAR cross on the wire

CCR-2

CCA-2

Start retry timer.

Timer expires. Send CCR.

At this point, the server won’t start a timer as it has detected a concurrent transaction initiated by the client.

Server can send latest session state in CCA. No need to send an RAR.

Client

Server

CCR

RAR

RAA (SUCCESS)

CCA (PENDING_TRANSACTION)

Retry timer is started.

Figure 6 CCR/RAR cross on the wire and CCA/RAR re-ordered

CCR-2

CCA-2 (SUCCESS)

Retry timer expires. CCR is sent.

Client

Server

CCR-T

RAR

RAA (UNKNOWN_SESSION_ID)

CCA (SUCCESS)

CCA success is sent as CCR-T takes precedence over the outstanding RAR.

Figure 7 CCR-T/RAR cross on the wire

Client

Server

CCR

RAR (Session-Release-Cause)

RAA (SUCCESS)

CCA (PENDING_TRANSACTION)

Figure 8 CCR /RAR (Session-Release-Cause) cross on the wire

RAA is accepted as RAR includes Session-Release-Cause. Client doesn’t restart a timer but instead immediately sends a CCR termination.

CCR-T

CCA-T (SUCCESS)

