3GPP TSG_CN5 (Open Service Access – OSA)

Meeting #15, Cancun, MEXICO, 26 – 30 November 2001
N5-011154

Source:
Musa Unmehopa (Lucent Technologies), unmehopa@lucent.com
Title:
Policy Management Example Sequence Diagram
Agenda Item:
9.4

Document for:
Information

Category:
other

Work Item ID:
OSA1

Doc Summary:
This contribution describes two message sequence charts for Policy Management examples that show the creation of a Policy rule and the use of a Policy Repository.

Specs involved:
29.198-X (Policy Management)

Introduction

The Parlay Policy Management Working Group has been working on the production and completion of the Policy Management Interface specification in the Parlay version 3.0 timeframe. The Working Group's co-chair Shehryar Qutub provided a presentation of the work on Policy Management at our joint 3GPP CN5/ETSI/Parlay member meeting in Munich, 10-14 September 2001. Within the timeframe of Parlay 4.0, ETSI version 2, and 3GPP OSA Release 5, the goal is to extend the Framework processes of service registration and subscription in order to include Policy Management API as an integral part of the overall set of APIs that constitute Parlay and OSA.

This contribution provides an illustrative example of how the Policy Management API can be used to create a policy rule, how to use domains and groups, etc. The example is provided for information.

Example 1

The example shown here is based on an Application Service Provider (ASP) offering services to the prepaid subscribers of a certain Network Operator. The ASP discovers that, as part of the business logic of the applications it offers, the prepaid credit of the subscriber needs to be verified with regards to the current charge for the service in order to determine whether the purchase should be allowed or not. Rather than including this credit check in the business logic of each and every application that the ASP has in its service portfolio, the ASP may decide to enable a Policy Rule to be hosted in the Policy Engine of the Network Operator. This example 1 is based on the kind input of Peter Heitman, Parlay Working Group co-chair.

[image: image2.emf] : AppLogic : IpPolicyManager : IpPolicyDomain : IpPolicyGroup : IpPolicyRule :

IpPolicyExpressionCondition

 :

IpPolicyExpressionAction

2. createDomain()

3. new()

4. createGroup()

5. new()

6. createRule()

7. new()

8. createCondition()

9. new()

10. createAction()

11. new()

1. startTransaction()

14. commitTransaction()

12. setConditionList()

13. setActionList()

1. For the sake of this example, all activities to create a Domain, a Group, and the Rule are contained within a single transaction. The method startTransaction is used by the application to open the transaction.

2. The rule in this simplistic example is part of a single group, which in turn is contained within a single domain. The application creates that domain by invoking the method createDomain. The value of the parameter domainName is "eCommerceDomain".

3. As a result of the createDomain method a new instance of the IpPolicyDomain interface is created. Its interface reference is returned as return parameter of the createDomain method.

4. Once the domain is created a group is created within that domain. The application invokes the createGroup method, where the parameter groupName has value "PrePaidGroup".

5. As a result of the createGroup method a new instance of the IpPolicyGroup interface is created. Its interface reference is returned as return parameter of the createGroup method.

6. At this point in time there exists the "PrePaidGroup" group within the "eCommerceDomain" domain. The actual rule can be created, using the method createRule. The parameter ruleName has value "SufficientCreditRule". The new rule SufficientCreditRule has the following properties:

· Enabled == TRUE; the policy rule is currently enabled.

· RuleUsage == NULL; no free-format usage recommendation is provided.

· Priority == 0; default value, as there is only one rule.

· Mandatory == TRUE; mandatory rule, evaluation of the expression must be attempted

· PolicyRoles == NULL; no roles defined

· ConditionListType == P_PM_DNF; disjunctive normal form (DNF)

· SequencedActions == 3; don't care, as there is only one rule.

7. A new instance of the IpPolicyRule interface is created. createRule returns the reference to this newly created interface.

8. Once an instance of IpPolicyRule exists, the actual policy rule can be constructed by means of conditions and actions. Invoking the method createCondition creates the condition. The parameter conditionName has value "SufficientCredit". The parameter conditionType has value "P_PM_EXPRESSION_CONDITION", to indicate that the condition must satisfy certain expressional syntax. The parameter conditionProperties is a set of structures. For this example the set contains of only one property structure.

· ConditionProperty.PropertyName = "SufficientCreditExpression"
· ConditionProperty.PropertyType = "TpString"
· ConditionProperty.PropertyValue = "PrePaidCredit > CurrentCharge"
Note that the variables "PrePaidCredit" and "CurrentCharge" in the expression of PropertyValue are assumed to be defined a priori. The value of the expression is derived from the core grammar expressed in the PM information model.
9. A new instance of the IpPolicyExpressionCondition interface is created.

10. The construction of the rule is completed by creating the action that is to be performed when the condition expression evaluates to TRUE. The parameter actionName has value "PurchaseAllowed". The parameter actionType has value "P_PM_EXPRESSION_ACTION" to indicate that the action must satisfy certain expressional syntax. The actionProperties are again a set containing of only one structure.

· ActionProperty.PropertyName = "PurchaseAllowedExpression"

· ActionProperty.PropertyType = "TpString"
· ActionProperty.PropertyValue = "AllowedPurchase == TRUE".
11. A new instance of the IpPolicyExpressionAction interface is created.

12. The properties for the condition are set by invoking the method setConditionList. The conditionList is a list consisting of one structure:

· conditionList.Condition == <reference to the IpPolicyCondition interface returned by 9>

· conditionList.GroupNumber == 1; indicates how the conditions need to be grouped in DNF or CNF in case more groups of rules exist.

· conditionList.Negated == FALSE
13. The properties for the action are set by invoking the method setActionList. The actionList is a list consisting of only one structure:

· actionList.Action == <reference to the IpPolicyAction interface returned by step 10>

· actionList.SequenceNumber == 1;

14. The "SufficientCreditRule" now exists in the "PrePaidGroup" of the "eCommerceDomain". The rules is as follows:

IF " PrePaidCredit > CurrentCharge " THEN "AllowedPurchase == TRUE". This policy rule is enabled upon creation and it is mandatory for the policy engine to evaluate the rule.

The class IpPolicyDomain is defined as a generalized aggregation container, enabling PolicyDomains, PolicyGroups, and PolicyRules to be aggregated in a single container. Figure 1 shows how this container looks for the example.

[image: image1.wmf]PolicyDomain "

eCommerceDomain"

PolicyGroup "

PrePaidGroup"

PolicyRule "

SufficientCreditRule"

PolicyCondition "

SufficientCredit"

PolicyAction "

PurchaseAllowed"

Figure 1 eCommerceDomain container

Example 2

[image: image3.emf] : IpPolicyManager AppLogic1 AppLogic2 : IpPolicyRepository : IpPolicyExpressionCondition : IpPolicyExpressionAction : IpPolicyDomain : IpPolicyRule

1. startTransaction()

2. createRepository()

3. new()

4. createCondition()

5. new()

6. createAction()

7. new()

8. commitTransaction()

9. startTransaction()

10. getRepository()

11. getRepositoryCount()

12. getConditionCount()

13. getConditionIterator()

15. getActionCount()

16. getActionIterator()

18. createDomain()

19. new()

20. createRule()

21. new()

22. setConditionList()

23. setActionList()

24. commitTransaction()

14. getCondition()

17. getAction()

The example shown here shows the use of a Policy Repository. The repository is meant to hold unattached conditions and actions. The Network Operator can populate the repository with the conditions and actions that it can support. These may indeed be based on 'off-line' negotiations with the application developer. The application developer uses the conditions and actions in the Policy Repository to create rules for his own application. In the example application logic representated by AppLogic1 belongs to the Network Operator, whereas the application logic represented by AppLogic2 belongs to the ASP. This example uses the same conditions, actions, and rules as the previous example.

1. The creation of the repository by the Network Operator takes place within one transaction.

2. The method createRepository is invoked on the IpPolicyManager interface to create a new repository.

3. As a result of the createRepository method a new instance of the IpPolicyRepository interface is created. Its interface reference is returned as return parameter of the createRepository method.

4. The Network Operator creates an unattached condition in the new repository by invoking the createCondition method. For simplicity reasons, this is the same condition as in sequence 8 of example 1. The same condition properties apply.

5. A new instance of the IpPolicyExpressionCondition interface is created.

6. The Network Operator creates an unattached action in the repository. Again, this is the same action as in sequence 10 of example 1. The same action properties apply.

7. A new instance of the IpPolicyExpressionAction interface is created.

8. The Network Operator is finished with creating and populating the repository and closes the transaction.

9. Now that a repository exists, the ASP application can open a transaction to start creating a rule based on the conditions and actions stored in the repository.

10. The application invokes the getRepository to obtain a reference to the top-level repository. The returned reference in this case is the reference to the new repository just created by the Network Operator.

11. The application can invoke the getRepositoryCount method on the IpPolicyRepository interface to check whether there are any sub-repositories available. This is not the case for this example.

12. Before trying to obtain all available conditions in this repository the application retrieves the number of conditions by invoking the method getConditionCount.

13. The application can now invoke the getConditioniterator method to obtain the reference to an iterator that contains the names of each of the conditions contained by this repository that the application is authorized to see. As the previous method only return one available condition, this would be only one name, i.e. "SufficientCredit".

14. A reference to the condition can be obtained by invoking getCondition, with the condition name from the iterator as input parameter.

15. 16. 17. Similar to 12. 13. 14.

18. At this point in time the application has the names and references to the unattached condition and action from the repository it wants to use to create the rule. First a domain is created by invoking the createDomain method on the IpPolicyManager interface.

19. A new instance of the IpPolicyDomain interface is created.

20. The application invokes createRule to create a rule within the domain that was just created in flow 18 and 19.

21. A new instance of the IpPolicyRule interface is created.

22. By invoking the method setConditionList, the application can now apply the condition from the repository to this rule, by passing the condition reference, obtained by getCondition in flow 14, as an input parameter.

23. Similarly the application can apply the action to the rule by invoking setActionList.

24. Finally, once the rule is created using the condition and action from the policy repository, the transaction can be closed.

_1067326034.doc

PolicyDomain "eCommerceDomain"

PolicyGroup "PrePaidGroup"

PolicyRule "SufficientCreditRule"

PolicyCondition "SufficientCredit"

PolicyAction "PurchaseAllowed"

