

This is a Draft Document of The Parlay Group, Inc.

Parlay APIs 3.0
Policy Manage Interfaces - Version 0.4

Parlay APIs 3.0

Policy Management Interfaces

Status
:
Draft – For Parlay Member Review Only

Issue
:
0.4
Date
:
October 2001

Copyright © The Parlay Group, Inc.. All Rights Reserved.

This document and translations of it, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to The Parlay Group, except as jointly determined by The Parlay Group and third party.

The limited permissions granted above are perpetual and will not be revoked by The Parlay Group or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and The Parlay Group DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

The Parlay Group takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights.

Contents

110.1
Revision Control

0.2
Specification Status
11
0.3
Contact Information
11
1
Introduction
12
1.1
Purpose of this document
12
1.2
Purpose of the Parlay APIs
12
1.3
Scope of this document
12
1.4
The Parlay APIs
12
1.5
Architecture of the Parlay APIs
13
2
The Service Interface Specification
15
2.1
Interface Class
15
2.2
Method descriptions
15
2.3
Parameter descriptions
15
2.4
State Model
15
3
Base Parlay Interface
16
Interface Class
16
4
Generic Service Interface (n/a to “Framework” interfaces!)
17
Interface Class
17
setCallback()
17
setCallbackWithSessionID()
17
5
Policy Management Interfaces
19
5.1
Introduction
19
5.2
Scope
19
Interface IpPolicyManager
21
createDomain()
22
getDomain()
22
removeDomain()
23
getDomainCount()
24
getDomainIterator()
24
findMatchingDomains()
25
createRepository()
25
getRepository()
26
removeRepository()
27
getRepositoryCount()
27
getRepositoryIterator()
28
startTransaction()
28
commitTransaction()
29
abortTransaction()
30
6
Interface IpPolicy
31
setProperty()
32
getProperty()
33
setProperties()
33
getProperties()
34
7
Interface IpPolicyDomain
35
getParentDomain()
37
createDomain()
38
getDomain()
38
removeDomain()
39
getDomainCount()
40
getDomainIterator()
40
createGroup()
41
getGroup()
42
removeGroup()
42
getGroupCount()
43
getGroupIterator()
44
createRule()
44
getRule()
45
removeRule()
46
getRuleCount()
46
getRuleIterator()
47
createEventDefinition()
47
getEventDefinition()
48
removeEventDefinition()
49
getEventDefinitionCount()
50
getEventDefinitionIterator()
50
createVariableSet()
51
getVariableSet()
52
removeVariableSet()
52
getVariableSetCount()
53
getVariableSetIterator()
54
setVariable()
54
getVariable()
55
generateEvent()
56
createNotification()
57
destroyNotification()
57
8
Interface IpPolicyGroup
59
getParentDomain()
60
getParentGroup()
61
createGroup()
61
getGroup()
62
removeGroup()
63
getGroupCount()
63
getGroupIterator()
64
createRule()
64
getRule()
65
removeRule()
66
getRuleCount()
67
getRuleIterator()
67
9
Interface IpPolicyRepository
68
getParentRepository()
69
createRepository()
69
getRepository()
70
removeRepository()
71
getRepositoryCount()
71
getRepositoryIterator()
72
createCondition()
72
getCondition()
73
removeCondition()
74
getConditionCount()
75
getConditionIterator()
75
createAction()
76
getAction()
77
removeAction()
78
getActionCount()
78
getActionIterator()
79
10
Interface IpPolicyRule
80
getParentDomain()
85
getParentGroup()
85
createCondition()
85
getCondition()
86
removeCondition()
87
getConditionCount()
88
getConditionIterator()
88
createAction()
89
getAction()
90
removeAction()
91
getActionCount()
91
getActionIterator()
92
setValidityPeriodConditionByName()
92
setValidityPeriodCondition()
93
getValidityPeriodCondition()
94
unsetValidityPeriodCondition()
94
setConditionList()
95
getConditionList()
96
setActionList()
96
getActionList()
97
11
Interface IpPolicyCondition
98
getParentRepository()
99
getParentRule()
100
12
Interface IpPolicyTimePeriodCondition
101
13
Interface IpPolicyAction
106
getParentRepository()
106
getParentRule()
107
14
Interface IpPolicyEventDefinition
108
setRequiredProperties()
108
setOptionalProperties()
109
getRequiredProperties()
109
getOptionalProperties()
110
getParentDomain()
110
15
Interface IpPolicyEventCondition
112
16
Interface IpPolicyExpressionCondition
113
17
Interface IpPolicyEventAction
115
18
Interface IpPolicyExpressionAction
116
19
Interface IpPolicyIterator
118
getList()
118
20
Interface IpAppPolicyDomain
120
reportNotification()
120

Figures

13Figure 1 Parlay Interfaces

Revision Control
Revisions of this document are controlled using a numeric system where the first number represents major revisions (changes resulting from formal steering committee review) and the second number represents minor revisions (changes resulting from formal steering committee review).

Issue
Date
Reason for Change

0.4
October 2001
Initial Draft – For Workgroup review

The master copy of this document is held in electronic format on the Parlay website at http://www.parlay.org.

0.1 Specification Status

This document is at version 0.4 and is a part of version 3.0 of the Parlay APIs.

0.2 Contact Information

Contact information for the Parlay Group can be found on the Parlay website at http://www.parlay.org.

All product names mentioned within this specification are the trademarks of their respective owners.

1 Introduction

1.1 Purpose of this document

This document defines the Policy Manage interfaces, methods, parameters and state models that are of interest to developers of enterprise-based client applications.

1.2 Purpose of the Parlay APIs

The Parlay APIs are open, technology and network independent, and extensible. The APIs provide secure and open access to the capabilities of a wide range of today’s communication networks, while being sufficiently adaptable to address similar capabilities in future networks. The Parlay Group plans to extend the functionality, as specified in this document, releasing new versions at frequent and regular intervals. The purpose of these APIs is to present a single standardised, abstracted and in many cases simplified way to control the communications networks of today, and through extensions to the APIs, to evolve and address the networks of tomorrow.

These APIs are for use by the “end user application” developers in software development companies, enterprises of all sizes, and network operators.

1.3 Scope of this document

The Parlay APIs provide the functionality needed to develop a number of powerful network and CTI applications. This document defines access to Policy Manage functionality.

1.4 The Parlay APIs

The Parlay APIs are a set of documents representing the framework interfaces; the individual service interfaces; the data definitions; class diagrams; sequence diagrams; and IDL files.

Note: While the Parlay APIs are referred to as being at version 3.0, the individual documents that constitute this set have their own individual version control that is independent from the overall Parlay APIs version number.

The Parlay APIs 3.0 consist of the following documents:

<<<TO BE DETERMINED>>

These documents plus additional information can be found on the Parlay website at http://www.parlay.org.

1.5 Architecture of the Parlay APIs

The Parlay APIs are object-oriented and consist of several categories of interfaces as shown in Figure 1. Phase 1 addressed public interfaces between enterprise-based client applications and Parlay services (interface 2) and the Parlay Framework (interface 1), where:

· Parlay Service Interfaces offer applications access to a range of network capabilities.

· Parlay Framework Interfaces provide 'surround' capabilities necessary for the Service Interfaces to be open, secure, resilient and manageable.

In Phase 2, additional public interfaces are introduced to support administrative functions within the enterprise (interfaces 4 & 6) and to permit the supply of Parlay services by third party vendors (interfaces 3 & 5).

The Policy Manage interface is represented by interface <tbd>.

[image: image1.wmf]Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool

1

1

4

4

3

3

5

5

Not in scope of

Parlay Phase 2

Not in scope of

Parlay Phase 2

Telecom Network

Not in scope of

Parlay Phase 2

Not in scope of

Parlay Phase 2

2

2

6

6

Client

Application

Not in

 scope

of Parlay

Phase 2

Figure 1 Parlay Interfaces

In order to realise the Service and Framework interfaces, it is recognised that categories of resource interfaces are required to facilitate integration of network equipment. The definition of the resource interfaces is not in the scope of the Parlay Group at this time.

2 The Service Interface Specification

This document defines the interfaces, methods and parameters that form a part of the Parlay APIs. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of a Parlay interface specification is described below.

2.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

2.2 Method descriptions

Each method (API method “call”) is described. All methods in the Parlay APIs return a value of type TpResult, indicating, amongst other things, if the method invocation was successfully executed or not.
Both synchronous and asynchronous methods are used in the Parlay APIs. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

2.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

2.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

3 Base Parlay Interface

All application, framework and service interfaces inherit from the following interface. This API Base Parlay Interface does not provide any additional methods.

Interface Class

<<Interface>>

IpInterface

4 Generic Service Interface (n/a to “Framework” interfaces!)
Inherits from the base Parlay interface.

All service interfaces inherit from the following interface.

Interface Class

<<Interface>>

IpService

setCallback(appInterface : IpInterface) : TpResult

setCallbackWithSessionID(appInterface : IpInterface , sessionID : TpSessionID) : TpResult

Method

setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application.

Parameters

appInterface : IpInterface
Specifies a reference to the application interface, which is used for callbacks.

Method

setCallbackWithSessionID()

This method specifies the reference address of the application’s callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg.

Parameters

appInterface : IpInterface
Specifies a reference to the application interface, which is used for callbacks.

sessionID : TpSessionID

Specifies the session for which the service can invoke the application’s callback interface.

5 Policy Management Interfaces

5.1 Introduction

It is expected that more and more Parlay services will use policies to express operational criteria. It is also expected that network providers will host policy-enabled services that have been written by 3rd party application service providers. In order to manage policy information and control access to it a framework policy management service is needed
. Consistent with this, Parlay has defined a policy management service interface manager, IpPolicyManager. All policy management interfaces are accessible from IpPolicyManager. IpPolicyManager is a Parlay framework interface.

A number of APIs have been defined to obtain services from a framework policy management service. These include APIs to create, update or view policy information. Additionally APIs have been defined to facilitate interactions between clients (e.g., a 3rd party application) and any policy enabled service. These include APIs to view policy events, to subscribe to policy events and for the generation of events by clients. All APIs conform to an underlying policy information model

.

Clients that perform administrative tasks, e.g., create, update or delete policy information must obtain access to IpPolicyManager using the family of obtainInterface() methods supported by the IpAccess interface. Administrative tasks may be performed through methods supported by IpPolicyManager. Clients that need to interact with a specific policy enabled service (for non-administrative tasks) can obtain access to that service's interface directly via the selectService() method supported by the IpAccess interface. It should be noted that specific policy enabled services may support additional interfaces and methods that are not defined below.

Examples of policy enabled services include: A load balancing service that uses policies to manage application loads on the network, a charging service that determines charging criteria based on policies, a call management service that uses policies to direct end-user calls to appropriate call agents, etc.
5.2 Scope

The Policy Management APIs defined below address the following
:

· The creation, modification and viewing of policy information.

Generally, policy enabled services will be created by a network service provider. A policy service may also be created by an application service provider (ASP) and hosted in the network. Such services need not be based on published Parlay specifications. However, they will be created using Parlay policy management APIs, will conform to the Parlay policy information model and will be accessible via Parlay defined interfaces.

· Publishing of policy events supported by a service.

· Subscription to policy events supported by a service.

· Generation of events.

· Obtaining statistics associated with the use of policies
.

· Handling of service level agreements (SLA). SLAs may be used to convey authorisation for access or subscription to policy information or to modify or create policy information5.

Interface IpPolicyManager

Derived from IpInterface.

Clients that wish to participate in Policy Management obtain a reference to an instance of the IpPolicyManager interface from the Framework. Using this reference, clients can obtain a reference to a policy domain of interest, iterate through the names of all policy domains, create a new policy domain, or remove an existing one. Clients can also obtain a reference to a policy repository, iterate through the names of all policy repositories, create a new policy repository or remove an existing one.

Note that all operations through Policy Management interfaces are subject to authorization checks – clients will only have permission to invoke methods as are allowed by the client’s privileges as established by a prior agreement between the owner of the client and the owner of the policy management complex. Similarly, methods will only return data that the client is authorized to see. For example, if the client is authorized to see some of the top-level domains and not others, the IpPolicyIterator returned by getDomainIterator() will only return those domains that the client is authorized for.

<<Interface>>

IpPolicyManager

createDomain(domainName : TpString) : IpPolicyDomain

getDomain(domainName : TpString) : IpPolicyDomain

removeDomain(domainName : TpString) : void
getDomainCount() : TpInt32

getDomainIterator() : IpPolicyIterator

findMatchingDomains(matchingProperties : TpTypedPropertySet) : TpStringSet

createRepository(repositoryName : TpString) : IpPolicyRepository

getRepository(repositoryName : TpString) : IpPolicyRepository

removeRepository(repositoryName : TpString) : void
getRepositoryCount() : TpInt32

getRepositoryIterator() : IpPolicyIterator
startTransaction() : void

commitTransaction() : void

abortTransaction() : void

Method

createDomain()

Create the specified top-level Policy Domain and get a reference to the new instance.

Parameters

domainName : TpString

The name of the domain to create.

Return Type

IpPolicyDomain
A reference to the domain just created

Exceptions

AccessViolation

Thrown if the client does not have authorization to create the specified top-level domain.

SyntaxError

Thrown if the specified name for the top-level domain is formatted improperly.

NameSpaceError

Thrown if the specified name conflicts with an existing top-level domain.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getDomain()
Get a reference to the specified top-level Domain.

Parameters

domainName : TpString

The name of the domain.

Return Type

IpPolicyDomain
The reference to the domain.
Exceptions

AccessViolation

Thrown if the client does not have authorization to open the specified top-level domain.

SyntaxError

Thrown if the specified name for the domain is formatted improperly.

NameSpaceError

Thrown if there is no top-level domain with the specified name.

Method

removeDomain()

Remove the specified top-level domain.

Parameters

domainName : TpString

The name of the top-level domain to delete.

Return Type

void

Exceptions

AccessViolation

Thrown if the client does not have authorization to remove the specified top-level domain.

SyntaxError

Thrown if the specified name for the top-level domain is formatted improperly.

NameSpaceError

Thrown if there is no top-level domain with the specified name.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getDomainCount()

Returns the number of top-level Policy Domains contained by the PolicyManager that the client is authorized to see.

Parameters

None

Return Type

TpInt32

The number of domains.

Exceptions

AccessViolation

Thrown if the client does not have authorization to count the top-level domains.
Method

getDomainIterator()

Obtain a reference to an iterator that will return the names of each of the top-level Policy Domains known to the PolicyManager that the client is authorized to see.

Parameters

None

Return Type

IpPolicyIterator

The reference to the iterator.

Exceptions

AccessViolation

Thrown if the client does not have authorization to iterate through the top-level domains.

Method

findMatchingDomains()

Ask for the set of domains that contain properties that match the specified set of properties that the client is authorized to see. This could be used, for example, to get a list of all of the domains whose ‘Role’ is ‘QOS’.

Parameters

matchingProperties : TpTypedPropertySet

Return Type

TpStringSet

The names of the matching top-level domains.

Exceptions

AccessViolation

Thrown if the client does not have authorization to search through the top-level domains.

Method

createRepository()

Create the specified top-level Policy Repository and get a reference to the new instance.

Parameters

repositoryName : TpString

The name of the Repository to create.

Return Type

IpPolicyRepository
A reference to the repository just created.

Exceptions

AccessViolation

Thrown if the client does not have authorization to create the specified top-level repository.

SyntaxError

Thrown if the specified name for the repository is formatted improperly.

NameSpaceError

Thrown if the specified name conflicts with an existing top-level repository.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getRepository()

Get a reference to the specified top-level repository.

Parameters

repositoryName : TpString

The name of the repository.

Return Type

IpPolicyRepository
The reference to the repository.

Exceptions

AccessViolation

Thrown if the client does not have authorization to open the specified top-level repository.

SyntaxError

Thrown if the specified name for the repository is formatted improperly.

NameSpaceError

Thrown if there is no top-level repository with the specified name.

Method

removeRepository()

Remove the specified top-level Policy Repository.

Parameters

repositoryName : TpString

The name of the top-level Repository to delete.

Return Type

void

Exceptions

AccessViolation

Thrown if the client does not have authorization to remove the specified top-level repository.

SyntaxError

Thrown if the specified name for the top-level repository is formatted improperly.

NameSpaceError

Thrown if there is no top-level repository with the specified name.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getRepositoryCount()

Returns the number of top-level Policy Repositories contained by the PolicyManager that the client is authorized to see.

Parameters

None

Return Type

TpInt32

The number of repositories.

Exceptions

AccessViolation

Thrown if the client does not have authorization to count the top-level repositories.

Method

getRepositoryIterator()

Obtain a reference to an iterator that will return the names of each of the top-level Policy Repositories known to the PolicyManager that the client is authorized to see.

Parameters

None

Return Type

IpPolicyIterator

The reference to the iterator.

Exceptions

AccessViolation

Thrown if the client does not have authorization to iterate through the top-level repositories.

Method

startTransaction()

Open a transaction. All modifications to the policy information base up to the call to either commitTransaction() or abortTransaction() will be treated as part of this transaction.

Note: Transaction brackets consisting of startTransaction() and commitTransaction() are generally used to perform changes in an atomic way, i.e. to ensure that either all changes are made persistent or all changes are undone in case of failure of even a single action. Any other clients reading data modified by this transaction will see the existing data until commitTransaction() is called. Any timeouts of this transaction are implementation specific. If a transaction is timed out, any subsequent attempt to make requests that require a transaction will throw the exception NoTransactionInProcess.

Note, however, that the scope of transaction brackets is extended here: Large transaction brackets can be also useful for efficiency reasons even if the different actions are not atomic. Creation of a transaction introduces a significant overhead, reduction of the number of separate transactions reduces this. It is up to the application implementation to reflect this fact.
Parameters

None

Return Type

void

Exceptions

AccessViolation

Thrown if the client does not have authorization to start a transaction.

TransactionInProcess

Thrown if there is currently a transaction in process. Note that transactions can not be nested, that is, a second call to startTransaction() without calling commitTransaction() or abortTransaction() in between will result in this exception being thrown during the second call.

Method

commitTransaction()

Commit a transaction. All modifications to the policy information base made since the last call to startTransaction() will be committed.

Parameters

None

Return Type

TpBoolean

TRUE is returned if the commit succeeded and the policy information base has been updated, FALSE otherwise.

Exceptions

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

abortTransaction()

Abort a transaction. All modifications to the policy information base made since the last call to startTransaction() will be discarded.

Parameters

None

Return Type

void

Exceptions

NoTransactionInProcess

Thrown if there is currently no transaction in process.

6 Interface IpPolicy

Derived from IpInterface.

The base interface from which are derived all of the Policy interfaces (except IpPolicyManager). This interface documents four properties for describing a policy-related instance. In the same way that the generic property accessor methods are defined in this base interface, these common properties are documented here as well and each interface that is derived from IpPolicy will provide support for them.

Note that we could have defined dedicated get/set methods for each property, which would have the benefits of being potentially faster and safer, but this design approach was not taken, primarily to make it simpler to add additional properties in the future without having to change the associated Interface.
<<Interface>>

IpPolicy

setProperty(property : TpTypedProperty) : void

getProperty(propertyName : TpTypedPropertyName) : TpTypedProperty

setProperties(ruleProperties : TpTypedPropertySet) : void

getProperties() : TpTypedPropertySet

Properties

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by the ‘name’ parameter used in most API methods.
PolicyKeywords : TpPolicyKeywordSet
This property provides a set of one or more keywords that a policy administrator may use to assist in characterizing or categorizing a policy object. Keywords are of one of two types:

o Keywords defined in this document, or in documents that define subinterfaces of the interfaces defined in this document. These keywords provide a vendor-independent, installation-independent way of characterizing policy objects.

o Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and "Review in December 2000".

This document defines the following keywords: "P_PM_KEYWORD_UNKNOWN", " P_PM_KEYWORD_CONFIGURATION", " P_PM_KEYWORD_USAGE", " P_PM_KEYWORD_SECURITY", " P_PM_KEYWORD_SERVICE", " P_PM_KEYWORD_MOTIVATIONAL", " P_PM_KEYWORD_INSTALLATION", and " P_PM_KEYWORD_EVENT". These concepts were originally defined in [PCIM].

One additional keyword is defined: " P_PM_KEYWORD_POLICY". The role of this keyword is to identify policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This property provides a one-line description of a policy-related object.

Description : TpString

This property provides a longer description than that provided by the caption property.

Method

setProperty()

Set a property of a policy object.

Parameters

property : TpTypedProperty
The property to be set in this object.

Return Type

void

Exceptions

AccessViolation

Thrown if the client does not have authorization to modify the object.

InvalidArgument

Thrown if the specified property is not valid for this object.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getProperty()

Get a copy of the specified property from the policy object. Note that modifying the returned property will not update the actual property of the object. See setProperty() for that functionality.

Parameters

name : TpTypedPropertyName

The name of the property to retrieve.

Return Type

TpTypedProperty
A reference to a copy of the property.

Exceptions

SyntaxError

Thrown if the specified name for the property is formatted improperly.

NameSpaceError

Thrown if the specified name is not a valid property of this policy object.

Method

setProperties()

Set one or more properties of a policy object.

Parameters

properties : TpTypedPropertySet
The properties to be set in this object.

Return Type

void

Exceptions

AccessViolation

Thrown if the client does not have authorization to modify the object.

InvalidArgument

Thrown if any of the specified properties is not valid for this object.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getProperties()

Get a reference to a copy of the set of properties for the policy object. Note that modifying the set associated with the returned reference will not update the actual properties of the object. See setProperties() for that functionality.

Parameters

None

Return Type

TpTypedPropertySet
A copy of the properties.

Exceptions

None

7 Interface IpPolicyDomain

Derived from IpPolicy

This class is a generalized aggregation container. It enables PolicyDomains, PolicyGroups, PolicyRules, or PolicyEventDefinitions to be aggregated in a single container. Loops, including the degenerate case of a PolicyDomain that contains itself, are not allowed when PolicyDomains contain other PolicyDomains.

PolicyDomains and their nesting capabilities are shown in Figure 5 below. Note that a PolicyDomain can nest other PolicyDomains, and there is no restriction on the depth of the nesting in sibling PolicyDomains.

 +---+

 | PolicyDomain |

 | |

 | +--------------------+ +-----------------+ |

 | | PolicyDomain A | | PolicyDomain X | |

 | | | | | |

 | | +----------------+ | ooo | | |

 | | | PolicyDomain A1| | | | |

 | | +----------------+ | | | |

 | +--------------------+ +-----------------+ |

 +---+

 Figure 5. Overview of the PolicyDomain class

As a simple example, think of the highest level PolicyDomain shown in Figure 5 above as a PolicyDomain for the Call Control Service. This PolicyDomain may be called CallControlPolicy, and may aggregate several PolicyDomains that provide specialized rules per client application.

Hence, PolicyDomain A in Figure 5 above may define call control rules for a third party application from company A, while another PolicyDomain might define rules for third party application B (e.g., PolicyDomain X), and so forth.

Note also that the depth of each PolicyDomain does not need to be the same. Thus, the ApplicationAPolicyDomain might have several additional layers of PolicyDomains defined for any of several reasons (different locales, number of customers, etc..). The PolicyRules are therefore contained at n levels from the ApplicationAPolicyDomain. Compare this to the Application B PolicyDomain (PolicyDomain X), which might directly contain PolicyRules.

<<Interface>>

IpPolicyDomain

getParentDomain() : IpPolicyDomain

createDomain(domainName : TpString) : IpPolicyDomain

getDomain(domainName : TpString) : IpPolicyDomain

removeDomain(domainName : TpString) : void

getDomainCount() : TpInt32

getDomainIterator() : IpPolicyIterator

createGroup(groupName : TpString) : IpPolicyGroup

getGroup(groupName : TpString) : IpPolicyGroup

removeGroup(groupName : TpString) : void

getGroupCount() : TpInt32

getGroupIterator() : IpPolicyIterator

createRule(ruleName : TpString) : IpPolicyRule

getRule(ruleName : TpString) : IpPolicyRule

removeRule(ruleName : TpString) : void

getRuleCount() : TpInt32

getRuleIterator() : IpPolicyIterator

createEventDefinition(eventDefinitionName : TpString, requiredProperties : TpStringSet, optionalProperties : TpStringSet) : IpPolicyEventDefinition

getEventDefinition(eventDefinitionName : TpString) : IpPolicyEventDefinition

removeEventDefinition(eventDefinitionName : TpString) : void

getEventDefinitionCount() : TpInt32

getEventDefinitionIterator() : IpPolicyIterator

createVariableSet(variableSetName : TpString) : void

getVariableSet(variableSetName : TpString) : TpTypedPropertySet

removeVariableSet(variableSetName : TpString) : void

getVariableSetCount() : TpInt32

getVariableSetIterator() : IpPolicyIterator

setVariable(variableSetName : TpString, variable : TpTypedProperty) : void

getVariable(variableSetName : TpString, variableName : TpString) : TpTypedProperty

generateEvent(eventDefinitionName : TpString, properties : TpTypedPropertySet) : void

createNotification(appPolicyDomain : TpAppPolicyDomain, events : TpStringSet) : TpAssignmentID

destroyNotification(assignmentID : TpAssignmentID, events : TpStringSet) : void

Properties

Role : TpString

This property provides a way to specify higher-level context associated with a top-level domain, e.g. Role = Charging, Role = QOS, or Role = User Interaction, etc. This property can be used to search for domains that specify a particular Role by using the findMatchingDomains() method of the IpPolicyManager interface.

Owner : TpString

This property provides a way to specify an owner of a top-level domain. This property can be used to search for domains that specify a particular Owner by using the findMatchingDomains() method of the IpPolicyManager interface.
Method

getParentDomain()

Return a reference to the domain that contains this one (if any). If this is a top-level domain, return a NULL reference.

Parameters

None

Return Type

IpPolicyDomain
A reference to the parent domain.

Exceptions

None

Method

createDomain()

Create the specified domain and get a reference to the new instance.

Parameters

domainName : TpString

The name of the domain to create.

Return Type

IpPolicyDomain
A reference to the domain just created.

Exceptions

AccessViolation

Thrown if the client does not have authorization to create the specified domain.

SyntaxError

Thrown if the specified name for the domain is formatted improperly.

NameSpaceError

Thrown if the specified name conflicts with an existing domain contained by this domain.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getDomain()

Get a reference to the specified subdomain.

Parameters

domainName : TpString

The name of the subdomain to get.

Return Type

IpPolicyDomain
A reference to the domain.

Exceptions

AccessViolation

Thrown if the client does not have authorization to access the specified subdomain.

SyntaxError

Thrown if the specified name for the subdomain is formatted improperly.

NameSpaceError

Thrown if there is no subdomain with the specified name.

Method

removeDomain()

Remove the specified subdomain.

Parameters

domainName : TpString

The name of the subdomain to delete.

Return Type

void

Exceptions

AccessViolation

Thrown if the client does not have authorization to remove the specified subdomain.

SyntaxError

Thrown if the specified name for the subdomain is formatted improperly.

NameSpaceError

Thrown if there is no subdomain with the specified name.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getDomainCount()

Returns the number of subdomains contained by this one that the client is authorized to see.

Parameters

None

Return Type

TpInt32

The number of subdomains.

Exceptions

AccessViolation

Thrown if the client does not have authorization to count the subdomains.
Method

getDomainIterator()

Obtain a reference to an iterator that will return the names of each of the subdomains contained by this one that the client is authorized to see.

Parameters

None

Return Type

IpPolicyIterator

A reference to the iterator.

Exceptions

AccessViolation

Thrown if the client does not have authorization to iterate through the subdomains.

Method

createGroup()

Create the specified group and get a reference to the new instance.

Parameters

groupName : TpString

The name of the group to create.

Return Type

IpPolicyGroup
A reference to the group just created.

Exceptions

AccessViolation

Thrown if the client does not have authorization to create the specified group.

SyntaxError

Thrown if the specified name for the group is formatted improperly.

NameSpaceError

Thrown if the specified name conflicts with an existing group contained by this domain.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getGroup()

Get a reference to the specified group.

Parameters

groupName : TpString

The name of the group to get.

Return Type

IpPolicyGroup
A reference to the group.

Exceptions

AccessViolation

Thrown if the client does not have authorization to access the specified group.

SyntaxError

Thrown if the specified name for the group is formatted improperly.

NameSpaceError

Thrown if there is no group with the specified name.

Method

removeGroup()

Remove the specified group.

Parameters

groupName : TpString

The name of the group to delete.

Return Type

void

Exceptions

AccessViolation

Thrown if the client does not have authorization to remove the specified group.

SyntaxError

Thrown if the specified name for the group is formatted improperly.

NameSpaceError

Thrown if there is no group with the specified name.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getGroupCount()

Returns the number of groups contained by this domain that the client is authorized to see.

Parameters

None

Return Type

TpInt32

The number of groups.

Exceptions

AccessViolation

Thrown if the client does not have authorization to count the groups in this domain.
Method

getGroupIterator()

Obtain a reference to an iterator that will return the names of each of the groups contained by this domain that the client is authorized to see.

Parameters

None

Return Type

IpPolicyIterator

A reference to the iterator.

Exceptions

AccessViolation

Thrown if the client does not have authorization to iterate through the groups.

Method

createRule()

Create a rule with the specified name, and get a reference to the new instance.

Parameters

ruleName : TpString

The name of the rule to create.

Return Type

IpPolicyRule
A reference to the just created rule.

Exceptions

AccessViolation

Thrown if the client does not have authorization to create the specified rule.

SyntaxError

Thrown if the specified name for the rule is formatted improperly.

NameSpaceError

Thrown if the specified name conflicts with an existing rule in this domain.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getRule()

Get a reference to the specified rule.

Parameters

ruleName : TpString

The name of the rule to get.

Return Type

IpPolicyRule
A reference to the rule.

Exceptions

AccessViolation

Thrown if the client does not have authorization to access the specified rule.

SyntaxError

Thrown if the specified name for the rule is formatted improperly.

NameSpaceError

Thrown if there is no rule with the specified name.

Method

removeRule()

Remove the specified rule.

Parameters

ruleName : TpString

The name of the rule to delete.

Return Type

void

Exceptions

AccessViolation

Thrown if the client does not have authorization to remove the specified rule.

SyntaxError

Thrown if the specified name for the rule is formatted improperly.

NameSpaceError

Thrown if there is no rule with the specified name.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getRuleCount()

Returns the number of rules contained by this domain that the client is authorized to see.

Parameters

None

Return Type

TpInt32

The number of rules.

Exceptions

AccessViolation

Thrown if the client does not have authorization to count the rules in this domain.

Method

getRuleIterator()

Obtain a reference to an iterator that will return the names of each of the rules contained by this domain that the client is authorized to see.

Parameters

None

Return Type

IpPolicyIterator

A reference to the iterator.

Exceptions

AccessViolation

Thrown if the client does not have authorization to iterate through the rules in this domain.

Method

createEventDefinition()

Define a new event type, specifying the definition’s name and the required and optional properties that must/may appear in an instance of that event. Returns a reference to the newly created definition.

Parameters

eventDefinitionName : TpString

The name of the definition of the new event.

requiredProperties : TpStringSet
The set of properties that MUST be included in any event of this type.

optionalProperties : TpStringSet
A set of properties that MAY be included in any event of this type.

Return Type

IpPolicyEventDefinition
A reference to the newly created definition.

Exceptions

AccessViolation

Thrown if the client does not have authorization to create the specified definition.

SyntaxError

Thrown if the specified name for the definition is formatted improperly.

NameSpaceError

Thrown if the specified name conflicts with an existing definition in this domain.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getEventDefinition()

Get a reference to the definition of an event type.

Parameters

eventDefinitionName : TpString

The name of the event definition to get.

Return Type

IpPolicyEventDefinition
A reference to the definition.

Exceptions

AccessViolation

Thrown if the client does not have authorization to access the specified definition.

SyntaxError

Thrown if the specified name for the definition is formatted improperly.

NameSpaceError

Thrown if there is no definition with the specified name.

Method

removeEventDefinition()

Remove the definition for an event from the domain.

Parameters

eventDefinitionName : TpString

The name of the definition to remove.

Return Type

void

Exceptions

AccessViolation

Thrown if the client does not have authorization to remove the specified definition.

SyntaxError

Thrown if the specified name for the definition is formatted improperly.

NameSpaceError

Thrown if there is no definition with the specified name.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getEventDefinitionCount()

Returns the number of event definitions contained by this domain that the client is authorized to see.

Parameters

None

Return Type

TpInt32

The number of event definitions.

Exceptions

AccessViolation

Thrown if the client does not have authorization to count the event definitions in this domain.

Method

getEventDefinitionIterator()

Obtain a reference to an iterator that will return the names of each of the definitions contained by this domain that the client is authorized to see.

Parameters

None

Return Type

IpPolicyIterator

A reference to the iterator.

Exceptions

AccessViolation

Thrown if the client does not have authorization to iterate through the definitions in this domain.

Method

createVariableSet()

Define a named collection of variables. Variables are properties that can be dynamically updated to reflect the current ‘state’ of the networks and services modelled by the policy information and can be referenced by name from expression conditions and actions.

Parameters

variableSetName : TpString

The name of the new variable set.

Return Type

void
Exceptions

AccessViolation

Thrown if the client does not have authorization to create the specified variable set.

SyntaxError

Thrown if the specified name for the variable set is formatted improperly.

NameSpaceError

Thrown if the specified name conflicts with an existing variable set in this domain.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getVariableSet()

Get a reference to the variable set.

Parameters

variableSetName : TpString

The name of the variable set to get.

Return Type

TpTypedPropertySet
A reference to the variable set.

Exceptions

AccessViolation

Thrown if the client does not have authorization to access the specified variable set.

SyntaxError

Thrown if the specified name for the variable set is formatted improperly.

NameSpaceError

Thrown if there is no variable set with the specified name.

Method

removeVariableSet()

Remove the variable set from the domain.

Parameters

variableSetName : TpString

The name of the variable set to remove.

Return Type

void

Exceptions

AccessViolation

Thrown if the client does not have authorization to remove the specified variable set.

SyntaxError

Thrown if the specified name for the variable set is formatted improperly.

NameSpaceError

Thrown if there is no variable set with the specified name.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getVariableSetCount()

Returns the number of variable sets contained by this domain that the client is authorized to see.

Parameters

None

Return Type

TpInt32

The number of variable sets.

Exceptions

AccessViolation

Thrown if the client does not have authorization to count the variable sets in this domain.

Method

getVariableSetIterator()

Obtain a reference to an iterator that will return the names of each of the variable sets contained by this domain that the client is authorized to see.

Parameters

None

Return Type

IpPolicyIterator

A reference to the iterator.

Exceptions

AccessViolation

Thrown if the client does not have authorization to iterate through the variable sets in this domain.

Method

setVariable()

Set a variable within a variable set.

Parameters

variableSetName : TpString

The name of the variable set within which to set the specified variable.

variable : TpTypedProperty

The variable to set.

Return Type

void

Exceptions

AccessViolation

Thrown if the client does not have authorization to set the specified variable in the specified variable set.

SyntaxError

Thrown if the specified name for the variable set is formatted improperly.

NameSpaceError

Thrown if there is no variable set with the specified name.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getVariable()

Get a copy of a variable from a variable set.

Parameters

variableSetName : TpString

The name of the variable set to find the variable in.

VariableName : TpString

The name of the variable to get a copy of.

Return Type

IpTypedProperty
A copy of the variable.

Exceptions

AccessViolation

Thrown if the client does not have authorization to access the specified variable.

SyntaxError

Thrown if either the specified name for the variable set or the name for the variable is formatted improperly.

NameSpaceError

Thrown if there is no variable set with the specified name or no variable within the variable set with the specified name.

Method

generateEvent()

Generate an event. The specified name identifies the definition of the event that is used to validate that the required properties as specified in the definition are present in the supplied properties and that all supplied properties are listed as required or optional properties by the definition. All clients that have subscribed for events of this type will receive copies of the event on their subscription callback. Conditions that have specified this event type may be satisfied depending on the specifics of the condition.

See also: IpPolicyEventAction

Parameters

variableSetName : TpString

The name of the definition of the event that will be used to validate properties.

properties : TpTypedPropertySet
The properties that will be included in the event instance that is generated.

Exceptions

AccessViolation

Thrown if the client does not have authorization to generate the specified event.

SyntaxError

Thrown if the specified name for the event definition is formatted improperly.

NameSpaceError

Thrown if the specified name is not an existing definition in this domain.

Method

createNotification()
Allows a client to specify a set of events that they are interested in receiving. Once successfully subscribed, the client will receive copies of all generated events on the callback provided by the appPolicyDomain parameter.

Parameters

appPolicyDomain : TpAppPolicyDomain
The callback to be used to send generated events to the client.

events : TpStringSet

The set of names of event definitions specifying the events the client wishes to subscribe to.

Return Type

TpAssignmentID
An identifier for this subscription. When the client is no longer interested in receiving these events, it should call destroyNotification() with this identifier.

Exceptions

AccessViolation

Thrown if the client does not have authorization to subscribe for all of the specified events.

SyntaxError

Thrown if any of the specified names for events is formatted improperly.

NameSpaceError

Thrown if any of the specified names is not an existing definition in this domain.

Method

destroyNotification()
Allows a client to indicate that it is no longer interested in receiving events that it previously subscribed to.

Parameters

assignmentID : TpAssignmentID
The identifier the client received when it subscribed for the events.

events : TpStringSet

If non-NULL and non-empty, this indicates the particular events that the client no longer wishes to receive. If NULL or empty, then the client is unsubscribing from all events associated with the specified identifier.

Exceptions

SyntaxError

Thrown if any of the specified names is formatted improperly.

InvalidArgument

Thrown if any of the specified names was not in the set of events associated with the specified identifier.

8 Interface IpPolicyGroup

Derived from IpPolicy.

This class is a generalized aggregation container. It enables either PolicyRules or PolicyGroups to be aggregated in a single container. Loops, including the degenerate case of a PolicyGroup that contains itself, are not allowed when PolicyGroups contain other PolicyGroups.

PolicyGroups and their nesting capabilities are shown in Figure 5 below. Note that a PolicyGroup can nest other PolicyGroups, and there is no restriction on the depth of the nesting in sibling PolicyGroups.

 +---+

 | PolicyGroup |

 | |

 | +--------------------+ +-----------------+ |

 | | PolicyGroup A | | PolicyGroup X | |

 | | | | | |

 | | +----------------+ | ooo | | |

 | | | PolicyGroup A1 | | | | |

 | | +----------------+ | | | |

 | +--------------------+ +-----------------+ |

 +---+

 Figure 5. Overview of the PolicyGroup class

As a simple example, think of the highest level PolicyGroup shown in Figure 5 above as a logon policy or US employees of a company. This PolicyGroup may be called USEmployeeLogonPolicy, and may aggregate several PolicyGroups that provide specialized rules per location.

Hence, PolicyGroup A in Figure 5 above may define logon rules for employees on the West Coast, while another PolicyGroup might define logon rules for the Midwest (e.g., PolicyGroup X), and so forth.

Note also that the depth of each PolicyGroup does not need to be the same. Thus, the WestCoast PolicyGroup might have several additional layers of PolicyGroups defined for any of several reasons (different locales, number of subnets, etc..). The PolicyRules are therefore contained at n levels from the USEmployeeLogonPolicyGroup. Compare this to the Midwest PolicyGroup (PolicyGroup X), which might directly contain PolicyRules.

No properties are defined for this class since it inherits all its properties from IpPolicy. The class exists to aggregate PolicyRules or other PolicyGroups.

<<Interface>>

IpPolicyGroup

getParentDomain() : IpPolicyDomain

getParentGroup() : IpPolicyGroup

createGroup(groupName : TpString) : IpPolicyGroup

getGroup(groupName : TpString) : IpPolicyGroup

removeGroup(groupName : TpString) : void
getGroupCount() : TpInt32

getGroupIterator() : IpPolicyIterator

createRule(ruleName : TpString) : IpPolicyRule

getRule(ruleName : TpString) : IpPolicyRule

removeRule(ruleName : TpString) : void
getRuleCount() : TpInt32

getRuleIterator() : IpPolicyIterator

Properties

None
Method

getParentDomain()

Get a reference to the domain that directly contains this group (if any). If this is a subgroup (whose immediate container is another group instead of a domain), return a NULL reference.

Parameters

None

Return Type

IpPolicyDomain
A reference to the containing domain.

Exceptions

None

Method

getParentGroup()

Return a reference to the group that contains this one (if any). If this is a top-level group, return a NULL reference.

Parameters

None

Return Type

IpPolicyGroup
A reference to the containing group.

Exceptions

None

Method

createGroup()

Create the specified group and get a reference to the new instance.

Parameters

groupName : TpString

The name of the group to create.

Return Type

IpPolicyGroup
A reference to the group just created.

Exceptions

AccessViolation

Thrown if the client does not have authorization to create the specified group.

SyntaxError

Thrown if the specified name for the group is formatted improperly.

NameSpaceError

Thrown if the specified name conflicts with an existing group contained by this group.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getGroup()

Get a reference to the specified group.

Parameters

groupName : TpString

The name of the group to get.

Return Type

IpPolicyGroup
A reference to the group.

Exceptions

AccessViolation

Thrown if the client does not have authorization to access the specified group.

SyntaxError

Thrown if the specified name for the group is formatted improperly.

NameSpaceError

Thrown if there is no group with the specified name.

Method

removeGroup()

Remove the specified group.

Parameters

groupName : TpString

The name of the group to delete.

Return Type

void

Exceptions

AccessViolation

Thrown if the client does not have authorization to remove the specified group.

SyntaxError

Thrown if the specified name for the group is formatted improperly.

NameSpaceError

Thrown if there is no group with the specified name.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getGroupCount()

Returns the number of groups contained by this group that the client is authorized to see.

Parameters

None

Return Type

TpInt32

The number of groups.

Exceptions

AccessViolation

Thrown if the client does not have authorization to count the groups in this group.

Method

getGroupIterator()

Obtain a reference to an iterator that will return the names of each of the groups contained by this group that the client is authorized to see.

Parameters

None

Return Type

IpPolicyIterator

A reference to the iterator.

Exceptions

AccessViolation

Thrown if the client does not have authorization to iterate through the groups.

Method

createRule()

Create a rule with the specified name, and get a reference to the new instance.

Parameters

ruleName : TpString

The name of the rule to create.

Return Type

IpPolicyRule
A reference to the just created rule.

Exceptions

AccessViolation

Thrown if the client does not have authorization to create the specified rule.

SyntaxError

Thrown if the specified name for the rule is formatted improperly.

NameSpaceError

Thrown if the specified name conflicts with an existing rule in this domain.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getRule()

Get a reference to the specified rule.

Parameters

ruleName : TpString

The name of the rule to get.

Return Type

IpPolicyRule
A reference to the rule.

Exceptions

AccessViolation

Thrown if the client does not have authorization to access the specified rule.

SyntaxError

Thrown if the specified name for the rule is formatted improperly.

NameSpaceError

Thrown if there is no rule with the specified name.

Method

removeRule()

Remove the specified rule.

Parameters

ruleName : TpString

The name of the rule to delete.

Return Type

void

Exceptions

AccessViolation

Thrown if the client does not have authorization to remove the specified rule.

SyntaxError

Thrown if the specified name for the rule is formatted improperly.

NameSpaceError

Thrown if there is no rule with the specified name.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getRuleCount()

Returns the number of rules contained by this group that the client is authorized to see.

Parameters

None

Return Type

TpInt32

The number of rules.

Exceptions

AccessViolation

Thrown if the client does not have authorization to count the rules in this group.

Method

getRuleIterator()

Obtain a reference to an iterator that will return the names of each of the rules contained by this group that the client is authorized to see.

Parameters

None

Return Type

IpPolicyIterator

A reference to the iterator.

Exceptions

AccessViolation

Thrown if the client does not have authorization to iterate through the rules in this domain.

9 Interface IpPolicyRepository

Derived from IpPolicy

A class representing a container for reusable policy-related information. Instances of PolicyConditions and PolicyActions can be defined here and then referenced from one or more PolicyRules. Note that some instantiations of the Policy Management service will have Repositories that have been pre-defined by the Service Provider, with pre-defined PolicyConditions and PolicyActions. It may also be possible that clients with the appropriate authorizations will be able to define new Repositories and/or add new PolicyConditions and PolicyActions to existing Repositories.

<<Interface>>

IpPolicyRepository

getParentRepository() : IpPolicyRepository

createRepository(repositoryName : TpString) : IpPolicyRepository

getRepository(repositoryName : TpString) : IpPolicyRepository

removeRepository(repositoryName : TpString) : void
getRepositoryCount() : TpInt32

getRepositoryIterator() : IpPolicyIterator

createCondition(conditionName : TpString, conditionType: TpPolicyConditionType, conditionProperties : TpTypedPropertySet) : IpPolicyCondition

getCondition(conditionName : TpString) : IpPolicyCondition

removeCondition(conditionName : TpString) : void
getConditionCount() : TpInt32

getConditionIterator() : IpPolicyIterator

createAction(actionName : TpString, actionType: TpPolicyActionType, actionProperties : TpTypedPropertySet) : IpPolicyAction

getAction(actionName : TpString) : IpPolicyAction

removeAction(actionName : TpString) : void
getActionCount() : TpInt32

getActionIterator() : IpPolicyIterator

Properties

None
Method

getParentRepository()

Return a reference to the repository that contains this one (if any). If this is a top-level repository, return a NULL reference.

Parameters

None

Return Type

IpPolicyRepository
A reference to the parent repository.

Exceptions

None

Method

createRepository()

Create the specified repository and get a reference to the new instance.

Parameters

repositoryName : TpString

The name of the repository to create.

Parameters

None

Return Type

IpPolicyRepository
A reference to the repository just created.

Exceptions

AccessViolation

Thrown if the client does not have authorization to create the specified repository.

SyntaxError

Thrown if the specified name for the repository is formatted improperly.

NameSpaceError

Thrown if the specified name conflicts with an existing repository contained by this repository.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getRepository()

Get a reference to the specified subrepository.

Parameters

repositoryName : TpString

The name of the subrepository to get.

Return Type

IpPolicyRepository
A reference to the repository.

Exceptions

AccessViolation

Thrown if the client does not have authorization to access the specified subrepository.

SyntaxError

Thrown if the specified name for the subrepository is formatted improperly.

NameSpaceError

Thrown if there is no subrepository with the specified name.

Method

removeRepository()

Remove the specified subrepository.

Parameters

repositoryName : TpString

The name of the subrepository to delete.

Exceptions

AccessViolation

Thrown if the client does not have authorization to remove the specified subrepository.

SyntaxError

Thrown if the specified name for the subrepository is formatted improperly.

NameSpaceError

Thrown if there is no subrepository with the specified name.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getRepositoryCount()

Returns the number of subrepositories contained by this repository that the client is authorized to see.

Parameters

None

Return Type

TpInt32

The number of subrepositories.

Exceptions

AccessViolation

Thrown if the client does not have authorization to count the repositories in this repository.

Method

getRepositoryIterator()

Obtain a reference to an iterator that will return the names of each of the subrepositories contained by this one that the client is authorized to see.

Parameters

None

Return Type

IpPolicyIterator

A reference to the iterator.

Exceptions

AccessViolation

Thrown if the client does not have authorization to iterate through the subrepositories.

Method

createCondition()

Create a reusable condition. References to the newly created condition can be used in one or more PolicyRules.

Parameters

conditionName : TpString

The name uniquely identifying this condition within this repository.

conditionType : TpPolicyConditionType

The type specifying which IpPolicyCondition class should be created. For this version of the Policy Management API, it must be one of P_PM_TIME_PERIOD_CONDITION, P_PM_EVENT_CONDITION, or P_PM_EXPRESSION_CONDITION.

conditionProperties : TpTypedPropertySet
The properties specifying the condition.

Return Type

IpPolicyCondition
The reference to the newly created condition.

Exceptions

AccessViolation

Thrown if the client does not have authorization to create the specified condition.

SyntaxError

Thrown if the specified name for the condition is formatted improperly.

NameSpaceError

Thrown if the specified name conflicts with an existing condition contained by this repository.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getCondition()

Get a reference to the specified condition.

Parameters

conditionName : TpString

The name of the condition to get.

Return Type

IpPolicyCondition
A reference to the specified condition.

Exceptions

AccessViolation

Thrown if the client does not have authorization to access the specified condition.

SyntaxError

Thrown if the specified name for the condition is formatted improperly.

NameSpaceError

Thrown if there is no condition with the specified name.

Method

removeCondition()

Remove the specified condition.

Parameters

conditionName : TpString

The name of the condition to delete.

Return Type

void

Exceptions

AccessViolation

Thrown if the client does not have authorization to remove the specified condition.

SyntaxError

Thrown if the specified name for the condition is formatted improperly.

NameSpaceError

Thrown if there is no condition with the specified name.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getConditionCount()

Returns the number of conditions contained by this repository that the client is authorized to see.

Parameters

None

Return Type

TpInt32

The number of conditions.

Exceptions

AccessViolation

Thrown if the client does not have authorization to count the conditions in this repository.

Method

getConditionIterator()

Obtain a reference to an iterator that will return the names of each of the conditions contained by this repository that the client is authorized to see.

Parameters

None

Return Type

IpPolicyIterator

A reference to the iterator.

Exceptions

AccessViolation

Thrown if the client does not have authorization to iterate through the conditions in this repository.

Method

createAction()

Create a reusable action. References to the newly created action can be used in one or more PolicyRules.

Parameters

actionName : TpString

The name uniquely identifying this action within this repository.

actionType : TpPolicyActionType

The type specifying which IpPolicyAction class should be created. For this version of the Policy Management API, it must be one of P_PM_EVENT_ACTION, or P_PM_EXPRESSION_ACTION.

actionProperties : TpTypedPropertySet
The properties specifying the action.

Return Type

IpPolicyAction
The reference to the newly created action.

Exceptions

AccessViolation

Thrown if the client does not have authorization to create the specified action.

SyntaxError

Thrown if the specified name for the action is formatted improperly.

NameSpaceError

Thrown if the specified name conflicts with an existing action contained by this repository.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getAction()

Get a reference to the specified action.

Parameters

actionName : TpString

The name of the action to get.

Return Type

IpPolicyAction
A reference to the specified action.

Exceptions

AccessViolation

Thrown if the client does not have authorization to access the specified action.

SyntaxError

Thrown if the specified name for the action is formatted improperly.

NameSpaceError

Thrown if there is no action with the specified name.

Method

removeAction()

Remove the specified action.

Parameters

actionName : TpString

The name of the action to delete.

Return Type

void

Exceptions

AccessViolation

Thrown if the client does not have authorization to remove the specified action.

SyntaxError

Thrown if the specified name for the action is formatted improperly.

NameSpaceError

Thrown if there is no action with the specified name.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getActionCount()

Returns the number of actions contained by this repository that the client is authorized to see.

Parameters

None

Return Type

TpInt32

The number of actions.

Exceptions

AccessViolation

Thrown if the client does not have authorization to count the actions in this repository.

Method

getActionIterator()

Obtain a reference to an iterator that will return the names of each of the actions contained by this repository that the client is authorized to see.

Parameters

None

Return Type

IpPolicyIterator

A reference to the iterator.

Exceptions

AccessViolation

Thrown if the client does not have authorization to iterate through the actions in this repository.

10 Interface IpPolicyRule

Derived from IpPolicy

This class represents the "If Condition then Action" semantics associated with a policy. A PolicyRule condition, in the most general sense, is represented as either an ORed set of ANDed conditions (Disjunctive Normal Form, or DNF) or an ANDed set of ORed conditions (Conjunctive Normal Form, or CNF). Individual conditions may either be negated (NOT C) or unnegated (C). The actions specified by a PolicyRule are to be performed if and only if the PolicyRule condition (whether it is represented in DNF or CNF) evaluates to TRUE.

The conditions and actions associated with a policy rule are modelled, respectively, with subclasses of the classes PolicyCondition and PolicyAction. These condition and action objects are tied to instances of PolicyRule by the setConditionList() and setActionList() methods.

A policy rule may also be associated with one or more policy time periods, indicating the schedule according to which the policy rule is active and inactive. In this case it is the setValidityPeriodCondition() method that provides the linkage.

A policy rule is illustrated conceptually in Figure 6. below.

 +--+

 | PolicyRule |

 | |

 | +--------------------+ +-----------------+ |

 | | PolicyCondition(s) | | PolicyAction(s) | |

 | +--------------------+ +-----------------+ |

 | |

 | +------------------------------+ |

 | | PolicyTimePeriodCondition(s) | |

 | +------------------------------+ |

 +--+

 Figure 6. Overview of the PolicyRule Class

The PolicyRule class uses the structure TpConditionList to specify the list of conditions for the rule and uses the property ConditionListType, to indicate whether the conditions for the rule are in DNF or CNF. The TpConditionList is a list of structures, each element of which contains a reference to a condition and two additional properties to complete the representation of the rule's conditional expression. The first of these properties is an integer to partition the referenced conditions into one or more groups, and the second is a Boolean to indicate whether the referenced condition is negated. An example shows how TpConditionList and these two additional properties provide a unique representation of a set of conditions in either DNF or CNF.

Suppose we have a TpConditionList that aggregates five PolicyConditions C1 through C5, with the following values in the properties of the five elements of the list:

 C1: GroupNumber = 1, ConditionNegated = FALSE

 C2: GroupNumber = 1, ConditionNegated = TRUE

 C3: GroupNumber = 1, ConditionNegated = FALSE

 C4: GroupNumber = 2, ConditionNegated = FALSE

 C5: GroupNumber = 2, ConditionNegated = FALSE

If ConditionListType = P_PM_DNF, then the overall condition for the PolicyRule is:

 (C1 AND (NOT C2) AND C3) OR (C4 AND C5)

On the other hand, if ConditionListType = P_PM_CNF, then the overall condition for the PolicyRule is:

 (C1 OR (NOT C2) OR C3) AND (C4 OR C5)

In both cases, there is an unambiguous specification of the overall condition that is tested to determine whether to perform the actions associated with the PolicyRule.

Similarly, The PolicyRule class uses the structure TpActionList to specify the list of actions for the rule and uses the property SequencedActions to indicate whether the actions for the rule MUST be executed in the order specified in the TpActionList, SHOULD be executed in the order specified, or it doesn’t matter. The TpActionList is a list of structures, each element of which contains a reference to an action and a property sequenceNumber. This property provides an unsigned integer 'n' that indicates the relative position of an action in the sequence of actions associated with a policy rule. When 'n' is a positive integer, it indicates a place in the sequence of actions to be performed, with smaller integers indicating earlier positions in the sequence. The special value '0' indicates "don't care". If two or more actions have the same non-zero sequence number, they may be performed in any order, but they must all be performed at the appropriate place in the overall action sequence.

A series of examples will make ordering of actions clearer:

· If all actions have the same sequence number, regardless of whether it is '0' or non-zero, any order is acceptable.

· The values

 1:ACTION A

 2:ACTION B

 1:ACTION C

 3:ACTION D

indicate two acceptable orders: A,C,B,D or C,A,B,D, since A and C can be performed in either order, but only at the '1' position.

· The values

 0:ACTION A

 2:ACTION B

 3:ACTION C

 3:ACTION D

require that B,C, and D occur either as B,C,D or as B,D,C. Action A may appear at any point relative to B,C, and D. Thus the complete set of acceptable orders is: A,B,C,D; B,A,C,D; B,C,A,D; B,C,D,A; A,B,D,C; B,A,D,C; B,D,A,C; B,D,C,A.

Note that the non-zero sequence numbers need not start with '1', and they need not be consecutive. All that matters is their relative magnitude.

<<Interface>>

IpPolicyRule

getParentGroup() : IpPolicyGroup

getParentDomain() : IpPolicyDomain

createCondition(conditionName : TpString, conditionType: TpPolicyConditionType, conditionProperties : TpTypedPropertySet) : IpPolicyCondition

getCondition(conditionName : TpString) : IpPolicyCondition

removeCondition(conditionName : TpString) : void
getConditionCount() : TpInt32

getConditionIterator() : IpPolicyIterator

createAction(actionName : TpString, actionType: TpPolicyActionType, actionProperties : TpTypedPropertySet) : IpPolicyAction

getAction(actionName : TpString) : IpPolicyAction

removeAction(actionName : TpString) : void
getActionCount() : TpInt32

getActionIterator() : IpPolicyIterator

setValidityPeriodCondition (condition : IpPolicyTimePeriodCondition) : void
getValidityPeriodCondition() : IpPolicyTimePeriodCondition

unsetValidityPeriodCondition() : void
setConditionList(conditionList : TpPolicyConditionList) : void
getConditionList() : TpPolicyConditionList

setActionList(actionList : TpPolicyActionList) : void
getActionList() : TpPolicyActionList

Properties

Enabled : TpBoolean

This property indicates whether a policy rule is currently enabled, from an administrative point of view. Its purpose is to allow a policy administrator to enable or disable a policy rule without having to add it to, or remove it from, the policy repository.

NOTE: Unlike [PCIM], this property does not support the value 'enabledForDebug'. It was considered confusing that Enabled was not a boolean property. Support for debugging, including the ability to specify that the entity evaluating the policy condition(s) is being told to evaluate the conditions for the policy rule, but not to perform the actions if the conditions evaluate to TRUE, will be considered for a later release.

RuleUsage : TpString

This property is a free-form string that recommends how this policy should be used.

Priority : TpInt32

This property provides a non-negative integer for prioritising policy rules relative to each other. Larger integer values indicate higher priority. Since one purpose of this property is to allow specific, ad hoc policy rules to temporarily override established policy rules, an instance that has this property set has a higher priority than all instances that use or set the default value of zero.

Prioritisation among policy rules provides a basic mechanism for resolving policy conflicts.

Mandatory : TpBoolean

This property indicates whether evaluation (and possibly action execution) of a PolicyRule is mandatory or not. Its concept is similar to the ability to mark packets for delivery or possible discard, based on network traffic and device load.

The evaluation of a PolicyRule MUST be attempted if the Mandatory property value is TRUE. If the Mandatory property value of a PolicyRule is FALSE, then the evaluation of the rule is "best effort" and MAY be ignored.

PolicyRoles : TpStringSet

This property represents the roles and role combinations associated with a policy rule. Each value represents one role combination. Since this is a multi-valued property, more than one role combination can be associated with a single policy rule. Each value is a string of the form

 <RoleName>[&&<RoleName>]*

where the individual role names appear in alphabetical order.

ConditionListType : TpPolicyConditionListType

This property is used to specify whether the list of policy conditions associated with this policy rule is in disjunctive normal form (DNF) or conjunctive normal form (CNF). If this property is not present, the list type defaults to DNF.

SequencedActions : TpInt32

This property gives a policy administrator a way of specifying how the ordering of the policy actions associated with this PolicyRule is to be interpreted. Three values are supported:

o mandatory(1): Do the actions in the indicated order, or don't do them at all.

o recommended(2): Do the actions in the indicated order if you can, but if you can't do them in this order, do them in another order if you can.

o dontCare(3): Do them -- I don't care about the order.

When error / event reporting is addressed for the Policy Framework, suitable codes will be defined for reporting that a set of actions could not be performed in an order specified as mandatory (and thus were not performed at all), that a set of actions could not be performed in a recommended order (and moreover could not be performed in any order), or that a set of actions could not be performed in a recommended order (but were performed in a different order).

Method

getParentDomain()

Return a reference to the PolicyDomain that directly contains this Rule (if any). If this Rule is contained by a PolicyGroup, return a NULL reference.

Parameters

None

Return Type

IpPolicyDomain
The reference to the PolicyDomain to get.

Exceptions

None

Method

getParentGroup()

Return a reference to the PolicyGroup that directly contains this Rule (if any). If this Rule is contained by a PolicyDomain, return a NULL reference.

Parameters

None

Return Type

IpPolicyGroup
The reference to the PolicyGroup.

Exceptions

None

Method

createCondition()

Create a new condition local to this Rule. Conditions created local to a Rule can only be referenced from that Rule. For reusable conditions, see IpPolicyRepository.

Parameters

conditionName : TpString

The name uniquely identifying this condition within this rule.

conditionType : TpPolicyConditionType

The type specifying which IpPolicyCondition class should be created. For this version of the Policy Management API, it must be one of P_PM_TIME_PERIOD_CONDITION, P_PM_EVENT_CONDITION, or P_PM_EXPRESSION_CONDITION.

conditionProperties : TpTypedPropertySet
The initial properties for this condition.

Return Type

IpPolicyCondition
The reference to the newly created condition.

Exceptions

AccessViolation

Thrown if the client does not have authorization to create the specified condition.

SyntaxError

Thrown if the specified name for the condition is formatted improperly.

NameSpaceError

Thrown if the specified name conflicts with an existing condition contained by this rule.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getCondition()

Get a reference to the specified condition.

Parameters

conditionName : TpString

The name of the condition to get.

Return Type

IpPolicyCondition
A reference to the specified condition.

Exceptions

AccessViolation

Thrown if the client does not have authorization to access the specified condition.

SyntaxError

Thrown if the specified name for the condition is formatted improperly.

NameSpaceError

Thrown if there is no condition with the specified name.

Method

removeCondition()

Remove the specified condition.

Parameters

conditionName : TpString

The name of the condition to delete.

Return Type

void

Exceptions

AccessViolation

Thrown if the client does not have authorization to remove the specified condition.

SyntaxError

Thrown if the specified name for the condition is formatted improperly.

NameSpaceError

Thrown if there is no condition with the specified name.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getConditionCount()

Returns the number of conditions contained by this rule that the client is authorized to see.

Parameters

None

Return Type

TpInt32

The number of conditions.

Exceptions

AccessViolation

Thrown if the client does not have authorization to count the conditions in this rule.

Method

getConditionIterator()

Obtain a reference to an iterator that will return the names of each of the conditions contained by this rule that the client is authorized to see.

Parameters

None

Return Type

IpPolicyIterator

A reference to the iterator.

Exceptions

AccessViolation

Thrown if the client does not have authorization to iterate through the conditions in this rule.

Method

createAction()

Create a new action local to this Rule. Actions created local to a Rule can only be referenced from that Rule. For reusable actions, see IpPolicyRepository.

Parameters

actionName : TpString

The name uniquely identifying this action within this rule.

actionType : TpPolicyActionType

The type specifying which IpPolicyAction class should be created. For this version of the Policy Management API, it must be one of P_PM_EVENT_ACTION, or P_PM_EXPRESSION_ACTION.

actionProperties : TpTypedPropertySet
The properties specifying the action.

Return Type

IpPolicyAction
The reference to the newly created action.

Exceptions

AccessViolation

Thrown if the client does not have authorization to create the specified action.

SyntaxError

Thrown if the specified name for the action is formatted improperly.

NameSpaceError

Thrown if the specified name conflicts with an existing action contained by this rule.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getAction()

Get a reference to the specified action.

Parameters

actionName : TpString

The name of the action to get.

Return Type

IpPolicyAction
A reference to the specified action.

Exceptions

AccessViolation

Thrown if the client does not have authorization to access the specified action.

SyntaxError

Thrown if the specified name for the action is formatted improperly.

NameSpaceError

Thrown if there is no action with the specified name.

Method

removeAction()

Remove the specified action.

Parameters

actionName : TpString

The name of the action to delete.

Return Type

void

Exceptions

AccessViolation

Thrown if the client does not have authorization to remove the specified action.

SyntaxError

Thrown if the specified name for the action is formatted improperly.

NameSpaceError

Thrown if there is no action with the specified name.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getActionCount()

Returns the number of actions contained by this rule that the client is authorized to see.

Parameters

None

Return Type

TpInt32

The number of actions.

Exceptions

AccessViolation

Thrown if the client does not have authorization to count the actions in this rule.

Method

getActionIterator()

Obtain a reference to an iterator that will return the names of each of the actions contained by this rule that the client is authorized to see

Parameters

None

Return Type

IpPolicyIterator

A reference to the iterator.

Exceptions

AccessViolation

Thrown if the client does not have authorization to iterate through the actions in this rule.

Method

setValidityPeriodConditionByName()

Set the validity period for the rule, specifying the name of a condition of type IpValidityPeriodCondition. Since the condition is specified by name, the condition must be defined local to this rule.

Parameters

conditionName : in TpString

Name identifying a condition local to this rule.

Return Type

void

Exceptions

AccessViolation

Thrown if the client does not have authorization to modify this rule.

SyntaxError

Thrown if the specified name for the condition is formatted improperly.

NameSpaceError

Thrown if the specified name does not match an existing condition contained by this rule.

InvalidArgument

Thrown if the condition identified by name is not of type IpValidityPeriodCondition.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

setValidityPeriodCondition()

Set the validity period for the rule, providing a reference to a condition of type IpValidityPeriodCondition. Since the condition is specified by reference, the condition may be defined local to rule or may be a condition defined in a PolicyRepository.

Parameters

conditionReference : in IpPolicyTimePeriodCondition

Reference to the condition to be used to set the validity period condition.

Return Type

void

Exceptions

AccessViolation

Thrown if the client does not have authorization to modify this rule.

InvalidArgument

Thrown if the specified condition is not of type IpValidityPeriodCondition.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getValidityPeriodCondition()

Get a reference to the condition used to set the validity period condition for this rule.

Parameters

None

Return Type

IpPolicyTimePeriodCondition
The reference to the condition. This will be a NULL reference if the validity period condition is not set.

Exceptions

None

Method

unsetValidityPeriodCondition()

Unset the validity period condition for this rule. When the validity period condition is not set, the rule is always active.

Parameters

None.

Exceptions

AccessViolation

Thrown if the client does not have authorization to modify this rule.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

setConditionList()
Set the condition list of this rule, specifying each triple of condition, Group Number and Negated properties. See the text under IpPolicyRule above for a description of the use of these two properties. Note that although a condition may be contained by a rule (by creating the condition within the rule using createCondition(), it is not evaluated as part of the rule’s
condition list until it is included

in the list specified by this method..

Parameters

conditionList : TpPolicyConditionList

List of (Condition reference, Group Number, Negated) triples and the value ConditionListType indicating whether the conditions are in DNF or CNF.
Return Type

void

Exceptions

Exceptions AccessViolation

Thrown if the client does not have authorization to modify the condition list of the rule.

SyntaxError

Thrown if the condition list is formatted improperly.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getConditionList()

Get the condition list set for the rule.

Parameters

None

Return Type

TpPolicyConditionList

The condition list currently set for this rule.
Exceptions

Exceptions AccessViolation

Thrown if the client does not have authorization to get the condition list for the rule.

Method

setActionList()
Set the list of actions for this rule, specifying each pair of Action and SequenceNumber. See the text under IpPolicyRule above for a description of the use of this property. Note that although an action may be contained by a rule (by creating the action within the rule using createAction(), it is not evaluated as part of the rule’s actions until it is included in the list specified by this method.

Parameters

actionList : TpPolicyActionList

List of (Action Reference, Sequence Number) pairs.

Return Type

void

Exceptions

Exceptions AccessViolation

Thrown if the client does not have authorization to modify the action list of the rule.

SyntaxError

Thrown if the action list is formatted improperly.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getActionList()

Get the action list set for the rule.

Parameters

None

Return Type

TpPolicyActionList

The action list currently set for this rule.

Exceptions

Exceptions AccessViolation

Thrown if the client does not have authorization to get the action list for the rule.
11 Interface IpPolicyCondition

Derived from IpPolicy

The purpose of a policy condition is to determine whether or not the set of actions (aggregated in the PolicyRule that the condition applies to) should be executed or not. For the purposes of the Policy Core Information Model, all that matters about an individual PolicyCondition is that it evaluates to TRUE or FALSE. (The individual PolicyConditions associated with a PolicyRule are combined to form a compound expression in either DNF or CNF, but this is accomplished via the ConditionList, discussed above. A logical structure within an individual PolicyCondition may also be introduced, but this would have to be done in a subclass of PolicyCondition.

Because it is general, the PolicyCondition class does not itself contain any "real" conditions. These will be represented by properties of the domain-specific subclasses of PolicyCondition.

 +---+

 | Policy Conditions in DNF |

 | +-------------------------+ +-----------------------+ |

 | | AND list | | AND list | |

 | | +-------------------+ | | +-----------------+ | |

 | | | PolicyCondition | | | | PolicyCondition | | |

 | | +-------------------+ | | +-----------------+ | |

 | | +-------------------+ | | +-----------------+ | |

 | | | PolicyCondition | | ... | | PolicyCondition | | |

 | | +-------------------+ | ORed | +-----------------+ | |

 | | ... | | ... | |

 | | ANDed | | ANDed | |

 | | +-------------------+ | | +-----------------+ | |

 | | | PolicyCondition | | | | PolicyCondition | | |

 | | +-------------------+ | | +-----------------+ | |

 | +-------------------------+ +-----------------------+ |

 +---+

 Figure 7. Overview of Policy Conditions in DNF

This figure illustrates that when policy conditions are in DNF, there are one or more sets of conditions that are ANDed together to form AND lists. An AND list evaluates to TRUE if and only if all of its constituent conditions evaluate to TRUE. The overall condition then evaluates to TRUE if and only if at least one of its constituent AND lists evaluates to TRUE.

 +---+

 | Policy Conditions in CNF |

 | +-------------------------+ +-----------------------+ |

 | | OR list | | OR list | |

 | | +-------------------+ | | +-----------------+ | |

 | | | PolicyCondition | | | | PolicyCondition | | |

 | | +-------------------+ | | +-----------------+ | |

 | | +-------------------+ | | +-----------------+ | |

 | | | PolicyCondition | | ... | | PolicyCondition | | |

 | | +-------------------+ | ANDed | +-----------------+ | |

 | | ... | | ... | |

 | | ORed | | ORed | |

 | | +-------------------+ | | +-----------------+ | |

 | | | PolicyCondition | | | | PolicyCondition | | |

 | | +-------------------+ | | +-----------------+ | |

 | +-------------------------+ +-----------------------+ |

 +---+

 Figure 8. Overview of Policy Conditions in CNF

In this figure, the policy conditions are in CNF. Consequently, there are one or more OR lists, each of which evaluates to TRUE if and only if at least one of its constituent conditions evaluates to TRUE. The overall condition then evaluates to TRUE if and only if ALL of its constituent OR lists evaluate to TRUE.

When identifying and using the PolicyCondition class, it is necessary to remember that a condition can be rule-specific or reusable. This was discussed above. The distinction between the two types of policy conditions lies in the associations in which an instance can participate, and in how the different instances are named. Conceptually, a reusable policy condition resides in a policy repository, and is named within the scope of that repository. On the other hand, a rule-specific policy condition is, as the name suggests, named within the scope of the single policy rule to which it is related.

<<Interface>>

IpPolicyCondition

getParentRepository() : IpPolicyRepository

getParentRule() : IpPolicyRule

Properties

None
Method

getParentRepository()

Return a reference to the repository that contains this condition (if any). If this condition is contained by a rule, return a NULL reference.

Parameters

None

Return Type

IpPolicyRepository
A reference to the parent repository.

Exceptions

None

Method

getParentRule()

Return a reference to the rule that contains this condition (if any). If this condition is contained by a PolicyRepository, return a NULL reference.

Parameters

None

Return Type

IpPolicyRule
A reference to the parent rule.

Exceptions

None

12 Interface IpPolicyTimePeriodCondition

Derived from IpPolicyCondition

This class provides a means of representing the time periods during which a policy rule is valid, i.e., active. At all times that fall outside these time periods, the policy rule has no effect. A policy rule is treated as valid at all times if it does not specify a PolicyTimePeriodCondition.

In some cases a PDP may need to perform certain setup / cleanup actions when a policy rule becomes active / inactive. For example, sessions that were established while a policy rule was active might need to be taken down when the rule becomes inactive. In other cases, however, such sessions might be left up: in this case, the effect of deactivating the policy rule would just be to prevent the establishment of new sessions. Setup / cleanup behaviours on validity period transitions are not currently addressed by the PCIM, and must be specified in 'guideline' documents, or via subclasses of PolicyRule, PolicyTimePeriodCondition or other concrete subclasses of Policy. If such behaviours need to be under the control of the policy administrator, then a mechanism to allow this control must also be specified in the subclass.

PolicyTimePeriodCondition is defined as a subclass of PolicyCondition. This is to allow the inclusion of time-based criteria in the AND/OR condition definitions for a PolicyRule.

Instances of this class may have up to five properties identifying time periods at different levels. The values of all the properties present in an instance are ANDed together to determine the validity period(s) for the instance. For example, an instance with an overall validity range of January 1, 2000 through December 31, 2000; a month mask that selects March and April; a day-of-the-week mask that selects Fridays; and a time of day range of 0800 through 1600 would represent the following time periods:

 Friday, March 5, 2000, from 0800 through 1600;

 Friday, March 12, 2000, from 0800 through 1600;

 Friday, March 19, 2000, from 0800 through 1600;

 Friday, March 26, 2000, from 0800 through 1600;

 Friday, April 2, 2000, from 0800 through 1600;

 Friday, April 9, 2000, from 0800 through 1600;

 Friday, April 16, 2000, from 0800 through 1600;

 Friday, April 23, 2000, from 0800 through 1600;

 Friday, April 30, 2000, from 0800 through 1600.

Properties not present in an instance of PolicyTimePeriodCondition are implicitly treated as having their value "always enabled". Thus, in the example above, the day-of-the-month mask is not present, and so the validity period for the instance implicitly includes a day-of-the-month mask that selects all days of the month. If we apply this "missing property" rule to its fullest, we see that there is a second way to indicate that a policy rule is always enabled: have it point to an instance of PolicyTimePeriodCondition whose only properties are its naming properties.

The property LocalOrUtcTime indicates whether the times represented in the other five time-related properties of an instance of PolicyTimePeriodCondition are to be interpreted as local times for the location where a policy rule is being applied, or as UTC times.

<<Interface>>

IpPolicyTimePeriodCondition

Properties

TimePeriod : TpString

This property identifies an overall range of calendar dates and times over which a policy rule is valid. It reuses the format for an explicit time period defined in RFC 2445 (reference [10]): a string representing a starting date and time, in which the character 'T' indicates the beginning of the time portion, followed by the solidus character '/', followed by a similar string representing an end date and time. The first date indicates the beginning of the range, while the second date indicates the end. Thus, the second date and time must be later than the first. Date/times are expressed as substrings of the form "yyyymmddThhmmss". For example:

 20000101T080000/20000131T120000

 January 1, 2000, 0800 through January 31, 2000, noon

There are also two special cases in which one of the date/time strings is replaced with a special string defined in RFC 2445.

o If the first date/time is replaced with the string "THISANDPRIOR", then the property indicates that a policy rule is valid [from now] until the date/time that appears after the '/'.

o If the second date/time is replaced with the string "THISANDFUTURE", then the property indicates that a policy rule becomes valid on the date/time that appears before the '/', and remains valid from that point on.

Note that RFC 2445 does not use these two strings in connection with explicit time periods. Thus the PCIM is combining two elements from RFC 2445 that are not combined in the RFC itself.

MonthOfYearMask : TpString

The purpose of this property is to refine the definition of the valid time period that is defined by the TimePeriod property, by explicitly specifying the months when the policy is valid. These properties work together, with the TimePeriod used to specify the overall time period during which the policy might be valid, and the MonthOfYearMask used to pick out the specific months within that time period when the policy is valid.

This property is formatted as an octet string of size 2, consisting of 12 bits identifying the 12 months of the year, beginning with January and ending with December, followed by 4 bits that are always set to '0'. For each month, the value '1' indicates that the policy is valid for that month, and the value '0' indicates that it is not valid. The value X'08 30', for example, indicates that a policy rule is valid only in the months May, November, and December.

See section 5.4 for details of how CIM represents a single-valued octet string property such as this one. (Basically, CIM prepends a 4-octet length to the octet string.)

If this property is omitted, then the policy rule is treated as valid for all twelve months.

DayOfMonthMask : TpString

The purpose of this property is to refine the definition of the valid time period that is defined by the TimePeriod property, by explicitly specifying the days of the month when the policy is valid. These properties work together, with the TimePeriod used to specify the overall time period during which the policy might be valid, and the DayOfMonthMask used to pick out the specific days of the month within that time period when the policy is valid.

This property is formatted as an octet string of size 8, consisting of 31 bits identifying the days of the month counting from the beginning, followed by 31 more bits identifying the days of the month counting from the end, followed by 2 bits that are always set to '0'. For each day, the value '1' indicates that the policy is valid for that day, and the value '0' indicates that it is not valid.

The value X'80 00 00 01 00 00 00 00', for example, indicates that a policy rule is valid on the first and last days of the month.

For months with fewer than 31 days, the digits corresponding to days that the months do not have (counting in both directions) are ignored.

The encoding of the 62 significant bits in the octet string matches that used for the schedDay object in the DISMAN-SCHEDULE-MIB. See reference [8] for more details on this object.

See section 5.4 for details of how CIM represents a single-valued octet string property such as this one. (Basically, CIM prepends a 4-octet length to the octet string.)

DayOfWeekMask : TpString

The purpose of this property is to refine the definition of the valid time period that is defined by the TimePeriod property by explicitly specifying the days of the week when the policy is valid. These properties work together, with the TimePeriod used to specify the overall time period when the policy might be valid, and the DayOfWeekMask used to pick out the specific days of the week in that time period when the policy is valid.

This property is formatted as an octet string of size 1, consisting of 7 bits identifying the 7 days of the week, beginning with Sunday and ending with Saturday, followed by 1 bit that is always set to '0'. For each day of the week, the value '1' indicates that the policy is valid for that day, and the value '0' indicates that it is not valid.

The value X'7C', for example, indicates that a policy rule is valid Monday through Friday.

See section 5.4 for details of how CIM represents a single-valued octet string property such as this one. (Basically, CIM prepends a 4-octet length to the octet string.)

TimeOfDayMask : TpString

The purpose of this property is to refine the definition of the valid time period that is defined by the TimePeriod property by explicitly specifying a range of times in a day the policy is valid for. These properties work together, with the TimePeriod used to specify the overall time period that the policy is valid for, and the TimeOfDayMask used to pick out which range of time periods in a given day of that time period the policy is valid for.

This property is formatted in the style of RFC 2445 [10]: a time string beginning with the character 'T', followed by the solidus character '/', followed by a second time string. The first time indicates the beginning of the range, while the second time indicates the end. Times are expressed as substrings of the form "Thhmmss".

The second substring always identifies a later time than the first substring. To allow for ranges that span midnight, however, the value of the second string may be smaller than the value of the first substring. Thus, "T080000/T210000" identifies the range from 0800 until 2100, while "T210000/T080000" identifies the range from 2100 until 0800 of the following day.

When a range spans midnight, it by definition includes parts of two successive days. When one of these days is also selected by either the MonthOfYearMask, DayOfMonthMask, and/or DayOfWeekMask, but the other day is not, then the policy is active only during the portion of the range that falls on the selected day. For example, if the range extends from 2100 until 0800, and the day of week mask selects Monday and Tuesday, then the policy is active during the following three intervals:

 From midnight Sunday until 0800 Monday;

 From 2100 Monday until 0800 Tuesday;

 From 2100 Tuesday until 23:59:59 Tuesday.

LocalOrUtcTime : TpInt32

This property indicates whether the times represented in the TimePeriod property and in the various Mask properties represent local times or UTC times. There is no provision for mixing of local times and UTC times: the value of this property applies to all of the other time-related
properties. Note that LocalTime is designated by the integer 1 and UtcTime by the integer 2. If no value is specified the default value is 2, i.e., UtcTime is used.

13 Interface IpPolicyAction

Derived from IpPolicy

The purpose of a policy action is to execute one or more operations that will affect network traffic and/or systems, devices, etc., in order to achieve a desired state. This (new) state provides one or more (new) behaviours. A policy action ordinarily changes the configuration of one or more elements.

A PolicyRule contains one or more policy actions. A policy administrator can assign an order to the actions associated with a PolicyRule, complete with an indication of whether the indicated order is mandatory, recommended, or of no significance. Ordering of the actions associated with a PolicyRule is accomplished via the setActionList() method.

The actions associated with a PolicyRule are executed if and only if the overall condition(s) of the PolicyRule evaluates to TRUE.

When identifying and using the PolicyAction class, it is necessary to remember that an action can be rule-specific or reusable. This was discussed above. The distinction between the two types of policy actions lies in the associations in which an instance can participate, and in how the different instances are named. Conceptually, a reusable policy action resides in a policy repository, and is named within the scope of that repository. On the other hand, a rule-specific policy action is named within the scope of the single policy rule to which it is related.

<<Interface>>

IpPolicyAction

getParentRepository() : IpPolicyRepository

getParentRule() : IpPolicyRule

Properties

None
Method

getParentRepository()

Return a reference to the repository that contains this action (if any). If this action is contained by a rule, return a NULL reference.

Parameters

None

Return Type

IpPolicyRepository
A reference to the parent repository.

Exceptions

None

Method

getParentRule()

Return a reference to the rule that contains this action (if any). If this action is contained by a PolicyRepository, return a NULL reference.

Parameters

None

Return Type

IpPolicyRule
A reference to the parent rule.

Exceptions

None

14 Interface IpPolicyEventDefinition

Derived from IpPolicy

Instances of IpPolicyEventDefinition specify the required and optional properties of events that can be subscribed to, specified as conditions, and generated by clients or actions.

<<Interface>>

IpPolicyEventDefinition

setRequiredProperties(requiredProperties : TpTypedPropertySet) : void

setOptionalProperties(optionalProperties : TpTypedPropertySet) : void

getRequiredProperties() : TpTypedPropertySet

getOptionalProperties() : TpTypedPropertySet

getParentDomain() : IpPolicyDomain

Properties

RequiredProperties : TpTypedPropertySet
The names and types of the properties that generated events must include.

OptionalProperties : TpTypedPropertySet
The names and types of the properties that generated events may include.

Method

setRequiredProperties()

Specify the names and types of the properties that generated events must include.

Parameters

requiredProperties : TpTypedPropertySet
The names and types of the properties.

Return Type

void

Exceptions

Exceptions AccessViolation

Thrown if the client does not have authorization to modify the event definition.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

setOptionalProperties()

Specify the names and types of the properties that may be included in a generated event.

Parameters

optionalProperties : TpTypedPropertySet
The names and types of the properties.

Return Type

void

Exceptions

Exceptions AccessViolation

Thrown if the client does not have authorization to modify the event definition.

NoTransactionInProcess

Thrown if there is currently no transaction in process.

Method

getRequiredProperties()

Get the names and types of the properties that a generated event is required to include.

Parameters

None

Return Type

TpTypedPropertySet
A reference to a copy of the set of names and types.

Exceptions

None

Method

getOptionalProperties()

Get the names and types of the properties that a generated event may optionally include.

Parameters

None

Return Type

TpTypedPropertySet
A reference to a copy of the set of names and types.

Exceptions

None

Method

getParentDomain()

Return a reference to the domain that contains this event definition.

Parameters

None

Return Type

IpPolicyDomain
A reference to the containing domain.

Exceptions

None

15 Interface IpPolicyEventCondition

Derived from IpPolicyCondition

A PolicyCondition that is satisfied when the specified event, with the matching properties, is generated.

<<Interface>>

IpPolicyEventCondition

Properties

EventDefinitonName : TpString

The EventDefinition that defines the event this condition is waiting on.

MatchingProperties : TpTypedPropertySet

The set of properties that must match (name and value) for the condition to be satisfied. If this set is empty, then the generation of the event is enough to satisfy the condition.

16 Interface IpPolicyExpressionCondition

Derived from IpPolicyCondition

A PolicyCondition that is satisfied when the specified event, with the matching properties, is generated.

<<Interface>>

IpPolicyExpressionCondition

Properties

Expression : TpString

The expression to be evaluated as the condition. The BNF describing the expression is defined as follows:
Expression:= VariableName <Comparison Operator> Constant OR VariableName | VariableName <Arithmetic Operator> Constant OR VariableName <Comparison Operator> Constant OR VariableName | (VariableName<ArithmeticOperator>Constant OR VariableName) <ArithmeticOperator> Constant or VariableName <Comparison Operator> Constant OR VariableName

It is assumed that the Policy Engine is able to parse an expression defined in the above BNF. The BNF may be extended as appropriate.

Note that:

1. Variable is assumed to be one of type {TpInt32, TpFloat or TpString} and consistency of type is assumed when an expression is being defined.

2. Comparison Operator is one of: {==, !=, <=, >=}, and, Arithmetic Operator is one of {*, +, -, /}. These are reserved symbols. Note that when Variable is of type TpInt32 or TpFloat the Comparison and Arithmetic operators have the 'usual' meanings. When Variable is of type string, the comparison operators are the 'standard' string comparison operators. However, the only applicable Arithmetic operators are:

'*' := string concatention, e.g., abc*cde12 is the string abccde12

'-' := string (positional) difference, e.g., ABCD - ABCD is the null string but abcdef-abc is the string 'def'

'/' := string (positional) overlap, e.g., acbcd/acBCd is the string 'acd'

3. Example showing an expression formed using Variables of type TpFloat (or TpInt32): (bandwidth.allocated - bandwidth.used)/100 >= 36

Note that 'bandwidth' is assumed to be the name of a set of variables and 'allocated' & 'used' are variables (properties) included in that set.
17 Interface IpPolicyEventAction

Derived from IpPolicyAction

Generate an instance of a specified event.

<<Interface>>

IpPolicyEventAction

Properties

EventDefinitionName : TpString

The name of the EventDefinition that should be used to define the desired event.

Properties : TpTypedPropertySet

The set of properties that should be included with the generated event. Note that this set must contain all of the properties in the RequiredProperties property of the specified EventDefinition and any remaining properties must be included in the OptionalProperties property.

18 Interface IpPolicyExpressionAction

Derived from IpPolicyAction

Evaluate an expression.

<<Interface>>

IpPolicyExpressionAction

Properties

Expression : TpString

The expression that should evaluated. The BNF describing the expression is defined as follows:
Expression:= VariableName<AssignmentOperator>Constant OR VariableName<ArithmeticOperator> Constant OR VariableName | VariableName<AssignmentOperator>Constant

It is assumed that the Policy Engine is able to parse an expression defined in the above BNF. The BNF may be extended as appropriate.

Note that:

1. Variable is assumed to be one of type {TpInt32, TpFloat or TpString} and consistency of type is assumed when an expression is being defined.

2. Assignment Operator is denoted by the symbol (within qoutes) '='. The assignment operator assigns the value of the 'right hand side' to the variable on the 'left hand side' -- see example below. Arithmetic Operator is one of {*, +, -, /}. All the above mentioned symbols are reserved symbols. Note that when Variable is of type TpInt32 or TpFloat the Arithmetic operators have the 'usual' meanings. When Variable is of type string the only applicable operators are the operators (within qoutes) '*' (concatenation), '-' (string difference) and '/' (string overlap).

3. Example showing an assignment expression formed using Variables of type TpFloat (or TpInt32): content.charge = content.charge - 30

Note that 'content' is assumed to be the name of a set of variables and 'charge' is a variable (property) included in that set. In the above example, the value of content.charge is decremented by 30.
19 Interface IpPolicyIterator

Derived from IpInterface

This interface supports paging through the names of the appropriate objects within a container. Rather than retrieving one name at a time, this interface specifically allows the caller to specify how many names to retrieve on each call.

<<Interface>>

IpPolicyIterator

getList(startIndex : TpInt32, numberRequested : TpInt32) : TpStringList

Method

getList()

Return at most numberRequested names starting at location startLocation.

Parameters

startIndex : TpInt32

The index (starting at 0) of the first name to be returned

numberRequested : TpInt32

The maximum number of names expected to be returned by this call.

Return Type

TpStringList

The list of names returned. The list can be examined to determine how many entries were actually

 returned.

Exceptions

InvalidArgument

Thrown if the start index is greater than the number of names being iterated over, or if either startIndex or numberRequested are negative.

20 Interface IpAppPolicyDomain

Derived from IpInterface

This interface is supported by the client. A reference to the interface is provided by the client by calling createNotification() on a given IpPolicyDomain. When notifications that the client has indicated interest in are available, they will be communicated to the client by calling the appropriate method on this interface.

<<Interface>>

IpAppPolicyDomain

reportNotification(assignmentID : TpAssignmentID, event : TpPolicyEvent) : void

Method

reportNotification()
Notify the client about the specified event.

Parameters

assignmentID : TpAssignmentID
The assignmentID returned by the call to createNotification that enabled notification for the specified event.

event : TpPolicyEvent
The event.

Return Type

void

Exceptions

None

� Parlay Policy Management working white paper, Internal Draft, Dec 1st, 2000.

� Parlay Policy Information Model, Internal Draft, May 1st, 2000.

� Policy Framework, J Strassner, Andrea Westerinen, etal, Draft IETF policy framework working group, July, 2000.

� Parlay Policy Management Use Cases, Internal Draft.

� Not included in Parlay Release 3.0

Author: The Policy Management Workgroup
October 2001
 Page 1 of 121

This is a Draft Document of The Parlay Group, Inc.

_1007982465.ppt

Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool

1

4

3

5

Not in scope of Parlay Phase 2

Telecom Network

Not in scope of Parlay Phase 2

2

6

Client

Application

Not in

 scope

of Parlay

Phase 2

