Joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030640

Meeting #25, Bangkok, THAILAND, 27 - 31 October 2003

Source:
John-Luc Bakker (Telcordia Technologies)
Title:
Comments to 568

Agenda Item:
8 TpAttribute Session

Document for:
Information

Introduction

We thank Lucent for providing such a comprehensive document designed to structure the discussion during the TpAttribute session. Telcordia has had the privilege to review and discuss an early version of this document and had the opportunity to participate in conference calls on this matter. All this has accumulated in document N5-0306568. We feel it is only fair to share with the meeting our early review results and discussion in so far they are not reflected in the document at hand from the point of view of Telcordia. Find them below.
General
Our main concern is that this document uses the word "standardized" in many places while we feel that the word "open" is feasible in the short term. Standardization in the context of Parlay/OSA ultimately requires requirements sanctioned by SA1, or, when the proposed work is embryonic of nature, such work could commence in an appropriate Parlay WG with the ultimate aim that the work will be brought into Parlay/OSA through satisfying SA1 or Parlay requirements.
Historically, Parlay/OSA APIs have allowed for being extendible; vendors can provide value-added capability e.g. through custom SCFs. For these custom SCFs to be successful they need to be open. In this context, it is sufficient to define "open" such that the value-added capability is well documented and its definition can be retrieved from somewhere (the definition is published).

[image: image1.emf]

Root policy

language

XACML

DMTF

CIM

Figure 1

The XML extension addresses exactly this; to make PM's PIM (Policy Information Model) open in a verifiable manner. It enables a standardized documentation format (in principle accessible online and offline) to constrain PIM variables and PIM attributes. As action and condition expressions are PIM attributes; their XML schema documents will also include the allowable operations on these variables.
 XML is the documentation format and XML schema, such as XML Schema, DTD, RELAX NG, or possibly a future format, can be used as templates from which to create valid PIM variable and attribute "instances".
The DMTF CIM and OASIS' XACML are examples of standard XML Policy languages that, in our view, must be manageable through the PM SCF interfaces (recall that SCFs are technology neutral). Each provides a minimal set of operations, types, and reference mechanisms. Both standard XML Policy languages are different (as illustrated in Figure 1); they do not inherit from a common root of types, operations and reference mechanics (other than sharing XML). As the PM SCF is designed to be independent of underlying technology we feel that the PM SCF should be capable of managing policies expressed in eBNF, XACML, by DMTF's CIM or other XML policy languages.
Standardization of a minimal set of data types and operations, as is deemed required by N5-030568 is not feasible as it may preclude the PM SCF from managing DMTF XML CIM policies, XACML policies, or others. We would welcome a unification of XML policy languages but don't think developing such is the domain of Parlay/ETSI or 3GPP. Hence, what is needed is a general means for XML policies to be used using the PM SCF.

A related but different issue is that of discovery of PM "capabilities". During the FW's discovery process SCFs can be found that satisfy the criteria of the application. For example; an application might require a call control SCF that implements createAndRouteCallLegReq() along with other methods (at a minimum) The application can pass a query to the FW and learn whether the request can be granted. However, for applications to discover a suitable PM SCF (one that supports the needed variables and types) they would have to enter in a service agreement and use the appropriate discovery methods on the PM SCF. This is undesirable and not conforming to the discovery pattern employed by Parlay/OSA.
Summary:
1. It is not feasible to standardize a constrained set of types and functions beyond the means of basic XML
 without loosing potential support for XACML or DTMF CIM or both and/or others.
2. Not being able to standardize everything including the kitchen sink is not a problem (as has been argued in other cases, over-standardization is not desired); there must be means, however, to be open and make available the capabilities of SCFs such that applications can discover and use the SCF instance that fits their needs. XML is an industry-wide accepted means for documentation and publishing/sharing. N5-030584 allows a vendor to be "open" even while there is a lack of a more sophisticated common (root) Policy Language (see Figure 1).

3. Currently, an applications needs to enter in service agreements with all PM SCFs to figure out which actually supports the application's needs.

Detail

Abstract

This document presents Lucent’s thoughts on some issues that are being discussed within the Parlay PM WG and the JWG. We focus on the following: 1) Attributes vs. Variables, 2) IOP and Policy Enabling SCFs, and 3) Issues around introducing XML in the Parlay specifications. The purpose of the document is to elaborate on concepts underlying the above, and, in the appropriate case, to highlight a core set of technical issues that must be addressed before additions are made to the specifications. Lucent Technologies requests that future CRs that impact any of the 3 issues listed above should address the technical considerations discussed in this document.

1
Attributes vs. Variables in PM SCS

The PM SCS has two distinct notions, namely attributes and variables, that sometimes people tend to mix together. We attempt to explain some of the differences, and hope that it will be clear why these are two different entities that must be treated differently.

The differences are:

1. Usage: Attributes(or property markers) are used to characterize properties of all the PM SCS interfaces
 that represent policy information. For example, IpPolicyRule interface has an attribute called Mandatory, which indicates whether an object of type IpPolicyRule corresponds to a mandatory rule or not. Clients of the PM SCS can (once a handle to an IpPolicyRule object has been obtained), get or set the value of the Mandatory attribute via the getAttribute() and setAttribute() methods defined in the base IpPolicy interface
.

Some attribute values are of type TpString
 and are constrained by a specified grammar (e.g., the range of valid values that an Expression attribute of IpPolicyExpressionCondition can take is constrained by a specified eBNF). The grammar for those constrained strings specifies how literals, operators, variables (variable names or placeholders to be exact) etc., can be combined to generate valid
strings. Note that a variable need not be an attribute and vice-versa.

Attributes relate principally to Interface properties, whereas variables relate principally to constraint strings used in rule formulation.

2. Definition: Attributes, i.e., property markers for interfaces are predefined in the PM SCS and are fixed across all instances of the interface. For example, IpPolicyRule interface contains the attributes Mandatory, Enabled, that exist in every instance of the interface, irrespective of whether such an instance represents a charging policy, a security policy or some other policy. Client applications can query for the value of an existing attribute, or set the value of an existing attribute or even ask if an exact match exists for an attribute value. This is trivially obvious since there is a tight coupling between the attributes defined for an interface and the functionality and run-time behavior exposed by that interface.

However, variables are associated with constraints defined by a grammar , and obey a scoping criteria (defined via the hierarchical organization of rules) within groups and domains. Each authorized client of PM SCS can create an appropriate set
 of variables, and create rules that make use of the created variables.

The entire set of valid attributes is predefined in the PM SCS specification, whereas authorized clients can define an appropriate set of variables during a provisioning run.

3. Types:

Because of the predefined nature of attributes, there is a fixed set of types that are associated with attributes, which can be easily identified simply by examining all the attributes defined for all the interfaces in PM SCS. Most attributes are of simple types (e.g., Boolean, string), whereas some attributes are complex-typed. See appendix A for a summary listing of PM interfaces and associated attributes.

On the other hand, an authorized client of PM SCS, when creating a variable, can create a variable of any complexity based on a varying set of base types
. As before we assume here that the set of variables is being defined either for a proprietary domain or for a non-proprietary domain
. The PM SCS provides a mechanism (TpPolicyType) by which a client can create variables of complex types (e.g., homogeneous lists, records). Complex-typed variables can be referred to in rules in their entirety, or subparts (e.g., list elements or record fields) can be addressed via standard operators (e.g., the “[]”operator for addressing list elements, and the “.”operator for accessing record fields).

Attribute types are fixed by the PM SCS specification, whereas a variable based on varying combinations of types and of varying complexity can be defined by authorized clients of PM SCS during a provisioning run.

SUMMARY: In the PM specifications attributes and variables are conceptually distinct notions. The former are used to define properties of PM interfaces and the latter are used in constraint strings. A summarized listing of all PM interfaces and associated attributes is provided in Appendix A. A review of this list should make it clear that there is no compelling reason, for now, to include an XML valued attribute type in the list.

2
IOP and Policy Enabling SCFs

The following two complementary concepts are needed to ensure interoperability of policy information in a multi-vendor environment:

1. The Parlay policy information model. This is a specific set of guidelines according to which policy information, such as policy domains, policy groups, policy rules, etc., must be represented and accessed. The Parlay policy model comprises all the policy management and policy evaluation interfaces that are supported by the Policy provisioning and Policy Evaluation SCFs. This information is available today in the document: 3GPP TS 29.198-13 V6.0.0 (2003-06).

2. Standard representation and knowledge about information that is exchanged between a client and the Policy Management SCFs in-order to provision or evaluate policy information. Such information exchange is illustrated through use-cases
in section 5 of the document: 3GPP TS 29.198-13 V6.0.0 (2003-06).

The focus of this section is to highlight the set of information used in 2 that must be standardized in order to ensure interoperability. For a complete understanding of the following the reader must be familiar with 1 and 2. The reader should also be aware that while a policy domain is formally defined in 3GPP TS 29.198-13 as set of interfaces, in practice, a policy domain is identified with the set of policies associated with service(s). The service could be a Parlay SCF (e.g., PAM) or some proprietary service defined by a network service provider. It is in this context that we talk of a policy-enabled service or a policy-enabled SCF. In the case where the service is a policy-enabled SCF it is clear that the information exchanged between a client (in this case the SCF) and PM SCFs must be standardized to ensure interoperability. Note that in principle there is a one-many relationship between a policy domain (formally IpPolicyDomain) and services. However, given the diversity across Parlay SCFs, in practice one is likely to see a one-one relationship between non-proprietary policy domains and the SCFs.

It is no surprise that all the information that must be standardized is related to I/O between the client and PM SCFs. While the following categorization under A, B, C does not specify all the details it suffices to illustrate the magnitude and the scope of standardization
required.

A.
Information on any IpPolicySignature that is defined for a policy-enabled SCF. This includes:

a. Name of (and context represented by)
 the IpPolicy Signature interface.

b. Names (types and description) of all input variables used in the signature.

c. Names (types and description) of all output variables used in the signature.

d. Names (and description) of all rule groups that must be included for policy evaluation associated with the signature. Note a group name is identical to the value of the CommonName attribute of a rule group.

e. Names (and description) of all Policy Roles associated with the Signature. Note the defining syntax for PolicyRoles is described in the IpPolicyRule interface in 3GPP TS 29.198-13 V6.0.0 (2003-06).

B. Name (and information) associated with any IpPolicyEventDefinition defined for the policy enabled SCF.

C. Name (and description) of the IpPolicyDomain that is identified with the policy enabled SCF and that contains all the above information.

Note: To allow for service provider differentiation within a given non-proprietary IpPolicyDomain a service provider may define additional (service provider specific) instances of A and B, i.e., of IpPolicySignature and IpPolicyEventDefinition, above. Information associated with these interfaces is visible (assuming authorization) to client applications via methods supported by the PM specs, e.g., getInputVariables, getOutputVariables, getVariableType, getPolicyRoles, etc.

SUMMARY: IOP in a multi-vendor environment requires that the two complementary concepts, 1 and 2, above, be specified. The 1st has been specified in the PM specs (3GPP TS 29.198-13 V6.0.0, 2003-06). The 2nd is a standardization activity that should be undertaken in conjunction with the ‘policy-enabling’ of an SCF
. The Parlay WG has been tasked (see plenary talk by TAC chairman, Richard Stretch, Parlay San Diego meeting, May 2003) to initiate the latter work. Note: The choice of a specific language, e.g., XML, UML or ASCII text
, in which to represent this information, while important, is an independent and separate consideration.

3
Impact of Introducing XML as a Variable Type

When a variable is created (e.g., via the existing createVariable() method in the IpPolicyDomain interface), the variable name and type needs to be specified. The PM specification defines generic data structures (TpPolicyType and related structures) that allow a client (of the PM SCS) to create complex variables which are a combination of a (select set of) atomic types, record types, or homogeneous list types. The resulting variable type indicates (via the eBNF specified in the PM SCF specification) how the variable can be used, as well as what are the minimal
set of operations that can be performed on that variable. Each (fully-compliant) PM SCS implementation must be able to support all valid rule conditions/actions that can be generated using that eBNF.
 This allows a client of the PM SCS to be not locked down to a particular SCS vendor if so desired, and be assured that if it provisions rules according to the core grammar, its policies will work as-is with a different SCS vendors’ implementation.

The introduction of an XML type to this mix thus has a huge impact on how variables of this type can be operated upon in rule conditions/actions. In this section, we discuss in these issues in detail. Note that we do not claim to have an exhaustive list of concerns, but an initial starting set of problems (some major, some minor) that must be addressed by any CR that aims to introduce operations on XML during policy evaluation.

The issues to be addressed are:

· Typing:

The PM SCS supports the ability of a client to define variable types via the IpPolicyType (and associated) data structures, and the createVariable() method in the IpPolicyDomain interface. The variable types can be arbitrarily nested homogeneous lists, or records, or a specific set of atomic types, or a combination of these.

For an XML-valued variable, it is necessary to provide equivalent methods (or reuse/extend existing ones) that allow a client to specify the valid values that such a variable can take. This type can be defined via a DTD, or XML Schema, or RELAX NG, or any subset thereof. However, the exact mechanism, as well as the exact range of types must be explicitly specified. This is covered in Section 10 of the "XML CR". Specifically, see Service Property "P_SUPPORTED_XML".
· Addressing:
The PM SCS specification describes several mechanisms to address parts of a variable value in a rule condition/action. For example, the indexing operator (“[]”) is provided to access elements of a list; the dot operator (“.”) is provided to access certain fields of a record; etc.

For an XML-valued variable, the exact addressing mechanism must be specified, e.g., XPath, or a simplified subset of it, or some other mechanism. Operators that operate on XML data structures depend on the XML documents in which they are used. E.g. OASIS XACML and DMTF CIM have there own means to access XML data structures; these means are defined in the XML schema and are not inter-exchangeable with each other. Hence, support for such operators is left to the XML documents that are made "discoverable" through the P_SUPPORTED_XML service property.
· Allowed Operations:
The PM SCS specification lists several operators (e.g., +, -, .etc) that can be used to operate on various combinations of literals, variables and expressions. The operational semantics of these operators are well understood.

For an XML-valued variable, the exact set of operators (and corresponding semantics) must be explicitly specified. For example, can XQuery be used to transform an XML value? How about XSLT? These questions on allowed operations need to be addressed. See previous bullet's answer.
· Condition/Action Types:

Rules are defined by a condition and a set of actions. There can be various types of conditions (e.g., IpPolicyExpressionCondition, IpPolicyEventCondition, IpPolicyTimePeriodCondition) and various types of actions (IpPolicyExpressionAction, IpPolicyEventAction). Should the introduction of XML types be handled by introducing yet another set of interfaces (e.g., IpPolicyXMLCondition and IpPolicyXMLAction) [No, see CR], or should handling XML values be part of IpPolicyExpressionCondition and IpPolicyExpressionAction? [Yes, see CR] If the latter approach is chosen, can XML variables and non-XML variables interoperate (i.e., be used in the same expression)? [An example is given in the CR] If so, are there any pitfalls to be aware of? [There are none we are aware of] Each of these questions needs to be addressed.

· Operational Semantics:

The semantics of the various conditions/actions allowed in rules are well understood. For example, for expression conditions (IpPolicyExpressionCondition objects), a valid condition must result in a Boolean value during evaluation, and if the result is true, the rule actions are executed. (Section 8.1.12 only says " A PolicyCondition that is satisfied when the specified event, with the matching attributes, is generated.") For conditions containing XML-valued variables, the semantics are less obvious. As an illustration, consider the example given below. Let v be a variable that (at policy-evaluation time) contains the XML document (assume that the typing issue has been taken care of):

<foo>

 <bar>

 bar1

 </bar>

 <bar>

 bar2

 </bar>

</foo>

Suppose we allow the use of XPath on XML-valued variables and let’s assume that the rule condition is as follows (in a pseudo-language notation):

XPath(v, //bar) != “bar1”

(This rule condition is unclear. We have to speculate that a set is compared with a single value. Please provide a definition of the "!=" operator and the operand in the example above) Is this rule condition true? Is this rule condition even valid? If not, what is the language that enumerates the valid set of rule conditions that are allowed? How do we define equality/non-equality between two XML fragments? Is ordering important? How about whitespaces? Moreover, the XPath expression returns the two <bar> elements. Can these elements be referenced within the rule actions? If so, how do you distinguish between the two? …

None of the above problems are insurmountable. However, the critical issue is that all of these should be addressed in a consistent and logical
fashion. It is not acceptable to simply mention that XML can be used in rule conditions/actions without addressing the above concerns, since the client of PM SCS will have no way to determine what the effects of using XML-valued variables might be.

In all of the above, it would be useful to make as much use of existing standards as possible (e.g., the use of XMLSchema for typing, and XPath for addressing). In that case however, it must be explicitly specified if a particular version of these is to be followed (e.g., XPath 2.0), or simply that the PM SCS implementation must always track the latest XML standards. (see the answer provided for the first bullet in this section)
SUMMARY: We have identified the minimally required steps to introduce XML as a variable type such that it is done in a complete, correct and consistent
way.

4
SUMMARY & TAKE AWAYS:

To summarize, we have described the conceptual differences between attributes and variables in the PM specifications. For emphasis we have included a summary listing (in Appendix A) of all PM interfaces and their associated attributes. It should be clear that there is no compelling reason, at the moment, to include an XML valued attribute type within the PM specifications. Further along we have outlined two key concepts that are needed to ensure IOP. One is covered by the PM specifications and the other requires additional work that is to be undertaken by the PM WG. We have framed, in this paper, the scope of the standardization work for the latter activity. Finally, we have identified the minimally required steps to introduce XML as a variable type
 such that it is done in a complete, correct, and consistent way.

Appendix A

Currently supported “Attributes” in the PM specification.

This annex provides an overview of all attributes currently supported by all the interfaces in the PM specification. These are all used to characterize properties of all the PM SCS interfaces that represent policy information. These attributes all are typed, and if necessary (e.g. in case of the Expression attribute in IpPolicyExpressionCondition) they are constrained by a specified grammar. Attributes are predefined in the PM SCS and are fixed across all instances of the interface. As can be seen from the list, none of the attributes is defined as an XML attribute, and hence no XML type needs to be introduced to support attributes in the PM SCS.

IpPolicy:

CommonName : TpString

PolicyKeywords : TpStringSet

Caption : TpString

Description : TpString

IpPolicyDomain:

CommonName : TpString

PolicyKeywords : TpStringSet

Caption : TpString

Description : TpString

Role : TpString

Owner : TpString

IpPolicyGroup

CommonName : TpString

PolicyKeywords : TpStringSet

Caption : TpString

Description : TpString

IpPolicyRepository

CommonName : TpString

PolicyKeywords : TpStringSet

Caption : TpString

Description : TpString

IpPolicyRule

CommonName : TpString

PolicyKeywords : TpStringSet

Caption : TpString

Description : TpString

Enabled : TpBoolean

RuleUsage : TpString

Priority : TpInt32

Mandatory : TpBoolean

PolicyRoles : TpStringSet

ConditionListType : TpPolicyConditionListType

SequencedActions : TpInt32

IpPolicyCondition

CommonName : TpString

PolicyKeywords : TpStringSet

Caption : TpString

Description : TpString

IpPolicyTimePeriodCondition

CommonName : TpString

PolicyKeywords : TpStringSet

Caption : TpString

Description : TpString

TimePeriod : TpString

MonthOfYearMask : TpString

DayOfMonthMask : TpString

DayOfWeekMask : TpString

TimeOfDayMask : TpString

LocalOrUtcTime : TpInt32

IpPolicyAction

CommonName : TpString

PolicyKeywords : TpStringSet

Caption : TpString

Description : TpString

IpPolicyEventDefinition

CommonName : TpString

PolicyKeywords : TpStringSet

Caption : TpString

Description : TpString

RequiredAttributes : TpAttributeSet

OptionalAttributes : TpAttributeSet
IpPolicyEventCondition

CommonName : TpString

PolicyKeywords : TpStringSet

Caption : TpString

Description : TpString

EventDefinitonName : TpString

MatchingAttributes : TpAttributeSet
IpPolicyExpressionCondition

CommonName : TpString

PolicyKeywords : TpStringSet

Caption : TpString

Description : TpString

Expression : TpString

IpPolicyEventAction

CommonName : TpString

PolicyKeywords : TpStringSet

Caption : TpString

Description : TpString

EventDefinitionName : TpString

Attributes : TpAttributeSet
IpPolicyExpressionAction

CommonName : TpString

PolicyKeywords : TpStringSet

Caption : TpString

Description : TpString

Expression : TpString

IpPolicyIterator

CommonName : TpString

PolicyKeywords : TpStringSet

Caption : TpString

Description : TpString

IpPolicySignature

CommonName : TpString

PolicyKeywords : TpStringSet

Caption : TpString

Description : TpString

InputVariables : TpStringSet

OutputVariables : TpStringSet

GroupNames : TpStringSet

RoleNames : TpStringSet

� To further substantiate that a common base language cannot be achieved technically at this stage: consider for example this DMTF PIM type "dateTime" (formatted as "yyyymmddhhmmss.mmmmmmsutc"). The type upon which this can be mapped in XACML is http://www.w3.org/TR/xmlschema-2/#dateTime (e.g. 1999-05-31T13:20:00-05:00). The differences are minor but cannot be denied. This illustrates that, at the root, one has to rely on a documentation format for which transformation techniques exist.

� The version of 'basic XML' should be published by the SCF. This can be done through a service property. Document N5-030584 shows how.

� PM interfaces come in 2 flavors: interfaces that represent policy information, e.g., IpPolicyGroup or IpPolicyRule and interfaces that situate the former set within the general context of the Parlay API. The later set of interfaces comprises exactly 3 members, namely, IpPolicyManager, IpPolicyEvalManager and IpAppPolicyDomain.

� To ensure IOP across non-proprietary policy domains the set of variables and other related policy information (see section on IOP and Policy Enabling SCFs) must be standardized (in the short term, we suggest to use "open" rather than "standardized" here and in many other places in the document). For proprietary policy domains a service provider may define its own set of variables and policy information. Appropriate portions of this information can be made viewable to client applications that interact with the proprietary policy domain (only after signing a Service Agreement! (see Introduction above)).

� Service provider extensions of policy information in non-proprietary domains are permitted (Note: today, all domains are proprietary. Hence, we propose that the authors reconsider the frequent use of the word "proprietary" throughout the document). For scope see section on IOP and Policy Enabling SCFs.

� The parenthetical text is not part of the formal description of the interface class. It is to illustrate the information that needs to be standardized for IOP.

� It should be clear that the issue of introducing a special XML structure (variable) within the PM specifications is distinct and different from rendering the PM specs into XML (say, in context of SOAP). The latter is analogous to rendering an IDL image of the specifications in context of CORBA. A special XML data structure need not exist in either rendering. However, if such a structure is introduced in the PM specifications (assuming, of course, that it is relevant and is done in a manner that is consistent with the considerations outlined in the document) then it will exist in both SOAP and CORBA renderings of the PM specifications.

�See for an example 11.5

�Observation. The example illustrates the usage of get/setAttribute. However, the specific example attribute, Mandatory, cannot be accessed in a standard way as there is no P_BOOLEAN defined in Release 5.

�Given the observation above, it is insightful to express attributes in terms of TpAttributeType. In this case we would recommend to change TpString here into P_STRING.

�Note that currently, "valid" strings are validated using the eBNF rules; these rules do not foresee in checking, say, the values passed into, e.g., an attribute typed TpPolicyConditionListType. (an example of this attribute can be found in Appendix A, IpPolicyRule). Thus, if '3' is passed as a value for a attribute named ConditionListType the eBNF rules will not signal that this value is invalid. This is weak typing and considered not inline with the rest of the API where typing is strong.

�Not sure what this means.

�Section 5 contains Sequence Diagrams instead of Use Cases

�Does this mean that the standard supports one-many relationship or not? If not, do you argue that the standard must support one-many relationship? Note that one vendor's (implementation) practices might be different form another.

�We applaud the Lucent initiative to initiate standardization in this field. For now, point A-C correctly illustrates that the current approach does not satisfy the IOP requirement. In order to increase interoperability we have argued that openness is (imminently) required and will reduce the IOP concerns.

�We agree that a standard set of attributes per SCF is a long term necessity and applaud the initiative. To improve IOP now by making the Rule Engine capabilities "open" we have submitted the CR.

�We kindly ask the authors to motivate why eBNF is not mentioned in this list.

�We kindly ask the authors to clarify how an extended set is discovered.

�We have argued that eBNF is not sufficient for IOP. To mandate that any alternative should be equal to eBNF seems undesirable, at least.

Also, eBNF, as defined in the PM specification, is not a language that is evolved, maintained, or even scrutinized, by another body. Specifically, it not sanctioned by the IETF (Policy Framework group) or DMTF. Note that the IETF has specified ABNF (RFC 2234).

�We have repeatedly argued that the current definition of eBNF does (still) not allow for namespaces and enable one-many relationships between policy domains and services. The lack of namespaces clearly locks one into a specific vendor. Hence, we fail to see the point made.

�We feel that the answers provided above meet these criteria.

�We feel that the answers provided above meet these criteria.

�http://www.m-w.com/cgi-bin/dictionary

�Type not supported in Rel. 6.

_1128905995.doc

[image: image1]

Root policy language

XACML

DMTF CIM

