3GPP TSG_CN5 (Open Service Access – OSA)

Meeting #15, Cancun, MEXICO, 26 – 30 November 2001
N5-011200

Source:
Siemens, karsten.luettge@icn.siemens.de
Title:
Deprecation Mechanism for OSA SCFs
Agenda Item:
9

Document for:
Discussion

Category:
other

Work Item ID:
OSA1
Doc Summary:

Specs involved:
29.198-1-12
Introduction

With OSA Rel-5, a number of enhancements will be introduced compared to OSA Rel-4. At the same time, OSA Rel-5 is required to be backward compatible with OSA Rel-4. This contribution proposes how to deal with these contradicting requirements. To be independent of the current and next release numbers, this tdoc uses the terms “outdated” and “new” instead of Rel-4 and Rel-5.

Prerequisites
· We propose to limit the backwards compatibility to only one release.

· We propose that backward compatibility only supports outdated clients connecting to an “up-to-date” SCS. There are no measures that support a new client in connecting to an outdated SCS.

Discussion

An existing SCF could be modified by either adding a new element, removing an existing element, or changing an existing element. Elements that can be added, removed, or changed, are interfaces, data types, methods, or method parameters. The following paragraphs investigate what the effect on existing implementations would be if some of these modifications would be applied to an element of an SCF.

Interfaces

Adding interfaces: Server side interfaces can be added to the model without harm. Since outdated clients do not know about them, they won’t use them. Client side interfaces can be added to the model, however, the server needs to be careful: outdated clients will not implement these interfaces. An SCS implementation shall use these interfaces only in case it knows for sure that the client is up-to-date.

Removing interfaces from the model will break outdated clients and servers. Client side interface are typically implemented by clients to receive notifications through it, the behaviour of an outdated client would change if the interface is no longer supported by the server. Server side interface are typically used by clients to invoke functionality. Outdated clients will still try to use these interfaces.

Changing interfaces is interpreted as adding, removing, or changing methods. Changing methods can be dealt with as a sequence of removing and adding methods. Adding and removing methods to/from interfaces is discussed below.

Data Types

Data types cannot be used on their own; they appear only as method parameters, return values, or as elements of other data types. Thus, a type cannot be removed as long as some method or other types uses it. Similarly, there is no use in adding a type unless a method is introduced that uses it. Therefore, removing or adding types is not discussed here, it is associated with the modification of methods.

Changing types: The standard data types out of 29.198, part 2 (TpBoolean, TpInt32, TpFloat, TpLongString, TpOctet, TpOctetSet, TpString, TpAssignmentID, TpSessionID, TpSessionIDSet) are considered stable; there shall be no need to change one of them. Changing any other type can be treated as removing it and adding a new one.

For the structured types “Sequence” and “Tagged Choice”, the concept of extending the data type can be introduced. Extending a sequence or tagged choice means to add an element. This will not break existing implementations.

It is ffs. what happens if an extended sequence is sent to an outdated client.

Methods

A method can be added to a server side interface without any problems. A method can be added to a client side interface, however, the server must not call this method unless it knows for sure that the client does support it.

A method cannot be removed from any interface; outdated clients will expect to receive notifications and other information through it, or use it to invoke a server’s functionality.

A method is considered to be changed if its parameter list, return value, or exceptions list are modified. Changing a method is considered as adding a new, modified method and removing the old one.

Adding exceptions to methods that belong to client side interfaces will not affect existing clients and can therefore be done without harm.

Conclusion

There are the following issues when changing an SCF:

· Removal of interfaces or methods needs special treatment

· Addition of interfaces or methods on the client side needs special treatment

· A new SCS must be able to tell outdated from new clients.

· Types can be removed or added silently.

· Extending sequence and tagged choice types can always be done.

Proposal
To solve these issues, we propose the following mechanisms:

New Service Property

To avoid an SCS using Rel-5 specific call-back interfaces or calling Rel-5 specific methods on the client , we propose to introduce a service property USE_REL_X. During SLA negotiation, a Rel-5 client should indicate that it understands Rel-5 specific messages and implements the appropriate call-back interfaces. The framework shall select an appropriate SCS, and tell it upon service instantiation that the client supports Rel-5. If a client does not explicitly request a Rel-5 compatible behaviour, the SCS shall assume a Rel-4 client and not call any Rel-5 specific methods.

Deprecated Tag

If an interface, method, or type shall be removed from the specification in the future, it is marked with an UML stereotype Deprecated and removed in the next release. Programmers developing clients for Rel-5 shall not use any interfaces, methods, or types that are marked deprecated.

Unlike in Java, this tag will only be a hint for the programmer. No tools will be provided by the joint workgroup that interpret this tag.

New Tag

If a client side interface is added, or methods are added to an existing client side interface, the respective items shall be marked with an UML stereotype New. This tag indicates that they shall be used by the SCS only for Rel-5 compliant client applications. An SCS shall not use these interfaces or methods unless it knows for sure that the respective client supports the current Rel-5. The tag will be removed for the next release after Rel-5.

This tag is a hint for the server programmer. No tools will be provided by the joint workgroup that interpret this tag.

Duplicate-And-Change

If an element shall be changed, the following steps shall be performed:

· duplicate the element,

· mark the original instance with the Deprecated stereotype,

· change the second instance as needed,

· if the element is a client side interface, or a method on a client side interface, mark the element with the New stereotype,

· in the next release, mark the deprecated instance.

Since CORBA does not allow for operator overloading, most likely the copied element must have a different name from the original instance.

One Final Remark

Eventually, we could handle changes more sophisticated than just by duplicate-and-change. Candidates that could experience more advanced treatment are in particular the sequence and tagged choice data types, but as well methods when parameters or exceptions are added. This avoids changing the name on an element each time it needs to be changed. We propose to develop these mechanisms as soon as a method or type etc. needs to be changed and the contributor feels that there could be a more advanced handling for it.

End of contribution.

