3GPP TR 29.998-4-4 V0.1.0 (2001-11)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Core Network;

Open Service Access (OSA);

Application Programming Interface (API) Mapping for OSA;

Part 4: Call Control Service Mapping;

Subpart 4: multiparty call control SIP

(Release 5)

[image: image65.wmf]

 OSA SCS

AS

-

ILCM

AS

-

OLCM

LSM

ILC

M

OLCM

S

-

CSCF

1. INVITE

2. INVITE

3. INVITE

4. INVITE

5. 200 OK

5. 200 OK

6. 200 OK

7. 200 OK

Service logic

SIP dialog #1

SIP dialog#1

From: X

To: Y

Call

-

ID: Z

From: X

To: Y

Call

-

ID: Z

SIP

dialog

#1

SIP

dialog

#1

From: X

To: Y

Call

-

ID: Z

From: X

To

: Y

Call

-

ID: Z

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

UMTS, API, OSA

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2001, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA, TTC).

All rights reserved.

Contents

3Contents

Foreword
5
Introduction
5
1
Scope
7
2
References
7
3
Definitions and abbreviations
8
3.1
Definitions
8
3.2
Abbreviations
10
4
Mapping OSA Call and Call Leg to SIP
10
4.1
API Call Session ID & SIP Call ID
10
4.2
Call Leg Concepts
10
4.2.1
Conclusion
10
4.2.1.1
OSA Call and SIP Dialogue Correlation Tables
11
5
Multi Party Call Control Flows
14
5.1
Call Manager Service Interface
14
5.1.1
createCall
14
5.1.2
CreateNotification
15
5.1.3
changeNotification
16
5.1.4
destroyNotification
17
5.1.5
getNotification
18
5.1.6
setCallLoadControl
19
5.2
Call Manager Application Interface
20
5.2.1
managerInterrupted
20
5.2.2
managerResumed
21
5.2.3
reportNotification
21
5.2.4
callAborted
23
5.2.5
callOverloadEncountered
24
5.2.6
callOverloadCeased
25
5.3
Multi-Party Call Service Interface
26
5.3.1
GetCallLegs
26
5.3.2
createCallLeg
27
5.3.3
createAndRouteCallLegReq
27
5.3.4
release
31
5.3.5
deassignCall
32
5.3.6
getInfoReq
33
5.3.7
superviseReq
35
5.3.8
setAdviceOfCharge
36
5.3.9
SetChargePlan
37
5.4
Multi-Party Call Application Interface
38
5.4.1
createAndRouteCallLegErr
38
5.4.2
callEnded
39
5.4.3
getInfoRes
41
5.4.4
getInfoErr
42
5.4.5
superviseErr
43
5.4.6
superviseRes
44
5.5
CallLeg Service Interface
45
5.5.1
routeReq
46
5.5.1.1
Case 1 UA mode operation
46
5.5.1.2
Case 2 Proxy mode operation
47
5.5.2
eventReportReq
48
5.5.3
release
49
5.5.4
getInfoReq
52
5.5.5
getCall
54
5.5.6
continueProcessing
55
5.5.7
attachMedia
56
5.5.8
detachMedia
58
5.5.9
deassign
60
5.5.10
getLastRedirectedAddress
61
5.6
CallLeg Application Interface
62
5.6.1
routeErr
62
5.6.2
eventReportRes
63
5.6.3
eventReportErr
64
5.6.4
callLegEnded
65
5.6.5
getInfoRes
66
5.6.6
getInfoErr
68
5.6.7
superviseErr
69
5.6.8
superviseRes
70
6
Detailed Parameter Mappings
73
6.1
TpAdditionalCallEventCriteria
73
6.2
TpAddress
74
6.3
TpAddressRange
75
6.4
TpCallAppInfo
75
6.5
TpCallError
77
6.6
TpCallErrorType
77
6.7
TpCallEventInfo
78
6.8
TpCallEventRequest
78
6.9
TpCallEventType
78
6.10
TpCallInfoType
80
6.11
TpCallLegInfoType mapping from SIP
81
6.12
TpCallLegConnectionProperties to SIP
81
6.13
TpCallMonitorMode
82
6.14
TpCallNotificationReportScope
82
6.15
TpCallNotifiationRequest
83
6.16
TpCallTreatmentType
83
6.17
TpRelaseCause, mapping to SIP response
84
6.18
TpRelaseCause, mapping from SIP
85
6.19
TpAoCInfo, mapping to SIP
86
6.20
TpAoCOrder, mapping to SIP
87
A
Annex A (informative):Introduction to API Mapping for OSA
88
A.1 OSA Service Provision in IMS
88
A.2 MPCCS
89
A.2.1 Introduction
89
A.2.2 SIP Server Roles in OSA SCS
89
A.2.2.1 Introduction
89
A.2.2.2 OSA SCS acting as a SIP Proxy server
89
A.2.2.3 OSA SCS acting as Redirect server
90
A.2.2.4 OSA SCS acting as UA
91
A.2.2.5 OSA SCS acting as a B2BUA
91
A.2.2.6 OSA SCS acting as a 3rd Party Controller
93
A.2.3 SIP Server Role Mode Transitions
93

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

Structure of the OSA API Mapping (3GPP TR 29.998)

The Technical Report 3GPP TR 29.998 consists of a series of parts and subparts. An effort has been made to ensure that the part numbers used in the mapping TR correspond to the part numbers of the base OSA specification in 3GPP TS 29.198. For this reason, certain parts, for which no suitable mapping could be suggested, have not been delivered. At a later stage a mapping to a new protocol may become evident, in which case these missing parts will be developed.

The OSA documentation was defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium, in co-operation with the JAIN consortium. The 3GPP TR 29.998 is based on a mapping document with a wider scope, developed as part of this co-operation. Certain mappings defined in the course of this joint development are not applicable for 3GPP Release 4 or Release 5, which is why not all sub-parts have been delivered as part of 3GPP Release 5. However, it is expected that some will become applicable within the scope of 3GPP Release 5, which is why a common sub-part numbering is being retained, albeit with gaps for 3GPP Release 5.

If mapping for a certain Part is "Not Applicable" it can either indicate that a mapping does not exist (e.g. Part 2 Common Data), or the API is considered to be implemented directly on a physical entity, or via a proprietary mechanism.

The present document is part 4 subpart 4 of a multi-part TR covering the 3rd Generation Partnership Project: Technical Specification Group Core Network; Open Service Access (OSA); Application Programming Interface (API) Mapping for OSA, as identified below.

29.998-1:
General Issues on API Mapping

29.998-2:
Not Applicable

29.998-3:
Not Applicable

29.998-4-1:
Call Control Service Mapping;
Subpart: API to CAP Mapping

29.998-4-2:
Call Control Service Mapping;
Subpart 2 generic call control INAP (not Rel4)

29.998-4-3:
Call Control Service Mapping;
Subpart 3 multiparty call control INAP (not Rel4)

29.998-4-4:
Call Control Service Mapping;
Subpart 4 multiparty call control SIP (Rel5)

29.998-4-5:
Call Control Service Mapping;
Subpart 5 multimedia call control extensions mapping to SIP (Rel5)

29.998-5-1:
User Interaction Service Mapping;
Subpart 1: API to CAP Mapping

29.998-5-2:
User Interaction Service Mapping;
Subpart 2 user interaction INAP (not Rel4)
29.998-5-3:
User Interaction Service Mapping;
Subpart 3 user interaction Megacop (not Rel4)
29.998-5-4:
User Interaction Service Mapping;
Subpart 4: API to SMS Mapping

29.998-6:
User Location – User Status Service Mapping to MAP

29.998-7:
Not Applicable

29.998-8:
Data Session Control Service Mapping to CAP

	OSA API specifications 29.198-family
	OSA API Mapping - 29.998-family

	29.198-1
	Part 1: Overview
	29.998-1
	Part 1: Overview

	29.198-2
	Part 2: Common Data Definitions
	29.998-2
	Not Applicable

	29.198-3
	Part 3: Framework
	29.998-3
	Not Applicable

	29.198-4
	Part 4: Call Control SCF
	29.998-4-1
	Subpart 1: Generic Call Control – CAP mapping

	
	
	29.998-4-2
	

	
	
	29.998-4-3
	

	
	
	29.998-4-4
	Subpart 4: Multi Party Call Control SIP

	
	
	29.998-4-5
	

	29.198-5
	Part 5: User Interaction SCF
	29.998-5-1
	Subpart 1: User Interaction – CAP mapping

	
	
	29.998-5-2
	

	
	
	29.998-5-3
	

	
	
	29.998-5-4
	Subpart 4: User Interaction – SMS mapping

	29.198-6
	Part 6: Mobility SCF
	29.998-6
	User Status and User Location – MAP mapping

	29.198-7
	Part 7: Terminal Capabilities SCF
	29.998-7
	Not Applicable

	29.198-8
	Part 8: Data Session Control SCF
	29.998-8
	Data Session Control – CAP mapping

	29.198-9
	Part 9: Generic Messaging SCF
	29.998-9
	Not Applicable

	29.198-10
	Part 10: Connectivity Manager SCF
	29.998-10
	Not Applicable

	29.198-11
	Part 11: Account Management SCF
	29.998-11
	Not Applicable

	29.198-12
	Part 12: Charging SCF
	29.998-12
	Not Applicable

1 Scope

The present document investigates how the OSA Call Control Interface Class methods defined in 3GPP TS 29.198-4 [5] can be mapped onto SIP methods.
The mapping of the OSA API to the SIP is considered informative, and not normative. An overview of the mapping TR is contained in the introduction of the present document as well as in 3GPP TR 29.998-1 [10].

The OSA specifications define an architecture that enables application developers to make use of network functionality through an open standardised interface, i.e. the OSA APIs. The API specification is contained in the 3GPP TS 29.198 series of specifications. An overview of these is available in the introduction of the present document as well as in 3GPP TS 29.198-1 [1]. The concepts and the functional architecture for the Open Service Access (OSA) are described by 3GPP TS 23.127 [3]. The requirements for OSA are defined in 3GPP TS 22.127 [2].

The present document has been defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium, in co-operation with the JAIN consortium.

2 References

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 29.198-1: "Open Service Access; Application Programming Interface; Part 1: Overview".

[2]
3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA) (Release 5)".

[3]
3GPP TS 23.127: "Virtual Home Environment (Release 4)". ?

[4]
3GPP TR 22.905: "3GPP Vocabulary".

[5]
3GPP TS 29.198-4: "Open Service Access; Application Programming Interface - Part 4: Call Control".

[6]
3GPP TS 23.218: "IP Multimedia (IM) Session Handling; IP Multimedia (IM) call model
(Release 5).

[7]
3GPP TS 24.228: "Signalling flows for the IP multimedia call control based on SIP and SDP. (Release 5).

[8]
3GPP TS 22.101: "Universal Mobile Telecommunications System (UMTS): Service Aspects; Service Principles".

[9]
3GPPTS 29.228 “IP Multimedia Subsystem Cx interface; signalling flows and message contents”

[10]
3GPP TR 29.998-1: "API Mapping for Open Service Access; Part 1: General Issues on API Mapping".

[11]
3GPP TS 24.229: "IP Multimedia Call Control Protocol based on SIP and SDP. (Release 5).

[12]
IETF RFC 2806 “URLs for Telephone Calls”

[13]
Draft IETF RFC 2543bis-05 "SIP: Session Initiation Protocol"

[14]
3GPP TS 23.228: "IP Multimedia Subsystem (IMS); Stage 2
(Release 5).

IETF RFC 2543bis-05 "SIP: Session Initiation Protocol"

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1] apply.

This specification uses a number of terms to refer to the roles played by participants in SIP communications.
Specific SIP definitions can be found in [13] and [11].

[Editor note: The SIP definitions below should be deleted – or keep only those that could be considered important/essential for the understanding of this document ???].

The following terms have special significance for SIP.

Back-to-Back user agent: A back-to-back user agent (B2BUA) is a logical entity that receives a request, and processes it as a UAS. In order to determine how the request should be answered, it acts as a UAC and generates requests. Unlike a proxy server, it maintains dialog state, and must participate in all requests sent on the dialogs it has established. Since it is a concatenation of a UAC and UAS, no explicit definitions are needed for its behaviour.

Call: A call is an informal term that refers to a dialog between peers, generally set up for the purposes of a multimedia conversation.

Call leg: In a SIP context another name for a dialogue. In an OSA context the communication path as seen from an application to an addressable entity/call party in the network.

Call stateful: A proxy is call stateful if it retains state for a dialog from the initiating INVITE to the terminating BYE request.

Client: A client is any network element that sends SIP requests, and receives SIP responses. Clients may or may not interact directly with a human user. User agent clients and proxies are clients.

Dialog: A dialog in SIP is a peer-to-peer SIP relationship between a UAC and UAS that persists for some time. A dialog is established by SIP messages, such as a 2xx response to an INVITE request. A dialog is identified by a call identifier, local address, and remote address.

Downstream: A direction of message forwarding within a transaction which refers to the direction that requests flow from the user agent client to user agent server.

Final response: A response that terminates a SIP transaction, as opposed to a provisional response that does not. All 2xx, 3xx, 4xx, 5xx and 6xx responses are final.

Informational Response: Same as a provisional response.

Initiator, calling party, caller: The party initiating a session with an INVITE request. A caller retains this role from the time it sends the INVITE until the termination of any dialogs established by the INVITE.

Invitation: An INVITE request.

Invitee, invited user, called party, callee: The party that receives an INVITE request for the purposes of establishing a new session. A callee retains this role from the time it receives the INVITE until the termination of the dialog established by that INVITE.

Location server: See location service.

Location service: A location service is used by a SIP redirect or proxy server to obtain information about a callee's possible location(s). It is an abstract database, sometimes referred to as a location server. The contents of the database can be populated in many ways, including being written by registrars.

Loop: A request that arrives at a proxy, is forwarded, and later arrives back at the same proxy. When it arrives the second time, its Request-URI is identical to the first time, and other headers that affect proxy operation are unchanged, so that the proxy would make the same processing decision on the request it made the first time around. Looped requests are errors, and the procedures for detecting them and handling them are described by the protocol.

Method: The method is the primary function that a request is meant to invoke on a server. The method is carried in the request message itself. Example methods are INVITE and BYE.

Outbound proxy: A proxy that receives all requests from a client, even though it is not the server resolved by the Request-URI. The outbound proxy sends these requests, after any local processing, to the address indicated in the Request-URI, or to another outbound proxy.

Parallel search: In a parallel search, a proxy issues several requests to possible user locations upon receiving an incoming request. Rather than issuing one request and then waiting for the final response before issuing the next request as in a sequential search , a parallel search issues requests without waiting for the result of previous requests.

Provisional response: A response used by the server to indicate progress, but that does not terminate a SIP transaction. 1xx responses are provisional, other responses are considered final.

Proxy, proxy server: An intermediary entity that acts as both a server and a client for the purpose of making requests on behalf of other clients. A proxy server primarily plays to role of routing, which means its job is to ensure that a request is passed on to another entity that can further process the request. Proxies are also useful for enforcing policy and for firewall traversal. A proxy interprets, and, if necessary, rewrites parts of a request message before forwarding it.

Redirect server: A redirect server is a server that accepts a SIP request, maps the address into zero or more new addresses and returns these addresses to the client. Unlike a proxy server, it does not initiate its own SIP request. Unlike a user agent server, it does not accept calls.

Registrar: A registrar is a server that accepts REGISTER requests, and places the information it receives in those requests into the location service for the domain it handles.

Ringback: Ringback is the signaling tone produced by the calling party's application indicating that a called party is being alerted (ringing).

Server: A server is a network element that receives requests in order to service them, and sends back responses to those requests. Examples of servers are proxies, user agent servers, redirect servers, and registrars.

Sequential search: In a sequential search, a proxy server attempts each contact address in sequence, proceeding to the next one only after the previous has generated a non-2xx final response.

Session: From the SDP specification: "A multimedia session is a set of multimedia senders and receivers and the data streams flowing from senders to receivers. A multimedia conference is an example of a multimedia session." (RFC 2327 [6]) (A session as defined for SDP can comprise one or more RTP sessions.) As defined, a callee can be invited several times, by different calls, to the same session. If SDP is used, a session is defined by the concatenation of the user name , session id , network type , address type and address elements in the origin field.

(SIP) transaction: A SIP transaction occurs between a client and a server and comprises all messages from the first request sent from the client to the server up to a final (non-1xx) response sent from the server to the client, and the ACK for the response in the case the response was a 2xx. The ACK for a 2xx response is a separate transaction.

 Spiral: A spiral is a SIP request which is routed to a proxy, forwarded onwards, and arrives once again at that proxy, but this time, differs in a way which will result in a different processing decision than the original request. Typically, this means that it has a Request-URI that differs from the previous arrival. A spiral is not an error condition, unlike a loop.

Stateless proxy: A logical entity that does not maintain the client or server transaction state machines defined in this specification when it processes requests. A stateless proxy forwards every request it receives downstream and every response it receives upstream.

Stateful proxy: A logical entity that maintains the client and server transaction state machines defined by this specification during the processing of a request. Also known as a transaction stateful proxy.. A stateful proxy is not the same as a call stateful proxy.

Upstream: A direction of message forwarding within a transaction which refers to the direction that responses flow from the user agent server to user agent client.

User agent client (UAC): A user agent client is a logical entity that creates a new request, and then uses the client transaction state machinery to send it. The role of UAC lasts only for the duration of that transaction. In other words, if a piece of software initiates a request, it acts as a UAC for the duration of that transaction. If it receives a request later on, it takes on the role of a User Agent Server for the processing of that transaction.

User agent server (UAS): A user agent server is a logical entity that generates a response to a SIP request. The response accepts, rejects or redirects the request. This role lasts only for the duration of that transaction. In other words, if a piece of software responds to a request, it acts as a UAS for the duration of that transaction. If it generates a request later on, it takes on the role of a User agent client for the processing of that transaction.

User agent (UA): A logical entity which can act as both a user agent client and user agent server for the duration of a dialog.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in TS 29.198-1 [1] apply.

4 Mapping OSA Call and Call Leg to SIP

4.1 API Call Session ID & SIP Call ID

 In the MPCCS the CallSessionID designates the call as seen from the application, i.e. the ID used to identify a call session. The MPCC API uses this callSessionID to identify a call session.

In SIP, a SIP dialogue (or call) is identified by a globally unique call-id. The call-id is created when a user agent sends an INVITE request. This INVITE request may generate multiple acceptances, each of which are part of the same call.

There is a 1:1 correlation between MPCCS callSessionID and the SIP call-id for an ordinary 2 party call.
Beyond that it becomes more complex. However, the sematics of SIP Call-ID is somewhat different from traditional telephony. It identifies an invitation of a particular client. This means that a conference in SIP may raise several calls with different Call-IDs. In traditional telephony and in MPCCS this would always be the same call.

4.2 Call Leg Concepts

In MPCCS a call leg designates the association between a call and an address as seen from the application and is identified by a callLegSessionID, i.e. the ID used to identify a call leg session. It represents an addressable participant in the call. The MPCC API uses this callLegSessionID to identify a call leg session.

In SIP, a dialogue is defined as the pairwise signalling relationship between two SIP user agents (see [13]). It is identified by the Call_ID, the To and From address header Fields. The Call-ID identifies the call in the network. It is a global unique identifier. The To header field contains the information regarding the endpoint who will receive the SIP request, e.g. INVITE or BYE message. The From header field represents the originator of the SIP request.

4.2.1 Conclusion

As we can see, the Call-ID, the From and To header fields define an association between the call (Call-ID) and the address (To, From).
Thus we can map the call and call leg concepts in OSA to SIP.
 However, there is no easy mapping between SIP and OSA MPCCS call and call leg concepts because of the definition of a SIP dialog always include TWO user agents (UAs). Therefore, the mapping depends on the SIP server role that OSA SCS plays in a SIP session. For example, if SIP server in OSA SCS acts as a proxy server then the 2-party call has only one dialog in SIP (between the 2 UAs), while OSA MPCCS expects 2 legs (one from the calling party to OSA SCS and another from OSA SCS to the called party). Where an application demands full leg control in SIP the SIP server in OSA SCS should always act as UA (UA or B2BUA) or 3rd party controller . Only the latter modes of operation in SCS realises a direct 1:1 correlation between SIP dialog and OSA SCS MPCCS call leg.

4.2.1.1 OSA Call and SIP Dialogue Correlation Tables

Table 4-1: Parameter Correlation Proxy Mode, 2-party call

	SIP
	Headers
	
	OSA API
	Leg
	CALL

	
SIP
Dialog #1
	call-ID(1)
	
	
	
	callSessionID(1),

MPCCS

Call Object

	
	From header(1)
	
	originatingAddress(1)
	callLegSessionID(1),

MPCCS
Originating Call Leg (1) object
	

	
	To header(1)
	
	
destinationAddress(1)
	callLegSessionID(2),

MPCCS
Terminating Call Leg (2) object
	

	
	Request-URI(1)
	
	
targetAddress(1)
	
	

	Note: Note: Forking is NOT supported by current OSA API.

Note1: The MPCCS callSessionID is assigned by the SCS and represents a correlation to the SIP call-id in the SIP INVITE request message. There should be no direct mapping as it would contradict SIP operation principles, i.e. the generation of a SIP call-ID for a particular invitation is the task of the inviting UA and the creation of a unique callSeesionID for an OSA application is the task of the SCS.

Note2: The Call-ID identifies the call in the network. It is a global unique identifier.
The To header field contains the information regarding the endpoint who will receive the SIP request, e.g. INVITE or BYE message. The From header field represents the originator of the SIP request. The Request-URI is a SIP URL that indicates the user or service to which the request is being addresses and is used for routeing purpose.
The correlation shown corresponds to the case of an INVITE initial invitation from caller.

Table 4-2: Parameter Correlation B2BUA Mode, 2-party call

	SIP
	Headers
	
	OSA API
	Leg
	CALL

	
SIP
Dialog #1
	call-ID(1)
	
	
	
	callSessionID(1),

MPCCS

Call Object

	
	From header(1)
	
	originatingAddress(1)
	CallLegSessionID(1)

MPCCS
Originating Call Leg (1) Object
	

	
	To header(1)
	
	destinationAddress(1)
	
	

	
	Request-URI(1)
	
	targetAddress(1)
	
	

	
SIP
Dialog #2
	call-ID(2)
	
	
	
	

	
	From header(1)
	
	originatingAddress(1)
	
	

	
	To header(1)
	
	destinationAddress(1)
	CallLegSessionID(2),
MPCCS
Terminating Call Leg (2) object
	

	
	Request-URI(1)
	
	targetAddress(1/2)
- may be changed by application.
	
	

	Note: Not possible in SIP to shift from proxy mode into B2BUA mode. Therefore where an application demands this mode of operation it has to be secured that it is established already at invitation request (INVITE).
Notice: It is possible that only the call_ID(2) will be changed for the new SIP dialog #2 compared to SIP dialog #1as the incoming INVITE is “proxied”. If a call forwarding application is invoked the targetAddress may be changed for routeing to the desired destination (Request URI).

Note1: The MPCCS callSessionID is assigned by the SCS and represents a correlation to the SIP call-id in the SIP INVITE request message. There should be no direct mapping as it would contradict SIP operation principles, i.e. the generation of a SIP call-ID for a particular invitation is the task of the inviting UA and the creation of a unique callSeesionID for an OSA application is the task of the SCS.

Note2: The Call-ID identifies the call in the network. It is a global unique identifier.
The To header field contains the information regarding the endpoint who will receive the SIP request, e.g. INVITE or BYE message. The From header field represents the originator of the SIP request. The Request-URI is a SIP URL that indicates the user or service to which the request is being addresses and is used for routeing purpose.
The correlation shown corresponds to the case an INVITE initial invitation.

Table 4-3: Parameter Correlation Originating UA Mode, 1-party call

	SIP
	Headers
	
	OSA API
	Leg
	CALL

	
SIP
Dialog #1
	call-ID(1)
	
	
	
	callSessionID(1),

MPCCS

Call Object

	
	From header(1)
	
	originatingAddress(1)

(pre-defined default value provided by
OSA SCS)
	CallLegSessionID(1),

MPCCS
Originating Call Leg (1) object
	

	
	To header(1)
	
	
targetAddress (1)
	CallLegSessionID(1)

MPCCS
Terminating Call Leg (2) object

	

	
	Request-URI(1)
	
	
targetAddress(1)
	
	

	Note1: The MPCCS callSessionID is assigned by the SCS and represents a correlation to the SIP call-id applied in the SIP dialogue. There should be no direct mapping as it would contradict SIP operation principles, i.e. the generation of a SIP call-ID for a particular invitation is the task of the inviting UA and the creation of a unique callSessionID for an OSA application is the task of the SCS.

Note2: The Call-ID identifies the call in the network. It is a global unique identifier.
The To header field contains the information regarding the endpoint who will receive the SIP request, e.g. INVITE or BYE message. The From header field represents the originator of the SIP request. The Request-URI is a SIP URL that indicates the user or service to which the request is being addresses and is used for routeing purpose.
The correlation shown corresponds to the case of an INVITE initial invitation.

Table 4-4: Parameter Correlation Terminating UA / Redirection Mode, 1-party call

	SIP
	Headers
	
	OSA API
	Leg
	CALL

	
SIP
Dialog #1
	call-ID(1)
	
	
	
	callSessionID(1),

MPCCS

Call Object

	
	From header(1)
	
	originatingAddress(1)
	CallLegSessionID(1).

MPCCS
Originating Call Leg (1) object
	

	
	To header(1)
	
	
address (1)
	CallLegSessionID(1)

MPCCS
Terminating Call Leg (2) object

	

	
	Request-URI(1)
	
	
address(1)
	
	

	Note: In this Terminating UA / Redirection mode the OSA SCS does not accept calls. The OSA MPCCS API allows the application to instruct the return of a final SIP response (3xx, 4xx, 5xx, 6xx) to a received SIP request (INVITE) , but unlike a real user agent server not to accept calls (SIP 200 OK).

Note1: The MPCCS callSessionID is assigned by the SCS and represents a correlation to the SIP call-id applied in the SIP dialogue. There should be no direct mapping as it would contradict SIP operation principles, i.e. the generation of a SIP call-ID for a particular invitation is the task of the inviting UA and the creation of a unique callSeesionID for an OSA application is the task of the SCS.

Note2: The Call-ID identifies the call in the network. It is a global unique identifier.
The To header field contains the information regarding the endpoint who will receive the SIP request, e.g. INVITE or BYE message. The From header field represents the originator of the SIP request. The Request-URI is a SIP URL that indicates the user or service to which the request is being addresses and is used for routeing purpose.
The correlation shown corresponds to the case of an INVITE initial invitation.

Table 4-5: Parameter Correlation 3rd party controller Mode, 2-party call

	SIP
	Headers
	
	OSA API Parameters
	Leg
	CALL

	
SIP
Dialog #1
	call-ID(1)
	
	-
	
	callSessionID(1)
See Note1.

MPCCS
Call Object

	
	From header(1)
	
	originatingAddress(1)

(if not present, pre-defined default value provided by
OSA SCS may be used)
	callLegSessionID(1)

MPCCS
Originating Call Leg (1) object.
	

	
	To header(1)
	
	
targetAddress (1)
	
	

	
	Request-URI(1)
	
	
targetAddress(1)
	
	

	
SIP
Dialog #2
	call-ID(2)
	
	-
	
	

	
	From header(1)
	
	originatingAddress(1)

(if not present, pre-defined default value provided by
OSA SCS may be used)
	
	

	
	To header(2)
	
	targetAddress (1)
	callLegSessionID(2),
MPCCS
Terminating Call Leg (2) object
	

	
	Request-URI(2)
	
	targetAddress (1)
	
	

	Note: Not possible in SIP to shift from proxy mode into 3rd party controller mode. Therefore where an application demands this mode of operation it has to be secured that it is established already at invitation request (INVITE).

Note1:
Same callSessionID(1) used by the application in the creation of both the OSA Call Leg objects as both legs are to be part of the same call.

Note2: The Call-ID identifies the call in the network. It is a global unique identifier.
The To header field contains the information regarding the endpoint who will receive the SIP request, e.g. INVITE or BYE message. The From header field represents the originator of the SIP request. The Request-URI is a SIP URL that indicates the user or service to which the request is being addresses and is used for routeing purpose.
The correlation shown corresponds to the case of an INVITE initial invitation.

5 Multi Party Call Control Flows

Note: The Call Flows in the following are to be regarded as example flows. More detailed call flows are defined in [7].

5.1 Call Manager Service Interface

The call manager interface class provides the management functions to the multi-party call Service Capability Features. The application programmer can use this interface to create call objects and to enable or disable call-related event notifications.

5.1.1 createCall

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

This method is used to create a new Call object in the SCS.

[image: image2.wmf]

Participant

Application

createCall

OSA SCS

SIP

server

SCS

Figure 5-1: Call Flow for createCall()

Table 5-1: Normal Operation

	SIP Server Mode
for the OSA SCS:
	UA mode

	Pre-conditions:
	An agreement is established between the network operator and the service provider to enable the application to create call object.

	1
	A new Multi-party Call object is created in the SCS and the application gets a reference to the call object.

Table 5-2: Parameter Mapping

	From: createCall
	To: SIP
	Remark

	appCall (IpAppMultiPartyCallRef)
	N/A
	No mapping.

	Returns:
TpMultiPartyCallIdentifier:
 - CallReference (IpMultiPartyCallRef)
 - CallSessionID (TpSessionID)
	N/A
	Not mapped.
 However, the call Session ID returned in this method will later on be correlated to the applied SIP call-Id

5.1.2 CreateNotification

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest : in TpCallNotificationRequest) : TpAssignmentID
This method is used to enable call notifications so that events can be sent to the application.

[image: image3.wmf]

Participant

SIP

server

SCS

Application

createNotificati

on

 SIP Server set to observe for

call events to be notified.

[Editor note:

In the 3GPP IMS architecture the

Sh interface is used to store filtering

data in HSS ??

For further study]

OSA SCS

Figure 5‑2 Call Flow for createNotification()

Table 5-3: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, Redirect, UA, B2BUA, 3rd Party controller.

Note: The applicable mode will depend on the behaviour of the application invoked on the call.

	Pre-conditions:
	An agreement is established between the network operator and the service provider for the event notification to be enabled

	1
	The application invokes the createNotification method

	2
	The SCS requests the controlling SIP server to observe for certain SIP call events to be notified to the application. Initial filtering information will be downloaded to the controlling entity
 (e.g. S-CSCF).

	NOTE: The createNotification represents the first step an application has to do to get initial notifications of calls happening in the network. When such an event happens, the application will be informed by reportNotification
However, createNotification() is not applicable if the call is set-up from the network by the application.

Table 5-4: Parameter Mapping

	From: createNotification
	To: SIP
	Remark

	appCallControlManager (IpAppMultiPartyCallControlManagerRef)
	N/A
	If set specifies a reference to the application interface, which is used for callbacks.

	notificationRequest (TpCallNotificationRequest) :
	See table
TpCallNotificationRequest for the mapping from SIP.
	Specifies the event specific criteria used by the application to define the event required. Not mapped to SIP.
However, the parameter has to be verified for SIP validity of parameter values.

	Returns:
TpAssignmemtID
	N/A
	Returns assignmentID to application, which specifies the ID assigned by the multi party call control manager interface for this newly enabled event notification.

	NOTE: No direct mapping to SIP. However, the SIP server responsible for event filtering (e.g. S-CSCF) is to monitor for SIP events requested to be notified to the application if encountered and conditions (filter criteria) for reporting are fulfilled.

5.1.3 changeNotification

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) : void

This method is used by the application to change the call notifications previously set by createNotification .

[image: image4.wmf]

Participant

Application

changeNotification

 SIP Server set to change the

observation for call events to be

notified for the application.

OSA SCS

SIP

server

SCS

Figure 5‑3 Call Flow for changeNotification()
Table 5-5: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, Redirect, UA, B2BUA, 3rd Party controller.

Note: The applicable mode will depend on the behaviour of the application on the call.

	Pre-conditions:
	An agreement is established between the network operator and the service provider for the event notification to be enabled. Notifications have been enabled by the application

	1
	The application invokes the changeNotification method

	2
	The SCS requests the controlling SIP server to reflect the changed set of notifications.
Updated initial filtering information will be downloaded to the controlling entity
 (e.g. S-CSCF).

Table 5-6: Parameter Mapping

	From: changeNotification
	To: SIP
	Remark

	assignmentID (TpAssignmentID)
	N/A
	Specifies the ID assigned by the multi party call control manager interface for the event notification.

	notificationRequest (TpCallNotificationRequest) :
	See table
TpCallNotificationRequest for the mapping from SIP.
	Not mapped directly to SIP. However, the parameter has to be verified for SIP validity of parameter values.

	NOTE:
No direct mapping to SIP. However, the SIP server responsible for event filtering (e.g. S-CSCF) is to monitor for SIP events requested to be notified to the application if encountered and conditions (filter criteria) for reporting are fulfilled.

5.1.4 destroyNotification

destroyNotification (assignmentID : in TpAssignmentID) : void

This method is used by the application to disable call notifications.

[image: image5.wmf]

Participant

Application

destroyNotification

SIP Server set to stop the

observation for call events to be

notified to the application.

OSA SCS

SIP

server

SCS

Figure 5‑4 Call Flow for destroyNotification()

Table 5-7: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, Redirect, UA, B2BUA, 3rd Party controller.

Note: The applicable mode will depend on the behaviour of the application on the call.

	Pre-conditions:
	An agreement is established between the network operator and the service provider for the event notification to be disabled.

	1
	The application invokes the destroyNotification method

	2
	The SCS requests to de-activate the active call notification.

Table 5-8: Parameter Mapping

	From: destroyNotification
	To: SIP
	Remark

	assignmentID (TpAssignmentID)
	N/A
	Specifies the ID assigned by the multi party call control manager interface for the event notification.

5.1.5 getNotification

getNotification () : TpNotificationRequestedSet

This method is used by the application to query the event criteria set previously using createNotification and possibly changeNotification.

[image: image6.wmf]

Participant

Application

getNotification

Retrieve the information

previously set on call events to be

notified for the application.

OSA SCS

SIP

server

SCS

Figure 5‑5 Call Flow for getNotification()
Table 5-9: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, Redirect, UA, B2BUA, 3rd. Party controller

Note: The applicable mode will depend on the behaviour of the application on the call.

	Pre-conditions:
	An agreement is established between the network operator and the service provider for the event notification. Notifications have been enabled by the application.

	1
	The application invokes the getNotification method.

	2
	The SCS returns the criteria as set for event notification.

Table 5-10: Parameter Mapping

	From: getNotification
	To: SIP
	Remark

	Returns:
TpNotificationRequestedSet:
A set of TpNotificationRequested:
	-
	No SIP mapping.

	- AppCallNotificationRequest
(TpCallNotificationRequest)
	N/A
	Returns information as previously set in createNotification and changeNotification.

	- AssignmentID (TpInt32)
	N/A
	

	NOTE:
The set of all previously requested notification events are returned. No mapping to SIP.
The method getNotification contains no parameter – only a return parameter exists.

5.1.6 setCallLoadControl

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

This method is used to impose or remove load control on calls made to a specific address within the call control service.

[image: image7.wmf]

Participant

Application

setCallLoadcontrol

Activate load

control

OSA SCS

SIP

server

SCS

Figure 5‑6: Flow for setCallLoadControl()
Table 5-11: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, Redirect, UA, B2BUA, 3rd. Party controller.

Note: The applicable mode will depend on the behaviour of the application invoked on the call.

	Pre-conditions:
	An agreement is established between the network operator and the service provider for the set call load control.

	1
	The application invokes the setCallLoadControl method to remove or set load control on calls made to a specific address or address range.

	2
	The SCS requests the SIP server to activate or remove call load control

Table 5-12: Parameter Mapping

	From: setCallLoadControl
	To: SIP
	Remark

	duration (TpDuration)
	N/A
	-

	mechanism (TpCallLoadControlMechanism)
	N/A
[Editor note:
Part of information to be conveyed to controlled server (S-CSCF) from
controlling AS (OSA SCS) over the ISC (SIP) interface ?]
	Specifies the applied load control mechanism and defines the call admission rate (e.g. allow one call per interval).

	treatment (TpCallTreatment)
	See Table TpCallTreatment for the mapping to SIP
	Specifies how to treat (e.g. deny) new invitations if overload prevails.

	addressRange (TpAddressRange)
	See Table TpAddressRange for the “mapping” from SIP.
	Specifies the address or address range to which overload control should be applied or removed.
Not mapped directly but has to be verified for application with SIP URL.

	[Editor note: Indeed the assignmentiD does not involve SIP mapping. However, there must be a mapping maybe not to SIP itself, but to e.g. an XML body in the attachment to an ISC message. If so, OSA to XML mapping is needed as well !!].

5.2 Call Manager Application Interface

5.2.1 managerInterrupted

managerInterrupted () : void

This method is used to indicate to the application that all event notifications and method invocations have been temporarily interrupted, for example due to network resources unavailable.

[image: image8.wmf]

Participant

Application

mangerInterrupted

 Fault

detected

OSA SCS

SIP

server

SCS

Figure 5‑7 Call Flow for managerInterrupted()

Table 5-13: Normal Operation

	SIP Server Mode
for the OSA SCS:
	
Proxy, Redirect, UA, B2BUA, 3rd Party controller

Note: The applicable mode will depend on the behaviour of the application invoked on the call.

	Pre-conditions:
	An agreement is established between the network operator and the service provider for the call notifcation. Call notifications have been enabled using the createNotification method on the Call Manager interface.

	1
	The SCS has detected, or has been informed of a fault which prevents further events from being notified to the application.

	2
	The SCS invokes the managerInterrupted method

Table 5-14: Parameter Mapping

	From: managerInterrupted
	To: SIP
	Remark

	-
	N/A
	No parameters in this method.

5.2.2 managerResumed

managerResumed () : void

This method is used to indicate to the application that all event notifications are possible and method invocations are enabled after having previously been interrupted.

[image: image9.wmf]

Participant

SIP

server

SCS

Application

managerResumed

 Fault

ceased

OSA SCS

Figure 5‑8 Call Flow for managerResumed()

Table 5-15: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, Redirect, UA, B2BUA, 3rd. Party controller

Note: The applicable mode will depend on the behaviour of the application invoked on the call.

	Pre-conditions:
	An agreement is established between the network operator and the service provider for the call notification. Call notifications have been interrupted and managerInterrupted method has been invoked.

	1
	The SCS detects that call notifications are again possible.

	2
	The SCS invokes the managerResumed method.

Table 5-16: Parameter Mapping

	From: managerInterrupted
	To: SIP
	Remark

	-
	N/A
	No parameters in the method.

5.2.3 reportNotification

reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReferenceSet : in TpCallLegIdentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) : TpAppMultiPartyCallBack

This method is used to notify the application of the arrival of a call-related event. It is sent in response to the createNotification() method.

[image: image10.wmf]

Participant

SIP

server

SCS

Application

2a. reportNotification

 1a. ISC: INVITE, CANCEL; Re

-

INVITE, BYE

OSA SCS

Figure 5‑9 Call Flow for reportNotification, SIP message from caller (UAC)

[image: image11.wmf]

Participant

SIP

server

SCS

Application

2b. reportNotification

 1b.ISC: 1xx, 200, 3xx, 4xx, 5xx, 6xx, BYE, Re

-

INVITE

OSA SCS

Figure 5‑10 Call Flow for reportNotification, SIP message from callee (UAS)

Table 5-17: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, Redirect, UA, B2BUA,3rd Party controller

Note: The applicable mode will depend on the behaviour of the application invoked on the call.

	Pre-conditions:
	Call notifications have been enabled using the createNotification method on the Call Manager interface.

	1
	A call arrives from a call party or terminates to a call party or a call party decides to issue a mid-call event or terminate the involvement in an established call. This request is detected by the SIP server and the criteria for an initial notification to be reported is checked.

	2
	When the criteria for an initial notification is met, the SCS identifies the application responsible for handling the call and invokes the reportNotification method.

Table 5-18: Parameter Mapping

	To: reportNotification
	From: SIP
	Remark

	callReference (TpMultiPartiCallIdentifier)
TpMultiPartyCallIdentifier:
 - CallReference (IpMultiPartyCallRef)
 - CallSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”

	The SCS will create a new call object and associated call leg object and pass them to the application.
 A correlation between SIP call-ID and call session ID is created.

	callLegReferenceSet (TpCallIdentifierSet).
A set of TpCallIdentifier:
	-
	

	- CallLegreference (IpCallLegRef)
	N/A
	This element specifies the interface for the
Call Leg object.

	 - CallLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	This element specifies the call leg session ID.
No direct mapping to SIP – but a correlation is created.

	notificationInfo (TpCallNotificationInfo):
	-
	

	 -TpCallNotificationReportScope
	See Table for TpCallNotificationReportScope
	

	 - CallAppInfo (TpCallAppInfoSet)

 Note: A set of TpCallAppInfo
	See Table for TpCallAppInfo
	

	 - CallEventInfo (TpCallEventInfo)
	See Table for TpCallEventInfo
	

	assignmentID (TpAssignmentID)
	N/A ?
[Editor note:
Part of initial filtering information to be conveyed from controlled server (S-CSCF) to OSA SCS over the ISC (SIP) interface ?]
	Specifies the assignment id which was returned by the createNotification() method.
The application can use assignment id to associate events with specific criteria and to act accordingly.

	[Editor note: Indeed the assignmentiD does not involve SIP mapping. However, there must be a mapping maybe not to SIP itself, but to e.g. an XML body in the attachment to an ISC message. If so, OSA to XML mapping is needed as well !!].

5.2.4 callAborted

callAborted (callReference : in TpSessionID) : void

This method is used to indicate to the application that the call object has aborted or terminated abnormally. No further communication will be possible between the call and the application.

[image: image12.wmf]

Participant

SIP

server

SCS

Application

callAborted

ISC: 481 Call Leg/transaction

Does Not Exist; Outgoing BYE,

CANCEL, INVITE without any

response

OSA SCS

Figure 5‑11 Call Flow for callAborted()
Table 5-19: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, Redirect, UA, B2BUA, 3rd. Party controller

Note: The applicable mode will depend on the behaviour of the application invoked on the call.

	Pre-conditions:
	The SCS detect a failure in its communication with the SIP server

	1
	The SCS, invokes the callAborted method. Since the SIP server reflects the call running in the network, the call could also have been aborted in the network

Table 5-20: Parameter Mapping

	From: callAborted
	To: SIP
	Remark

	callReference (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.

	Specifies the sessionID of the call that has aborted or terminated abnormally.
No direct mapping to SIP – but a correlation is created.

5.2.5 callOverloadEncountered

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

This method is used to indicate that the network has detected overload and may have automatically imposed load control on calls requested to a particular address range or calls made to a particular destination within the call control service.

[image: image13.wmf]

Application

callOverLoadEncountered

OSA SCS

SCS

SIP Server

Figure 5‑12 Call flow for callOverLoadEncountered()

Table 5-21: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, Redirect, UA, B2BUA, 3rd. Party controller

Note: The applicable mode will depend on the behaviour of the application invoked on the call.

	Pre-conditions:
	Call overload control have been enabled using the setCallOverloadControl method on the Call Manager interface.

	1
	The SCS detect a call overload situation in its communication with the SIP server of the OSA SCS.

	2
	The SCS, invokes the callOverLoadEncountered method. The call running in the network may continue or not depending on the requested treatment at overload (defined by setCallOverloadControl method received previously).

Table 5-22: Parameter Mapping

	From: callOverloadEncountered
	To: SIP
	Remark

	assignmentID (TpAssignmentID)
	N/A.
[Editor note:
Part of information to be conveyed from controlled server (S-CSCF) to OSA SCS over the ISC (SIP) interface ?]
	Specifies the assignmentID corresponding to the associated setCallLoadControl method. This implies the address or address range within which the overload has been encountered (the SIP URL(s)).

No direct mapping to SIP – but an association is created.

	[Editor note: Indeed the method does not involve SIP mapping. However, there must be a mapping maybe not to SIP itself, but to e.g. an XML body in the attachment to the ISC message. If so, OSA to XML mapping is needed as well !!].

5.2.6 callOverloadCeased

callOverloadCeased (assignmentID : in TpAssignmentID) : void

This method is used to indicate that the network has detected that the overload has ceased and has automatically removed any load controls on calls requested to a particular address range or calls made to a particular destination within the call control service.

[image: image14.wmf]

SIP Server

SCS

Application

callOverLoadCeased

OSA SCS

Figure 5‑13 Call Flow for callOverLoadCeased()
Table 5-23: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, Redirect, UA, B2BUA, 3rd. Party controller.

Note: The applicable mode will depend on the behaviour of the application invoked on the call.

	Pre-conditions:
	The network has detected overload and may have automatically imposed load control on calls requested to a particular address or address range.

	1
	The SCS detect that an overload situation has ceased in its communication with the SIP server

	2
	The SCS, invokes the callOverLoadCeased method.

Table 5-24: Parameter Mapping

	From: callOverloadEncountered
	To: SIP
	Remark

	assignmentID (TpAssignmentID)
	N/A.
	Specifies the assignmentID corresponding to the associated setCallLoadControl method. This implies the address or address range within which cease of overload has been encountered (the SIP URL(s)).

No direct mapping to SIP – but an association is created, see mapping for setCallOverloadControl.

5.3 Multi-Party Call Service Interface

The multi-party call interface class represents the interface to the multi-party call Service Capability Feature. It provides a structure to allow simple and complex call behaviour.

5.3.1 GetCallLegs

getCallLegs (callSessionID : in TpSessionID) : TpCallLegIdentifierSet

This method is used to obtain references to the current Call Leg objects, associated to the Multi-party call object.

[image: image15.wmf]

Participant

Application

getCallLegs

OSA SCS

SIP

server

SCS

Figure 5‑14 Call Flow for getCallLegs()

Table 5-25: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, Redirect, UA, B2BUA, 3rd. Party controller

Note: The applicable mode will depend on the behaviour of the application invoked on the call.

	Pre-conditions:
	The application has a reference to a Multi-party Call object.

	1
	The application invokes the getCallLegs method

	2
	The SCS returns information about the involved call leg objects

Table 5-26: Parameter Mapping

	From: callOverloadEncountered
	To: SIP
	Remark

	callSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”
	Specifies the call session ID of the call.

No direct mapping to SIP – but a correlation is created.

5.3.2 createCallLeg

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegIdentifier

This method is used to create a new CallLeg object in the SCS.

[image: image16.wmf]

Participant

Application

createCallLeg

OSA SCS

SIP

server

SCS

Figure 5‑15 Call Flow for createCallLeg()

Table 5-27: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller.
(Any, except Redirect).

	Pre-conditions:
	The application has a reference to a Multi-party Call object.

	1
	The application invokes the createCallLeg method

	2
	The SCS creates the requested call leg object

Table 5-28: Parameter Mapping

	From: callOverloadEncountered
	To: SIP
	Remark

	callSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”

	Specifies the call session ID of the call.

No direct mapping to SIP – but a correlation is created.

	appCallLeg (IpAppCallLegRef
	N/A
	Specifies the application interface for callbacks from the call leg created

	Returns:
TpCallLegIdentifier:
 - CallLegReference (IpCallLegRef)
 - CallLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”
	The SCS will create a new call leg object to be associated with the existing call object and pass it to the application.
Note: The correlation to SIP will be created when setup of a connection associated with the created call leg occurs..

	Note:

5.3.3 createAndRouteCallLegReq

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef) : TpCallLegIdentifier

This method is an asynchronous method used to request the creation of a new Call Leg and the setup of a connection to the indicated address.

[image: image17.wmf]

 3c. ISC: 183 Progress (SDP)

 3a. ISC: 100 Trying

Participant

SIP

server

SCS

Application

ISC: 200 OK

 2. ISC: INVITE

 (no SDP)

1. createAndRouteCallLegReq

ISC :PRACK

OSA SCS

ISC: COMET

ISC: 180 Ringing

ISC: 200 OK

Figure 5‑16 Call Flow for createAndRouteCallLegReq(), OSA SCS acting as UA

[image: image18.wmf]

 3c. ISC: PRACK

 3a. ISC: 183Progress

SIP

server

SCS

Application

 4. ISC: PRACK

 2. ISC: INVITE

1. createAndRouteCallLegReq

3. ISC : 183Progress

OSA SCS

ISC:

 100 Trying

B A

Participants

 ISC: INVITE

(SDP

Figure 5‑16 Call Flow for createAndRouteCallLegReq(), OSA SCS acting as Proxy server

Table 5-29: Normal Operation, case a: UA mode

	SIP Server Mode
for the OSA SCS:
	UA (or 3rd party controller, B2BUA).

	Pre-conditions:
	The application has a reference to a Multi-party Call object.

	1
	The application invokes the createAndRouteCallLegReq method. The SCS creates an call Leg object and instructs the SIP server of the OSA SCS to generates a SIP INVITE message.

	2
	The SIP server acting in a UA mode sends the SIP INVITE to the corresponding party.
Note: It may happen that the destination address leads to the generation of more than one INVITE being sent by the SIP server (Forking).

	3
	The SIP server acting as UA acknowledge the incoming SIP response message.

	Note: The application has no control of the SIP server forking functionality.
Assuming the UA (“surrogate UAC”) of the OSA SCS does not posses any media resource, the INVITE is sent with “no SDP”. This results in a SIP dialog with no media (e.g. no RTP stream) stream setup, i.e. a plain session control dialog created by the application.
The possible handling of media by “UA” within the OSA SCS for application initiated calls is outside the scope of standardisation.

[Editor note: Indeed the method may involve downloading of subsequent filtering information via ISC to the S-CSCF (controlled entity) – this does not involve SIP mapping. However, there must be a mapping maybe not to SIP itself, but to e.g. an XML body in the attachment to the ISC message. If so, OSA to XML mapping is needed as well !!].

Table 5-30: Parameter Mapping, UA mode

	From: createAndRouteCallLegReq
	To: SIP INVITE
	Remark

	callSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables” for Originating UA mode.

	No direct mapping, merely a correlation is created.

	eventsRequested (TpCallEventRequestSet)

Note: A set of TpCallEventRequest
	See Table TpCallEventRequest
for mapping to SIP.
	Start observation in SIP server for occurrence of requested events to be notified to the application.

	targetAddress (TpAddress)
	SIP URL in the TO header and
Request-URI

See Table
TpAddress
mapping to SIP.

	

	originatingAddress (TpAddress)
	SIP URL in the From header.

See Table
TpAddress
mapping to SIP.
	The originating address may e.g. be the application server SIP address
(third party call set up) or the SCS server when the the SCS is the endpoint (UAC) which initiates the INVITE.
If originatingAddress not present a default value could be provided by the OSA SCS.

	appInfo (TpCallAppInfoSet)

Note: A set of TpCallAppInfo
	See Table TpCallAppInfo
for mapping to SIP.
	

	appLegtInterface (IpAppCallLegRef)
	N/A
	Defines a reference to data type IPCallLeg

	Returns:
TpCallLegIdentifier:
 - CallLegReference (IpCallLegRef)
 - CallLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”

	A correlation to SIP is created.
The SCS will create a new call leg object to be associated with the existing call object and pass it to the application.
Note: The correlation to SIP is created when setup of a connection associated with the created call leg occurs..

	Note: The properties and capabilities normally received from or associated with the calling party (UAC), required for the call setup shall have a network dependent value (OSA SCS represents the UAC).
Where no media source is defined, the INVITE is sent without SDP.

Table 5-31: Normal Operation, case b: Proxy mode

	SIP Server Mode
for the OSA SCS:
	Proxy.

	Pre-conditions:
	The application has a reference to a Multi-party Call object.

	1
	The application invokes the createAndRouteCallLegReq method. The SCS creates an call Leg object, and forwards the received SIP INVITE message to the indicated target address.

	2
	The SIP server forwards the SIP INVITE to the corresponding party.
Note: It may happen that the destination address leads to the generation of more than one INVITE being sent by the SIP server (Forking).

	3
	The SIP server forwards the incoming SIP response message to the SCS.

	Note: The application has no control of the SIP server forking functionality

 [Editor note: Indeed the method may involve downloading of subsequent filtering information via ISC to the S-CSCF (controlled entity) – this does not involve SIP mapping. However, there must be a mapping maybe not to SIP itself, but to e.g. an XML body in the attachment to the ISC message. If so, OSA to XML mapping is needed as well !!].

Table 5-32: Parameter Mapping, Proxy mode

	From: createAndRouteCallLegReq
	To: SIP INVITE
	Remark

	callSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables” for Proxy mode.

	No direct mapping of CallSessionID onto SIP Call-ID to ensure the SIP Call-ID uniqueness, merely a correlation is needed. A SIP call ID must be unique and not be reused for later calls.
Acting as a UA (or B2BUA) a new call_ID is created for the new originating SIP leg for which a correlation with callSessionID is created.

	eventsRequested (TpCallEventRequestSet)

Note: A set of TpCallEventRequest
	See Table TpCallEventRequest
for mapping to SIP
	Start observation in SIP server for occurrence of requested events to be notified to the application.

	targetAddress (TpAddress)
	SIP URL in the
Request URI header.
See Table
TpAddress
mapping to SIP.
	If present, the targetAddress is used for routeing using Request-URI

	originatingAddress (TpAddress)
	N/A
	FROM header containf the originator address (caller) of the invitation.
This must not be changed.

	appInfo (TpCallAppInfoSet)

Note: A set of TpCallAppInfo
	See Table TpCallAppInfo
for mapping to SIP.
	

	appLegtInterface (IpAppCallLegRef)
	N/A
	Defines a reference to data type IPCallLeg

	Returns:
TpCallLegIdentifier:
 - CallLegReference (IpCallLegRef)
 - CallLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”

	A correlation to SIP is created.
The SCS will create a new call leg object to be associated with the existing call object and pass it to the application.
Note: The correlation to SIP is created when setup of a connection associated with the created call leg occurs..

	Note:

5.3.4 release

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void

This method used to request the release of the call and associated objects.

Remarks: If several legs are connected, this method will also release each of the call legs, e.g calls release() on the IpCallLeg.

[image: image19.wmf]

:

 3c. ISC: 200 OK

Participant(s)

SIP

server

SCS

Application

 2. ISC: (n x) BYE

1. release

ISC :ACK

OSA SCS

Figure 5‑17 Call Flow for release, acting as UA

Table 5-33: Normal Operation, UA mode

	SIP Server Mode
for the OSA SCS:
	UA (or 3rd party controller, B2BUA).

For call release from application, UA mode of operation is demanded.

[Editor Note: SIP currently do not allow network initiated release (BYE) from a proxy server – a 3GPP requirement to IEFT requests this to be changed] .

	Pre-conditions:
	Call is in progress.
 The application has a reference to a Multi-party Call object.

	1
	The application invokes the release method. For all legs associated to the call, the SCS will act as if a release() method was received for each present leg(s).

	2
	If the application has requested some reports at the end of the call (e.g., getInfoReq(), superviseReq()) these reports will be sent to the application

	3
	

	Note: The SIP server of the SCS gateway is to be capable to issue the SIP BYE to release the call participant(s) on request from the application - and therefore it demands to play the role of a UA.

Note 2: Release may be sent any time from the application e.g. resulting in creation of a SIP response (e.g. 4xx, 5xx) to an incoming INVITE request or the termination of an establishment session (BYE) or the cancellation of a pending request (CANCEL) after the application has issued an INVITE request.

Table 5-34: Parameter Mapping

	From: release
	To: SIP BYE, 4xx, 5xx,
Cancel (if any pending INVITE requests from application)
	Remark

	callSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”

	No direct mapping, merely a correlation is created.

	cause (TpReleaseCause) :
	See table for TpReleaseCause for mapping to SIP response codes
	See also note below

	Note: The release() method may be sent any time from the application e.g. resulting in
a) creation of a SIP response (e.g. 4xx, 5xx) to an incoming INVITE request or
b) the termination of an established session (BYE) or
c) the cancellation of pending requests (CANCEL) when the application has issued an INVITE request.

5.3.5 deassignCall

deassignCall (callSessionID : in TpSessionID) : void

This method is used to request that the relationship between the application and the call and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has event reports or call information reports requested, then these reports will be disabled and any related information discarded.

[image: image20.wmf]

Participant

Application

deassignCall

OSA SCS

SIP

server

SCS

Figure 5‑18 Call Flow for deassignCall()

Table 5-35: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller, Redirect

	Pre-conditions:
	A relationship between the application and the call including associated objects exists.

	1
	The application invokes the deassignCall method

	2
	The SCS terminates the relationship between the application and the call and its associated objects and notifies the SIP server of the OSA SCS.

	3
	The SIP server of the OSA SCS is to continue call processing autonomously, i.e. without any control from the application. Any possible interrupted call processing is to be resumed.

	Note: If the application was the only one to control the session, the SIP server of the OSA SCS may remove itself from the route-request.

Table 5-36: Parameter Mapping

	From: release
	To: SIP
	Remark

	callSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”
	No direct mapping, merely a correlation is crerated.

5.3.6 getInfoReq

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

This method is an asynchronous method that requests information associated with the call to be provided at the appropriate time (for example, to calculate charging).

[image: image21.wmf]

Participant

Application

getInfoReq

OSA SCS

SIP

server

SCS

Figure 5‑19 Call Flow for getInfoReq()

Table 5-37: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller
(Any, except Redirect mode)

	Pre-conditions:
	A relationship between the application and the call including associated objects exists.
The getInfoReq method must be invoked before the call is routed to a target address.

	1
	The application invokes the getInfoReq method. The SCS monitors the call to be capable to collect the requested information.

	2
	The OSA SCS will later on send the corresponding getInfoRes() or getInfoErr() based on the messages received from the SIP server of the OSA SCS.

	3
	

	Note: The getInfoReq() method is not related to SIP signalling, it is sent by the application to request information associated to the call as being provided by the controlled entity (S-CSCF).

Restriction: The getInfoReq method is only applicable on call level for a plain user initiated between a caller and a callee, where a report is demanded when the destination leg or party (callee) terminates or when the call ends.
(For application initiated calls and multiparty calls the method should instead be applied on a per destination leg (per callee)).

Table 5-38: Parameter Mapping

	From: getInfoReq
	To: SIP xx
	Remark

	callSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”
	No direct mapping, merely a correlation is created.

	callInfoRequested (TpCallInfoType) :
	See table for TpCallInfoType mapping to SIP
	

	Note: There is no direct mapping to SIP. The getInfoReq() method results in supervision of the following SIP events:
a) receipt of a SIP response (“answer” 200 OK/ACK) to an incoming INVITE request or
b) the termination of an establishment dialog session (BYE)
[Editor note: Indeed the method does not involve SIP mapping. However, there must be a mapping maybe not to SIP itself, but to e.g. an XML body in the attachment to the ISC message. If so, OSA to XML mapping is needed as well !!].
[Editor note: Alternatively, the controlling AS (OSA SCS) could retrieve the information based upon the SIP messages received in OSA SCS (controlling entity) from controlled entity (S-CSCF) in order to sent the corresponding getInfoRes() or getInfoErr() method, i.e. hereby the convey of information associated with the call over ISC could be avoided ? !!].

5.3.7 superviseReq

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : void

This method is called by the application to supervise a call.
The application can set a granted connection time for this call. If an application calls this method before it routes a call the time measurement will start as soon as the call is confirmed (answered) by the called party.

[image: image22.wmf]

Participant

Application

superviseReq

OSA SCS

SIP

server

SCS

Figure 5‑20 Call Flow for superviseReq()

Table 5-39: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller
(Any, except Redirect mode).

However, if treatment (TpCallSuperviseTreatment) implies call release, then a UA mode of opertion is demanded (UA, B2BUA, 3rd party controller).

[Editor Note: SIP currently do not allow network initiated release (BYE) from a proxy server – a 3GPP requirement to IEFT requests this to be changed] .

	Pre-conditions:
	A relationship between the application and the call including associated objects exists.
The superviseReq method must be invoked before the call is confirmed, i.e. before answered.

	1
	The application invokes the superviseReq method. The SCS monitors the call to be capable to collect the requested information.

	2
	The OSA SCS will later on send the corresponding superviseRes() or superviseErr() based on the messages received from the SIP server of the OSA SCS.

	Note: The SIP server of the OSA SCS should use the messages received by the SIP server during the call session in order to sent the corresponding superviseRes() or superviseErr() method.

Table 5-40: Parameter Mapping

	From: getInfoReq
	To: SIP
	Remark

	callSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping – a correlation .

	time (TpDuration)
	ACK (confirmation of “answer” SIP 200 OK)
	No direct mapping , but specified call supervision timer is to start upon the confirmation of answer event.

	treatment (TpCallSuperviseTreatment) :
	See table for TpCallSuperviseTreatment mapping to SIP
	No direct mapping.
Defines the treatment of the call by the call control service when the call supervision timer expires, e.g. release call (BYE) and /or send warning tone to calling party.

	Note: There is no direct mapping to SIP. However, the expiry of the call supervistion timer during the active call initiates the action as specified in TpCallSuperviseTreatment.

5.3.8 setAdviceOfCharge

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : void

This method allows the application to determine the charging information that will be send to the end-users terminal.

[image: image23.wmf]

Participant

Application

setAdviceOfCharge

 SIP Server impact ?

OSA SCS

SIP

server

SCS

Figure 5‑21 Call Flow for setAdviceOfCharge()

Table 5-41: Normal Operation

	SIP Server Mode
for the OSA SCS:
	UA mode

The generation of a SIP message on request from the application demands the SIP server of the OSA to operatate in a UA mode (e.g. UAC, B2BUA, 3rd party controller).

 [Editor Note: SIP currently do not allow network initiated SIP messages being generated from a proxy server – it would e.g. violate the synch of messages exchanged between the UA.]

	Pre-conditions:
	A relationship between the application and the call including associated objects exists.
The setAdviseOfCharge method must be invoked before the call is confirmed, i.e. before answered.

	1
	The application invokes the setAdviceOfCharge method. The SCS enables the call to be capable to send the requested information to the end-user.

	2
	

	Note: The SIP server of the OSA SCS should sent the information regarding AOC to the calling party.
Could be mapped to an Instant Message (using method MESSAGE).

[Editor note: The assumption is that the information is only applicable to be provided toward the calling party as no individual leg object is addressed. However, if also to be sent toward the called party (destination) there might be a risk of forking downstream – and missing an indication if applicable for caller and/or callee.]!

Table 5-42: Parameter Mapping

	From: setAdviceOfCharge
	To: SIP
	Remark

	callSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping – a correlation .

	aOCInfo (TpAoCInfo):

 - ChargeOrder (TpAoCOrder)

 - Currecy (TpString)

	See Table
TpAoCInfo
mapping to SIP.

[Editor note: Could be mapped to an Instant Message (MESSAGE in SIP). ??
ffs]

	Currency unit according to ISO-4217:1995 [8]

	tariffSwitch (TpDuration)
	[Editor note: Information relevant to signalling ??]
ffs
	

	Note:

5.3.9 SetChargePlan

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

This is a method that allows the application to set an operator specific charge plan for the call enabling to include charging information in network generated CDR.

[image: image24.wmf]

Participant

Application

setChargePlan

 SIP Server set to create CDR ??

OSA SCS

SIP

server

SCS

Figure 5‑22 Call Flow for setChargePlan()

Table 5-43: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller
(Any, except Redirect mode ??)

[Editor Note: Redirect mode implies that the invite request is denied and the SIP server
will be released as a call redirection is requested. Therefore set of charge plan not
applicable ?. In the IMS where is charge plan to be set, e.g. in S-CSCF ?]

	Pre-conditions:
	A relationship between the application and the call including associated objects exists.
The setChargePlan method may have to be invoked before the call is confirmed, i.e. before answered .

	1
	The application invokes the setChargePlan method. The SCS enables the call to be capable to be charged according to defined plan .

	2
	

	Note: The SIP server of the OSA SCS should invoke the requested charge plan. Information relevant to application and SCS not to SIP signalling.

Table 5-44: Parameter Mapping

	From: setChargePlan
	To: SIP
	Remark

	callSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping – a correlation.

	callChargePlan (TpCallChargePlan)

	N/A
	Information relevant to application and SCS not to signalling

	Note:

5.4 Multi-Party Call Application Interface

5.4.1 createAndRouteCallLegErr

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegIdentifier, errorIndication : in TpCallError) : void

This method is an asynchronous method which indicates that the request to route the call to the destination party was unsuccessful – the call could not be routed to the destination party (for example, parameters were incorrect, invalid address, the request was refused, etc).

[image: image25.wmf]

Participant

SIP

server

SCS

Application

createAndRouteCallLegErr

 ISC: 400, 404, 413, 414, 481, 484, 485

 (response to previous sent INVITE)

ACK

OSA SCS

Figure 5‑23 Call Flow for createAndRouteCallLegErr()
Table 5-45: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller
(Any, except Redirect mode.)

	Pre-conditions:
	Application has sent createAndRouteCallLegReq() , a request to route the call to the destination party.

	1
	The request is refused e.g. the SIP server in the core network detects an error and notifies the SIP server of the SCS.

	2
	The SCS invokes the createAndRouteCallLegErr method

	Note: The SIP server of the OSA SCS should detect the denial.

Table 5-46: Parameter Mapping

	To: createAndRouteCallLegErr
	From: SIP 4xx
	Remark

	callSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping – a correlation .

	callLegReference (TpCallLegIdentifier)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	[Editor Note: Open if needed ??
CN5 discussion ongoing]

	errorIndication (TpCallError)
	 See table for
TpCallError
mapping from SIP
	

	Note:

5.4.2 callEnded

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

This method is invoked when the call has terminated in the network. Furthermore, the operation contains an indication on the reason why the call has been ended. The method will always be invoked when the call is ended.

[image: image26.wmf]

ISC

:

 BYE etc.

Participant

SIP

server

SCS

Application

 The SIP server of the

SCS

 detects

that call has been released or the

call in terminated in the

network(e.g., last leg released or

disconnected)

 callEnded

OSA SCS

Figure 5‑24 Call Flow for callEnded()
Table 5-47: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller, Redirect.
(Any)

	Pre-conditions:
	There is an application monitoring the call in some way.

	1
	The SCS detects that there is no leg connected to the call or the call has been released.
The SCS invokes the callEnded method.

	
	

	Note: The callEnded() method is sent to the application when the last leg has released or the call itself was released or no party has answered the call. This method does not require any SIP mapping. It reflects the call state in the SCS. The multiparty call release method mapping can be found in section xx, the call leg release method mapping can be found in section yy

Table 5-48: Parameter Mapping

	To: callEnded
	From: SIP: BYE, 3xx, 4xx, 5xx, 6xx
	Remark

	callSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”

	No direct mapping – a correlation.

	report (TpCallEndedReport) :
	-
	

	 - CallLegSessionID
 (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”
	

	 - Cause (TpReleaseCause)
	See table
TpReleaseCause
for the mapping from SIP

	

5.4.3 getInfoRes

getInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

This is an asynchronous method that reports all the necessary information requested by the application, for example to calculate charging.

[image: image27.wmf]

Participant

Application

getInfoRes

OSA SCS

SIP

server

SCS

Figure 5‑25 Call Flow for getInfoRes()

Table 5-49: Normal Operation

	SIP Server Mode
for the OSA SCS:
	(Proxy, UA, B2BUA or 3rd party controller)
(Any, except Redirect mode)

	Pre-conditions:
	Call is in progress. The application has requested information associated with a call via the getInfoReq method

	1
	The OSA SCS detects that the call is terminated. The SCS invokes the getInfoRes() method

	Note:

Table 5-50: Parameter Mapping

	To: getInfoRes
	From: SIP: BYE, 3xx, 4xx, 5xx, 6xx
	Remark

	callSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.

	No direct mapping – a correlation.

	callInfoReport (TpCallInfoReport):
	-
	

	 - CallInfoType (TpCallInfoType)
	See Table
TpCallInfoType
	Defines the type of call information requested and reported

	 - CallInitiationStartTime
 (TpDateAndTime)
	N/A
	The time when the controlled entity (S-CSCF) sent the SIP INVITE message.

	 - CallConnectedToResourceTime
 (TpDateAndTime)
	N/A
	

	 - CallConnectedToDestinationTime
 (TpTpDateAndTime)
	N/A
	The moment the party received the ACK message for the INVITE. This information may be provided by the controlled entity (S-CSCF)

	 - CallEndTime (TpDateAndTime)
	N/A
	Moment when SIP BYE message is sent to participant or received from the participant..
This information may be provided by the controlled entity (S-CSCF)

	 - Cause (TpReleaseCause)
	See Table TpReleasecause for the mapping from SIP
	

	[Editor note: Indeed the method involves service control information transfer to the OSA SCS via ISC from the S-CSCF (controlled entity) – this does not involve SIP mapping. However, there must be a mapping maybe not to SIP itself, but to e.g. an XML body in the attachment to the ISC message. If so, OSA to XML mapping is needed as well !!]

[Editor note: An alternative may be to let the controlling entity, the AS (OSA SCS) retrieve the requested information based upon ISC(=SIP) to avoid the need of conveying the requested call associated information via ISC].

5.4.4 getInfoErr

getInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This method is an asynchronous method that reports that the original request was erroneous, or resulted in an error condition.

[image: image28.wmf]

Participant

Application

getInfoErr

OSA SCS

SIP

server

SCS

Figure 5‑26 Call Flow for getInfoErr()

Table 5-51: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller.
(Any, except Redirect)

	Pre-conditions:
	Call is in progress. The application has requested information associated with a call via the getInfoReq method

	1
	The original request getInfoReq is erroneous or cannot be accepted due to e.g. call terminates abnormally.

	2
	The SCS identifies the correct applications that requested the call information and invokes the getInfoErr method.

	Note:

Table 5-52: Parameter Mapping

	To: getInfoErr
	From: SIP 4xx
	Remark

	callSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping – a correlation.

	errorIndication (TpCallError)
	 See TpCallError mapping table from SIP.

	

	Note:

5.4.5 superviseErr

superviseErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This is an asynchronous method that reports a call supervision error to the application.

[image: image29.wmf]

Participant

Application

superviseErr

OSA SCS

SIP

server

SCS

Figure 5‑27 Call Flow for superviseErr()

Table 5-53: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller
(Any, except Redirect mode).

However, if treatment (TpCallSuperviseTreatment) implies call release, then UA mode of operation is demanded.

[Editor Note: SIP currently do not allow network initiated release (BYE) from a proxy server – a 3GPP requirement to IEFT requests this to be changed].

	Pre-conditions:
	Call is in progress. The application has requested information associated with a call via the superviseReq method.

	1
	The SCS detects an error that can affect call supervision, e.g call routing error.

	2
	The SCS identifies the correct applications that requested the call information and invokes the superviseErr method.

	Note:

Table 5-54: Parameter Mapping

	To: createAndRouteCallLegErr
	From: SIP 4xx
	Remark

	callSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping – a correlation .

	errorIndication (TpCallError)
	 See Table for
TpCallError
mapping from SIP
	

	Note:

5.4.6 superviseRes

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration) : void

This is an asynchronous method that reports a call supervision event to the application.

[image: image30.wmf]

Participant

Application

superviseRes

OSA SCS

SIP

server

SCS

Figure 5‑28 Call Flow for superviseRes()

Table 5-55: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller
(Any, except Redirect mode).

However, if treatment (TpCallSuperviseTreatment) implies call release, then UA mode of operation is demanded.

[Editor Note: SIP currently do not allow network initiated release (BYE) from a proxy server – a 3GPP requirement to IEFT requests this to be changed] .

	Pre-conditions:
	Call is in progress. The application has requested information associated with a call via the superviseReq method. The specified call supervision timer expires.

	1
	The SCS detects that the supervision time is expired and acts according to the requested treatment (e.g. release call sending BYE) in superviseReq The SCS identifies the correct application and invokes the superviseRes method.

	Note:

 Table 5-56: Parameter Mapping

	To: superviseRes
	From: SIP 4xx
	Remark

	callSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping – a correlation .

	report (TpCallSuperviseReport)
	 N/A
	Defines the response(s) from the call control service for calls that have been supervised, (e.g. timeout, call-ended, tone-applied, UI-finished).

	usedTime (TpDuration)
	BYE (release call)

Note: Tone sending N/A

[editor note: How to provide simple warning
tone sending to caller
(Re-Invite ??? or ?]

	No direct mapping to SIP:
TpCallSuperviseTreatment in superviseReq defines the treatment of the call by the call control service when the call supervision timer expires. It may be a request to release (P_CALL_SUPERVISE_RELEASE) the call and /or a request to send a warning tone (P_CALL_SUPERVISE_TONE_APPLIED) to the caller and/or to notify the application

The OSA SCS to issue BYE in SIP.

	Note: The OSA SCS to issue BYE in SIP when the call supervise treatment request is to release the call.

[Editor note: Indeed the method involves service control information transfer to the OSA SCS via ISC from the S-CSCF (controlling entity) – this does not involve SIP mapping. However, there must be a mapping maybe not to SIP itself, but to e.g. an XML body in the attachment to the ISC message. If so, OSA to XML mapping is needed as well !!].

5.5 CallLeg Service Interface

The call leg interface class represents the logical call leg associating a call with an address.
The leg represents the signalling relationship between the call and an address.

5.5.1 routeReq

routeReq (callLegSessionID : in TpSessionID, targetAddess : in TpAddress, originatingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) : void

This method is an asynchronous method used to request routing of the call leg to the remote party indicated by the target address.

[image: image31.wmf]

1. routeReq

:

 3c. ISC: 200 OK

:

 3a. ISC: 1xx

Participant

SIP

server

SCS

Application

3b. eventReportRes

 2. ISC: INVITE

3d. eventReportRes

ISC :ACK

Figure 5‑29 Call Flow for routeReq(), UA mode

5.5.1.1 Case 1 UA mode operation

Table 5-57: Normal Operation, UA operation mode

	SIP Server Mode
for the OSA SCS:
	UA mode

The generation of a SIP message (INVITE) on request from the application demands the SIP server of the OSA to operate in a UA mode (e.g. UAC, B2BUA, 3rd party controller).

	Pre-conditions:
	A relationship between the application and the call including associated objects exists.
For the routeReq() method, the SCS does not create any new call or call leg objects since the method is called on the existing Terminating Call Leg object

	1
	The application invokes the routeReq method. The SCS enables the call to be setup by issuing an invitation (INVITE) for the end-user to be called.

	2
	

	Note: The routeReq method is applicable only for the terminating leg in the MPCC call leg STD.
The SIP server of the OSA SCS should sent the INVITE for request thee routing to remote party.

Forking is not supported by the OSA API.

The call flow for this method is the equivalent to the createCallAndRouteReq() method.

Note: When operation in B2BUA mode the flow is similar to UA mode, but behaviour reflects a specialisation of a proxy server comprising the split of the SIP dialogue between the end-users into two dialogues – one for each call party
enabling the application to gain full session control.

Table 5-58: Parameter Mapping, UA mode operation

	From: routeReq
	To: SIP INVITE
	Remark

	callLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping – a correlation is created.

	targetAddress (TpAddress)
	TO Header:
 SIP URL

See Table
TpAddress
mapping to SIP.
	

	originatingAddress (TpAddress)
	FROM header:
 SIP URL

See Table
TpAddress
mapping to SIP.
	

	appInfo (TpCallAppInfoSet)
	See Table for
TpCallAppInfo
mapping to SIP.
	

	ConnectionProperties (TpCallLegConnectionProperties):
	See Table
TpCallLegConnectionProperties
mapping to SIP.
	

	Note:

5.5.1.2 Case 2 Proxy mode operation

[image: image32.wmf]

1. routeReq

Participant

SIP

server

SCS

Application

3b. eventReportRes

 2. ISC: INVITE

ISC :INVITE

A

B

Figure 5‑30 Call Flow for routeReq(), Proxy mode

Table 5-59: Normal Operation, Proxy operation mode

	SIP Server Mode
for the OSA SCS:
	Proxy mode

The routeReq is used to forward a call (SIP message (INVITE)) on request from the application: The SIP server of the OSA SCS operates in proxy mode.

	Pre-conditions:
	A relationship between the application and the call including associated objects exists.
For the routeReq() method, the SCS does not create any new call or call leg objects since the method is called on the terminating call leg object

	1
	The application invokes the routeReq method. The SCS enables the call to be setup by proxying the invitation (INVITE) for the end-user to be called.

	Note: The routeReq method is applicable only for the terminating leg in the MPCC call leg STD.
The SIP server of the OSA SCS should forward sent the INVITE for request the routing to remote party.

Forking is not supported by the OSA API.

The call flow for this method is equivalent to createCallAndRouteReq() method.

Table 5-60: Parameter Mapping, Proxy mode operation

	From: routeReq
	To: SIP INVITE
	Remark

	callLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping – a correlation is created .

	targetAddress (TpAddress)
	Request-URI Header:
 SIP URL

See Table
TpAddress
mapping to SIP.
	TO header: not to be changed.

Note: Request-URI may or may not be changed –depends on invoked application
(e.g. plain call monitoring or call forwarding)

	originatingAddress (TpAddress)
	N/A
	FROM header: not to be changed

	appInfo (TpCallAppInfoSet)
	See Table for
TpCallAppInfo
mapping to SIP
	

	ConnectionProperties (TpCallLegConnectionProperties):
	See Table
TpCallLegConnectionProperties
	

	Note:

5.5.2 eventReportReq

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void

This method is an asynchronous method used to set, clear or change criteria for the events that the Call Leg object will observe.

[image: image33.wmf]

Participant

Application

eventReportReq

OSA SCS

SIP

server

SCS

Figure 5‑31 Call Flow for eventReportReq()

Table 5-61: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller.
(Any mode, except Redirection.)

	Pre-conditions:
	A relationship between the application and the call including associated leg objects exists.
 The eventReportReq method must be invoked before call setup (e.g. routeReq method) if to monitor events reporting the results of the call setup request (invitaion).

	1
	The application invokes the eventReportReq method. The SCS enables the call to be monitored for subsequent events to be reported.

	2
	The SCS monitors the call and will later on send the corresponding eventReportRes() or eventReportErr() based on the messages received and filtered by the controlled entity (S-CSCF) for the controlling entity, i.e. the SIP server of the OSA SCS.

	Note: The eventReportReq method is applicable for any leg created leg being part of the MPCC call leg STD.

Table 5-62: Parameter Mapping

	From: eventReportReq
	From: SIP
	Remark

	callLegSessionID
	See “OSA Call and SIP Dialogue Correlation Tables”.
	A correlation - no direct mapping

	eventsRequested (TpCallEventRequestSet)
	See Table
TpCallEventRequest
mapping from SIP.
	

	Note: standardisation.

[Editor note: Indeed the method may involve downloading of subsequent filtering information via ISC to the S-CSCF (controlled entity) – this does not involve SIP mapping. However, there must be a mapping maybe not to SIP itself, but to e.g. an XML body in the attachment to the ISC message. If so, OSA to XML mapping is needed as well !!].

5.5.3 release

release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

This method is used to request the release of a single call leg.

[image: image34.wmf]

Note: The participant is already

 connected: SIP: 200 OK

-

 ACK

messages have been exchanged

:

 3. ISC: 200 OK

Participant

Application

 2a. ISC: BYE

1a. release

ISC: ACK

I

SC: 200 OK

OSA SCS

SCS

SIP

server

Figure 5‑32 Scenario a: Call Flow for release(), participant connected

[image: image35.wmf]

Note: The participant is not yet

 connected: SIP: INVITE has been

sent, but 200 OK

-

 ACK

messages have not been

exchanged

:

 3. SIP: 200 OK

Participant

Application

 2b. SIP: CANCEL

1b. release

SIP: 1xx

SIP: INVITE

OSA SCS

SIP

server

SCS

Figure 5‑33 Scenario b: Call Flow for release(), pending call attempt toward participant

[image: image36.wmf]

Note: The participant is not yet

 conneced.

 SIP: Invite has been sent

 A negative response is received.

:

 3c. ISC: ACK

Participant

Application

 ISC: 1xx

4c. release

2c.

ISC: 3xx, 4xx, 5xx, 6xx

ISC: INVITE

3c. eventReportRes()

OSA SCS

SIP

server

SCS

Figure 5‑34 Scenario c: Call Flow for release(), call (invite) to participant not accepted.

[image: image37.wmf]

Note: The participant is not yet

 conneced.

 SIP: Invite has been received

 A negative final response

 is provided b

y the application

 (e.g.call barring).

:

Participant

Application

 ISC: INVITE

1. release

2d.

ISC: 3xx, 4xx, 5xx, 6xx

ISC: ACK

OSA SCS

SIP

server

SCS

Figure 5‑35 Scenario d: Call Flow for release(), call (invite) from participant not accepted

Table 5-63: Normal Operation

	SIP Server Mode
for the OSA SCS:
	UA mode

The generation of a SIP message (BYE) on request from the application to release a single participant in the call demands the SIP server of the OSA to operate in a UA mode
 (e.g. UAC, B2BUA, 3rd party controller).

	Pre-conditions:
	Call is in progress

	1
	The application or the SCS invokes the release method. The SCS generates the SIP message to release the requested party (call leg) from the call

	2a
	Scenario 2a: SIP BYE is sent. The SIP server sends the BYE Message toward the participant connected to the call.

	2b
	Scenario 2b: SIP CANCEL is sent to terminate a pending leg. The SIP server sends the CANCEL message toward the participants associated to the call but not connected yet.
Note: CANCEL secures in case of SIP forking that all with the OSA leg possible associated pending SIP legs will be released.

	2c
	Scenario 2c: The invitation to a participant is not accepted. The application sends a Release to terminate its leg.
Note: It could also send a continueProcessing() or deassign() to terminate it logical call leg object representing the connection (SIP leg) in the network. !!

	2d
	

	Note:
For scenario 2c the application could instead of release() send a continueProcessing() or deassign() to terminate it logical call leg object representing the connection (SIP leg) in the network. !!
When operating in B2BUA mode the decision whether a release from one participant will cause the release of any other participant can be controlled by the application.

Table 5-64: Parameter Mapping

	From: release
	To: SIP BYE, 4xx, 5xx,
Cancel (if any pending INVITE requests from application)
	Remark

	callLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	A correlation - no direct mapping

	cause (TpReleaseCause)
	See table TpReleaseCause for mapping to SIP
	See table for TpReleaseCause for mapping to SIP response codes

	Note: The release() method may be sent any time from the application e.g. resulting in
a) the termination of an establishment session (BYE) or
b) the cancellation of a pending request (CANCEL) after the application has issued an INVITE request.
c) the termination of an unsuccesful call attempt (e.g. meeting busy, not reachable etc.) or
d) creation of a SIP response (e.g. 4xx, 5xx) to an incoming INVITE request.

5.5.4 getInfoReq

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void

This method is an asynchronous method that requests information associated with the call to be provided at the appropriate time (for example, to calculate charging).

[image: image38.wmf]

Participant

Application

getInfoReq

OSA SCS

SIP

server

SCS

Figure 5‑36 Call Flow for getInfoReq()

Table 5-65: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller.
(Any, except Redirect mode.)

	Pre-conditions:
	A relationship between the application and the call including associated call leg objects exists.
The getInfoReq method must be invoked on a call leg before the call leg is routed to a target address.

	1
	The application invokes the getInfoReq method. The SCS monitors the call leg to be capable to collect the requested information.

	2
	The OSA SCS will later on send the corresponding getInfoRes() or getInfoErr() based on the messages received from the SIP server of the OSA SCS.

	3
	

	Note: The getInfoReq() method is not related to SIP signalling, it is sent by the application to request information associated to the call. Indeed the method does not involve SIP mapping.

Well, in the OSA/ISC case, there must be a mapping. Maybe not to SIP itself, but to an XML body in the attached to the ISC message. If so, OSA to XML mapping is needed as well.

Of course, in the OSA/SIP case, as there is no intermediate protocol to be mapped to, this is OK.
However, the SCS should use the messages received by the SIP server during the call session in order to sent the corresponding getInfoRes() or getInfoErr() method.

Table 5-66: Parameter Mapping

	From: getInfoReq
	To: SIP
	Remark

	callLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping – a correlation.

	callLegInfoRequested (TpCallLegInfoType) :
	See table for TpCallLegInfoType mapping to SIP
	

	Note: There is no direct mapping to SIP. The getInfoReq() method results in supervision of the following SIP events:
a) receipt of a SIP response (200 OK/ACK) to an incoming INVITE request or
b) the termination of an establishment session (BYE).

5.5.5 getCall

getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier

This method used to retrieve the reference of the Call object associated with the Call leg object.

[image: image39.wmf]

Participant

Application

getCall

OSA SCS

SIP

server

SCS

Figure 5‑37 Call Flow for getCall()

Table 5-67: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller, Redirect.
(Any)

	Pre-conditions:
	A relationship between the application and the call including associated call leg object(s) exists. The getCall method can be invoked on any existing call leg object.

	1
	The application invokes the getCall method. The SCS return the associated call object reference to the application.

	Note: The getCallLeg() method is not related to SIP signalling, it is sent by the application to request information about the associated logical call object in the SCS. Indeed the method does not involve any SIP mapping.

Table 5-68: Parameter Mapping

	From: getInfoReq
	To: SIP
	Remark

	callLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping, merely a correlation is created.

	Returns:
TpMultiPartyCallIdentifier
 - CallReference (IpMultiPartyCallRef)
 - CallSessionID (TpSessionID)
	N/A
	

	Note:

5.5.6 continueProcessing

continueProcessing (callLegSessionID : in TpSessionID) : void

This method used to continue processing of the call.

[image: image40.wmf]

Participant

Application

continueProcessing

 SIP call processing resumed

-

 processing of any interupted

 SIP message is resumed.

-

OSA SCS

SIP

server

SCS

Figure 5‑38 Call flow for continueProcessing()

Table 5-69: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller
(Any, except Redirection.)

	Pre-conditions:
	A relationship between the application and the call including associated call leg object(s) exists. Call processing is suspended and the application is informed of call related events in interrupt mode.

	1
	The application invokes the continueProcessing method requesting processing for the call leg object to be resumed.

	2
	The SCS requests the SIP server of the OSA SCS to resume SIP processing, when the call is to be resumed. That is the necessary response(s) from the application to resume call processing has been determined.

	Note: The continueProcessing method is addressed to a single leg object.
Resumption of SIP call processing occurs when all the MPCCS leg objects STDs are in processing state (not suspended).

The continueProcessing method can be invoked on any existing call leg object to resume processing.

Table 5-70: Parameter Mapping

	From: continueProcessing
	To: SIP
	Remark

	callLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping, merely a correlation is created.

5.5.7 attachMedia

attachMedia (callLegSessionID : in TpSessionID) : void

This method used to request that the call leg be attached to its call object. This will allow transmission on all associated bearer connections or media streams to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully. However, the request may be sent as soon as the call leg object exists.

[image: image41.wmf]

Note: The application may

 e.g. in routeReq(connectionproperties) or in

deachMedia requ

est the media to be

detached implying that the media for the

participant is not yet conneced.

eventReportRes

:

 3c. ISC: ACK

Participant

Application

 ISC: 200 OK

4c. attachMedia

2c.

ISC

: INVITE

 (Re

-

INVITE, SDP on hold)

ISC: INVITE

3c. e.g. routeReq

(detach media)

eventReportRes()

 ISC: 200 OK

OSA SCS

SIP

server

SCS

Figure 5‑39 Scenario a: Call flow for attachMedia(), UA/B2BUA mode: SDP on Hold

[image: image42.wmf]

Note: The application may in

 deachMedia request the media to be

detached, i.e. to put

 the media for the

participant on hold (disconnected)

See detachMedia method

eventReportRes

:

 3c. ISC: ACK

Participant

Application

 ISC: 200 OK

4c. attachMedia

2c.

ISC: INVITE

 (Re

-

INVITE, SDP on hold)

ISC: INVITE (Re

-

INVITE)

3c.detachMedia

(detach media)

eventReportRes()

 ISC: 200 OK

OSA SCS

SIP

server

SCS

Figure 5‑40 Scenario b: Call flow for attachMedia(), UA/B2BUA mode: SDP on Hold

Table 5-72: Normal Operation

	SIP Server Mode
for the OSA SCS:
	UA mode

The generation of a SIP message (BYE) on request from the application to release a single participant in the call demands the SIP server of the OSA to operate in a UA mode
 (e.g. UAC, B2BUA, 3rd party controller).

	Pre-conditions:
	Call is processing. A relationship between the application and the call including associated call leg object(s) exists. The leg is in a connection state and has a media connection established with the others legs in the call.
AttachMedia is not executed until the connected state is reached (200 OK /ACK) , i.e. if received before the SCS should buffer the request until it can be executed..

	1
	The application invokes the attachMedia method requesting the media stream(s) for the call leg object to be attached, i.e. enabling media communication fie the call party. Application request the media attachment for this leg.

	2
	The SCS requests the SIP server of the OSA SCS to attach the media when the call enables this..
The SCS generates a new SIP INVITE (Re-INVITE) message to be sent to the participant, i.e. in this case the attachMedia() method is mapped onto the INVITE-200 OK - ACK messages.

	Note:
The new INVITE (re-INVITE) sent to the participant does not issue a new SIP session, it is only updating the previous SIP session since the SIP call-ID will be the same, only the SIP CSEQ will be higher to indicate that the media description has changed.

The attachMedia method can be invoked on any existing call leg object to request the media attachment. If SIP processing is in the call setup phase, the request is buffered until it can be executed, i.e. it is not executed until the phase in call procession where it is applicable to connect media. Note: no error is reported in case media is already attached.

 In SIP, the natural behaviour is to establish the media session once the signalling is established. In OSA a party can be disconnected (detachMedia) and re-connected (attachMedia) to a call. The media connection is established when application calls the attachMedia() method.

 A way to map this functionality in SIP is to use the SDP on hold feature enabling putting the media streams on hold (detach media) while the session is established or after the establishment. When the application will request to attach the media, a new INVITE will be sent to the participant with the media session description. This solution necessities a new SIP session initiation (Re-INVITE) each time the application wants to re-attach the participant to the call, i.e. reinitiating a session in the normal SIP way…

Table 5-73: Parameter Mapping

	From: continueProcessing
	To: SIP
	Remark

	callLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping – a correlation.

5.5.8 detachMedia

detachMedia (callLegSessionID : in TpSessionID) : void

This method is used to detach the call leg from its call, i.e., this will prevent transmission on any associated bearer connections or media streams to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully.

[image: image43.wmf]

Note: The application may in

 deachMedia request the media to be

detached, i.e. to put the media for the

participant on hold (disconnect

ed)

:

 3c. ISC: ACK

Participant

Application

 ISC: 200 OK

ISC: INVITE (Re

-

INVITE)

1.detachMedia

OSA SCS

SIP

server

SCS

Figure 5‑41 Call Flow for detachMedia(), UA/B2BUA mode

Table 5-74: Normal Operation

	SIP Server Mode
for the OSA SCS.
	UA mode

The generation of a SIP message (BYE) on request from the application to release a single participant in the call demands the SIP server of the OSA SCS to operate in a UA mode
 (e.g. UAC, B2BUA, 3rd party controller).

	Pre-conditions:
	Call is processing. A relationship between the application and the call including associated call leg object(s) exists. The leg is in a connection state and has a media connection established with the others legs in the call.
DetachMedia is not executed until the connected state is reached (200 OK /ACK) , i.e. if received before the SCS should buffer the request until it can be executed..

	1
	The application invokes the detachMedia method requesting the media stream(s) for the call leg object to be de-attached, i.e. enabling to put the media communication on hold for the call party. Application request the media de-attachment for this leg. The application prevents the transmission of media connection to this leg by calling the detachMedia().

	2
	The SCS requests the SIP server of the OSA SCS to de-attach the media when the call enables this..
The SCS generates a new SIP INVITE (Re-INVITE) message to be sent to the participant, i.e. in this case the detachMedia() method is mapped onto a SIP INVITE message with an SDP on hold.

	Note:
The new INVITE (re-INVITE) sent to the participant does not issue a new SIP session, it is only updating the previous SIP session since the SIP call-ID will be the same, only the SIP CSEQ will be higher to indicate that the media description has changed.

The detachMedia method can be invoked on any existing call leg object to request the media attachment. If SIP processing is in the call setup phase, the request is buffered until it can be executed, i.e. it is not executed until the phase in call procession where it is applicable to connect media. Note: no error is reported in case media is already detached.

 In SIP, the natural behaviour is to establish the media session once the signalling is established. In OSA a party can be disconnected (detachMedia) and re-connected (attachMedia) to a call. The media on-hold (disconnection) is established when application calls the detachMedia() method.

 A way to map this functionality in SIP is to use the SDP on hold feature enabling putting the media streams on hold (detach media) while the session is established or after the establishment. When the application will request to attach the media, a new INVITE will be sent to the participant with the media session description. This solution necessities a new SIP session initiation (Re-INVITE) each time the application wants to re-attach the participant to the call, i.e. reinitiating a session in the normal SIP way…

Table 5-75: Parameter Mapping

	From: continueProcessing
	To: SIP
	Remark

	callLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping – a correlation.

5.5.9 deassign

deassignCall (callLegSessionID : in TpSessionID) : void

This method is used to request that the relationship between the application and the call leg and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call leg object so that the application has no further control of call leg processing. If a call leg is de-assigned that has event reports or call information reports requested, then these reports will be disabled and any related information discarded.

[image: image44.wmf]

Participant

Application

deassign

OSA SCS

SIP

server

SCS

Figure 5‑42 Call Flow for deassign()

Table 5-76: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller, Redirect.
(Any)

	Pre-conditions:
	A relationship between the application and the call leg including associated objects exists.

	1
	The application invokes the deassign method on a leg

	2
	The SCS terminates the relationship between the application and the call leg and its associated objects and notifies the SIP server of the OSA SCS.

	3
	The SIP server of the OSA SCS is to continue call processing autonomously, i.e. without any control from the application related to the call leg object. Any possible interrupted call processing related to the leg that has been deassigned control is to be resumed.

	Note: If the application was the only one to control the session, the SIP server of the OSA SCS may remove itself from the route-request ??.

Table 5-77: Parameter Mapping

	From: continueProcessing
	To: SIP xx
	Remark

	callLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping, merely a correlation is created.

5.5.10 getLastRedirectedAddress

getLastRedirectedAddress (callLegSessionID : in TpSessionID) : TpAddress

This method is sent by the application to the leg to get the last address the leg has been redirected to.

[image: image45.wmf]

Note: The application may in

 deachMedia request the media to

be detached, i.e. to put the media

for the participant on hold

(disconnected)

Participant

Application

1.getLastRedirectedAddress

OSA SCS

SIP

server

SCS

Figure 5‑43 Call Flow for getLastRedirectedAddress()

Table 5-78: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controllert.
(Any, except Redirect)

	Pre-conditions:
	A relationship between the application and the call including associated call leg object(s) exists. The leg is in a connection and is a terminating leg in the MPCCS STD.

	1
	The application invokes the getLastRedirectedAddress method requesting information for the call leg object regarding the address of a possible last call redirection or forwarding.

	2
	The SCS returns the redirected address in the method return parameter.

	Note: The getLastRedirectedAddress method can be invoked on any OSA MPCCS Terminating Call Leg object.

Table 5-79: Parameter Mapping

	From: getLastRedirectedAddress
	To: SIP
	Remark

	callLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping, merely a correlation is created..

	Returns:
TpAddress
	See Table
TpAddress
mapping to SIP.
	Specifies the last address where the call leg was redirected to.

	Note:. [Editor note: Indeed the method does not involve SIP mapping. However, there must be a mapping maybe not to SIP itself, but to e.g. an XML body in the attachment to the ISC message. If so, OSA to XML mapping is needed as well !!].

5.6 CallLeg Application Interface

5.6.1 routeErr

routeErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This method is an asynchronous method which indicates that the request to route the call to the destination party was unsuccessful – the call could not be routed to the destination party (for example, parameters were incorrect, invalid address, the request was refused, etc).

[image: image46.wmf]

Participant

Application

routeErr

 ISC: 400, 404, 413, 414, 481, 484, 485

 (response to previous sent INVITE)

ACK

OSA SCS

SIP

server

SCS

Figure 5‑44 Call Flow for routeErr()
Table 5-80: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller.
(Any , except Redirect mode.)

	Pre-conditions:
	Application has sent routeReq() , a request to route the call to the destination party.

	1
	The request is refused e.g. the SIP server in the core network detects an error and notifies the SIP server of the SCS.

	2
	The SCS invokes the routeErr method

	Note: The SIP server of the OSA SCS could detect the denial.

Table 5-81: Parameter Mapping

	To: routeErr
	From: SIP
	Remark

	callLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping – a correlation.

	errorIndication (TpCallError)
	 See Table
TpCallError
for mapping from SIP.
	

	Note:

5.6.2 eventReportRes

eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : void

This asynchronous method is used to report that an event has occurred on the call leg that was requested to be reported (for example , a mid-call event from the party; the party has requested to disconnect; etc.).

[image: image47.wmf]

Participant

Application

2. eventReportRes

Note 1: any appropriate SIP

message:INVITE, 1xx, 2xx, 3xx,

4xx, 5xs, 6xx, ?

1. ISC: see Note 1

OSA SCS

SIP

server

SCS

Figure 5‑45 Call Flow for eventReportRes()

Table 5-82: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller.
(Any, except Redirect) (Editor note: assumed not applicable for Redirect mode ???)

	Pre-conditions:
	A relationship between the application and the call including associated call leg object(s) exists. The application requested to be notified of the event with e.g. eventReportReq and this specific event has occurred in the network.

	1
	The SIP server of the OSA SCS detects a SIP message (response or request) that corresponds to a requested call event to be reported to the application.

	2
	The SCS invokes the eventReportRes() method.

	Note:

Table 5-83: Parameter Mapping

	To: eventReportRes
	From: SIP (any SIP message)
	Remark

	callLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping – a correlation.

	eventInfo (TpCallEventInfo)
	See Table
TpCallEventInfo
mapping from SIP.
	

	[Editor note: Indeed the method does not involve SIP mapping. However, there must be a mapping maybe not to SIP itself, but to e.g. an XML body in the attachment to the ISC message. If so, OSA to XML mapping is needed as well !!].

5.6.3 eventReportErr

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This method is an asynchronous method used to indicate that the request to manage call leg event reports was unsuccessful (for example, parameters were incorrect, the request was refused, etc).

[image: image48.wmf]

Participant

Application

eventReportErr

OSA SCS

SIP

server

SCS

Figure 5‑46 Call Flow for eventReportErr()

Table 5-84: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller.
(Any, except Redirect)

	Pre-conditions:
	Call is in progress. The application has requested information associated with a call via the eventReportReq method

	1
	The original request eventReportReq is erroneous - or cannot be accepted due to e.g. call terminates abnormally ??.

	2
	The SCS identifies the correct applications that requested the event report information and invokes the eventReportErr method.

	Note:

Table 5-85: Parameter Mapping

	To: eventReportErr
	From: SIP 4xx
	Remark

	callLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping – a correlation.

	errorIndication (TpCallError)
	 See Table
TpCallError
for mapping
from SIP.
	

	Note:

5.6.4 callLegEnded

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

This method is used to indicate to the application that the leg has terminated in the network. The application has received all requested results (e.g., getInfoRes) related to the call leg. The call leg will be destroyed after returning from this method. Furthermore, the operation contains an indication on the reason why the call leg has been ended. The method will always be invoked when the call leg is ended.

[image: image49.wmf]

ISC:

 BYE etc.

Participant

Application

 The SIP server of the

SCS

 detects

that call leg (OSA leg) has been

released

 callLegEnded

OSA SCS

SIP

server

SCS

Figure 5‑47 Call Flow for callLegEnded()

Table 5-86: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller, Redirect
(Any) [Editor note: applicable for Redirect mode ???]

	Pre-conditions:
	There is an application monitoring the call in some way.

	1
	The SCS detects that the OSA call leg object connected to the call is destroyed, i.e. the call has been released.
The SCS invokes the callLegEnded method.

	
	

	Note: The callLegEnd() method is sent to the application when the party associated with the leg has released or the call itself was released to connection to the party .

Table 5-87: Parameter Mapping

	To: callLegEnded
	From: SIP
	Remark

	callLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping, merely a correlation is created

	cause (TpReleaseCause)
	See TpReleaseCause Mapping from SIP

	

5.6.5 getInfoRes

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : void

This is an asynchronous method that is used to report all the necessary information requested by the application, for example to calculate charging.

[image: image50.wmf]

Participant

Application

getInfoRes

OSA SCS

SIP

server

SCS

Figure 5‑48 Call Flow for getInfoRes()

Table 5-88: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller, Redirect
(Any)

	Pre-conditions:
	Call is in progress. The application has requested call leg information with the getInfoReq method.

	1
	The SCS detects that the OSA call leg is terminated. The SCS invokes the getInfoRes() method.
The SCS has based upon received exchanged messages with SIP Server of the OSA SCS collected requested call related information which is reported to the application.

	
	

	Note: [Editor note: Indeed the method does not involve SIP mapping. However, there must be a mapping maybe not to SIP itself, but to e.g. an XML body in the attachment to the ISC message. If so, OSA to XML mapping is needed as well !!].

Table 5-89: Parameter Mapping

	To: getInfoRes
	From: SIP:
	Remark

	callLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping – a correlation.

	callLegInfoReport (TpCallLegInfoReport):
	-
	

	 -CallLegInfoType (TpCallLegInfoType)
	N/A
	Indicates the type of the call leg information being reported.

	 - CallLegStartTime (TpDateAndTime)
	INVITE
	The time and date when the call leg was started (i.e. the leg was routed).The time when the SCS received/ sent the SIP INVITE message to intiate the call. The OSA SCS should make a time stamp to be used as this parameter value.

	- CallLegConnectedToResourceTime
 (TpDateAndTime)

	N/A
	The date and time when the call leg was connected to the resource. If no resource was connected the time is set to an empty string.

Either this element is valid or the CallConnectedToAddressTime is valid, depending on whether the report is sent as a result of user interaction.

	- CallLegConnectedToAddressTime
 (TpDateAndTime)
	ACK message for the INVITE (answer confirmed).
	The date and time when the party received the ACK message for the INVITE (answer confirmed). This information may be provided by the SIP server.

It tells when the call leg was connected to the destination (i.e. when the destination answered the call). If the destination did not answer, the time is set to an empty string.

	- CallLegEndTime
 (TpDateAndTime)
	SIP BYE /
3xx, 4xx, 5xx, 6xx
	Date and time when when the call leg was released (e.g. SIP BYE message is sent to participant or received from the participant).

	- ConnectedAddress (TpAddress)
	N/A ?
TO header URL
or
Contact header ???
See Table
TpAddress
for mapping from SIP
	The address of the party associated with the leg. If during the call the connected address was received from the party then this is returned, otherwise the destination address (for legs connected to a destination) or the originating address (for legs connected to the origination) is returned

	- CallLegReleaseCause (TpReleaseCause)
	See Table TpReleaseCause
for mapping from SIP
	The cause of the termination. May be present with P_CALL_LEG_INFO_RELEASE_CAUSE was specified

	- CallAppInfo (TpCallAppInfoSet)

Note: A set of TpCallAppInfo
	See Table
TpCallAppInfo
for mapping from SIP
	Additional information for the leg. May be present with P_CALL_LEG_INFO_APPINFO was specified.

	[Editor note: Indeed the method does not involve SIP mapping. However, there must be a mapping maybe not to SIP itself, but to e.g. an XML body in the attachment to the ISC message. If so, OSA to XML mapping is needed as well !!].

5.6.6 getInfoErr

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This method is an asynchronous method that reports that the original request was erroneous, or resulted in an error condition.

[image: image51.wmf]

Participant

Application

getInfoErr

OSA SCS

SIP

server

SCS

Figure 5‑49 Call Flow for getInfoErr()

Table 5-90: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller, Redirect.

	Pre-conditions:
	Call is in progress. The application has requested information associated with a call leg via the getInfoReq method

	1
	The original request getInfoReq is erroneous or cannot be accepted due to e.g. call leg terminates abnormally.

	2
	The SCS identifies the correct applications that requested the call leg information and invokes the getInfoErr method.

	Note:

Table 5-91: Parameter Mapping

	To: getInfoErr
	From: SIP
	Remark

	callLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping – a correlation.

	errorIndication (TpCallError):
	See Table TpCallError for mapping from SIP.

	

	Note:

5.6.7 superviseErr

superviseErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This is an asynchronous method that reports a call leg supervision error to the application.

[image: image52.wmf]

Participant

Application

superviseErr

OSA SCS

SIP

server

SCS

Figure 5‑50 Call Flow for superviseErr()

Table 5-92: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller.
(Any, except Redirect mode.)

However, if treatment (TpCallSuperviseTreatment) implies call release, then UA mode of operation is demanded.

[Editor Note: SIP currently do not allow network initiated release (BYE) from a proxy server – a 3GPP requirement to IEFT requests this to be changed].

	Pre-conditions:
	Call is in progress. The application has requested information associated with a call via the superviseReq method.

	1
	The SCS detects an error that can affect call supervision, e.g call routing error.

	2
	The SCS identifies the correct applications that requested the call information and invokes the superviseErr method.

	Note:

Table 5-93: Parameter Mapping

	To: superviseErr
	From: SIP 4xx
	Remark

	callLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping – a correlation.

	errorIndication (TpCallError)
	 See Table for
TpCallError
mapping from SIP
	

	Note:

5.6.8 superviseRes

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration) : void

This is an asynchronous method that reports a call leg supervision event to the application.

[image: image53.wmf]

Participant

SIP

server

SCS

Application

superviseRes

Figure ‑51 Call Flow for superviseRes()

Table 5-94: Normal Operation

	SIP Server Mode
for the OSA SCS:
	Proxy, UA, B2BUA or 3rd party controller.
(Any, except Redirect mode.)

However, if treatment (TpCallSuperviseTreatment) implies call leg release, then UA mode of operation is demanded.

[Editor Note: SIP currently do not allow network initiated release (BYE) from a proxy server – a 3GPP requirement to IEFT requests this to be changed] .

	Pre-conditions:
	Call is in progress. The application has requested information associated with a call leg via the superviseReq method. The specified call leg supervision timer expires.

	1
	The SCS detects that the supervision time is expired and acts according to the requested treatment (e.g. release call sending BYE) in superviseReq .

The SCS identifies the correct application and invokes the superviseRes method.

	Note:

 Table 5-95: Parameter Mapping

	To: superviseRes
	From: SIP 4xx
	Remark

	callLegSessionID (TpSessionID)
	See “OSA Call and SIP Dialogue Correlation Tables”.
	No direct mapping – a correlation.

	report (TpCallSuperviseReport)
	 N/A
	Defines the response(s) from the call control service for calls that have been supervised, (e.g. timeout, call-ended, tone-applied, UI-finished).

	usedTime (TpDuration)
	BYE (release call)

Note: Tone sending N/A

[Editor note: How to provide simple warning
tone sending to caller
(Re-Invite ??? or ?]

	No direct mapping to SIP:
TpCallSuperviseTreatment in superviseReq defines the treatment of the call by the call control service when the call supervision timer expires. It may be a request to release (P_CALL_SUPERVISE_RELEASE) the call and /or a request to send a warning tone (P_CALL_SUPERVISE_TONE_APPLIED) to the caller and/or to notify the application

The OSA SCS to issue BYE in SIP.

	Note: The OSA SCS to issue BYE in SIP when the call supervise treatment request is to release the call.

[Editor note: Indeed the method does not involve SIP mapping. However, there must be a mapping maybe not to SIP itself, but to e.g. an XML body in the attachment to the ISC message. If so, OSA to XML mapping is needed as well !!].

6 Detailed Parameter Mappings

This clause contains detailed parameter mappings for data types that are used in the Parameter Mapping tables in the previous clauses.

6.1 TpAdditionalCallEventCriteria

Table 6-1:TpAddtionalCallEventCriteria Table mapping.

	TpAdditionalCallEventCriteria
(TpCallEventType)
	From SIP
(observe for requested
additional info)
	Remark

	Undefined (NULL)
(P_CALL_EVENT_UNDEFINED)
	N/A
	

	Undefined (NULL)
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT
	
	

	Undefined (NULL)
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED
	
	

	MinAddresslength (TpINT32)
P_CALL_EVENT_ADDRESS_COLLECTED
	
	

	Undefined (NULL)
P_CALL_EVENT_ADDRESS_ANALYSED
	
	

	OriginatingServiceCode
(TpCallServiceCode)
P_CALL_EVENT_ORIGINATING_SERVICE_CODE
	See Table for TpCallServiceCode ??
	

	OriginatingReleaseCauseSet
(TpReleaseCauseSet)
P_CALL_EVENT_ORIGINATING_RELEASE
	
	

	Undefined (NULL)
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT
	
	

	Undefined (NULL)
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED
	
	

	Undefined (NULL)
P_CALL_EVENT_ALERTING
	
	

	Undefined (NULL)
P_CALL_EVENT_ANSWER
	
	

	TerminatingReleaseCauseSet
(TpReleaseCauseSet)
P_CALL_EVENT_TERMINATING_RELEASE
	
	

	Undefined (NULL)
P_CALL_EVENT_REDIRECTED
	
	

	TerminatingServiceCode
(TpCallServiceCode)
P_CALL_EVENT_TERMINATING_SERVICE_CODE
	
	

	Undefined (NULL)
P_CALL_EVENT_QUEUED
	
	

	Note:

6.2 TpAddress
Table 6-2 TpAddress Table mapping

	From: TpAddressRange

	To: SIP
	Remark

	Plan (TpAddressPlan)
	SIP
	Specifies the address plan in force.
Here only SIP URL is applicable.

	AddrString (TpString)
	SIP: URL address
	Contains a valid SIP address string.

A few examples of SIP URLs:
- A user of an online service:
 “sip:user@xxx.org”
 “sip:alice@10.1.1.1”

 - A PSTN phone number at a gateway service:
”sip:1212@gateway.com”,
”sip: +1-212-555-1212:1234@gateway.com; user =phone”

Notice: For SIP addresses, wildcards are allowed between the ‘sip:’ and the ‘@’ in the AddrString, e.g.

"sip:*@sales.org"
matches all SIP addresses at sales.org:5060.

	Name (TpString)
	N/A
	

	Presentation (TpAddressPresentation)
	N/A
[Editor note:no SIP support ?
Check ISUP-SIP interworking]
	Defines whether an address can be presented to an end user (presentation allowed or restriced or address not available for presentation) .

	Screening (TpAddressScreening)
	N/A
[Editor note:no SIP support ?
Check ISUP-SIP interworking]
	Defines whether an address can be presented to an end user. E.g. “user provided address
verified and passed” or “Network provided address”

	SubAddressString (TpString)
	N/A
	

	Note: The AddrString defines the actual address information and the structure of the string depends on the Plan.
Further information can be found in the OSA API part covering common data definitions [1].

NOTE 1:
It should be noted that two SIP addresses will be regarded as equivalent by a gateway if they correspond to the same user at the same network address. The textual form of the two addresses need not be the same. For example, sip:enquiries@yyy.org will be deemed to match <sip:Enquiries@1.2.3.4:5060>Enquiries (if yyy.org resolves to 1.2.3.4).

6.3 TpAddressRange

Table 6-3 TpAddressRange Table mapping

	From: TpAddressRange

	To: SIP
	Remark

	Plan (TpAddressPlan)
	SIP
	Specifies the address plan in force.
Here only SIP URL is applicable.

	AddrString (TpString)
	SIP: URL address
	Contains a valid SIP address string.

A few examples of SIP URLs:
- A user of an online service:
 “sip:user@xxx.org”
 “sip:alice@10.1.1.1”

 - A PSTN phone number at a gateway service:
”sip:1212@gateway.com”,
”sip: +1-212-555-1212:1234@gateway.com; user =phone”

Notice: For SIP addresses, wildcards are allowed between the ‘sip:’ and the ‘@’ in the AddrString, e.g.

"sip:*@sales.org"
matches all SIP addresses at sales.org:5060.

	Name (TpString)
	N/A
	

	SubAddressString (TpString)
	N/A
	

	Note: The AddrString defines the actual address information and the structure of the string depends on the Plan.
Further information can be found in the OSA API part covering common data definitions [1].

NOTE 1:
It should be noted that two SIP addresses will be regarded as equivalent by a gateway if they correspond to the same user at the same network address. The textual form of the two addresses need not be the same. For example, sip:enquiries@yyy.org will be deemed to match <sip:Enquiries@1.2.3.4:5060>Enquiries (if yyy.org resolves to 1.2.3.4).

6.4 TpCallAppInfo

Table 6-4 TpCallAppInfo Table mapping

	To: TpCallAppInfo

	From: SIP
	Remark

	
	
	

	CallAppAlertingMechanism (TpCallAlertingMechanism)
	N/A
	Indicates the alerting mechamism or pattern to use

Cannot be mapped as Alert-info is defined in SIP

	CallAppNetworkAccessType
(TpCallNetworkAccessType)
	N/A
	Indicates the network access type (e.g. ISDN)

Not mapped. No valid value for SIP in this parameter

	CallAppTeleService
(TpCallTeleService)
	SDP ?
	Indicates the tele service (e.g. telephony)

To be detailed if/how to map ?

	CallAppBearerService
(TpCallBearerService)
	Media type from SDP
	Indicates the bearer services (e.g. 64kbit/s unrestricted data)

Specifies the type of media indicated in the incoming SDP e.g. data, audio, video.
To be detailed if/how to map ?

	CallAppPartyCategory
(TpCallPartyCategory)
	N/A
	The category of the calling party.

Not mapped.
Not defined in SIP
[editor note: ??? check ISUP –SIP interworking]

	CallAppPresentationAddress
(TpAddress)
	May be SIP From header field ?

This may also be the optional STRING associated to the URI (similar to the name you can associate to an e-mail address)
	The address to be presented to other call parties.

In case the SIP From header and SIP Contact are different, The From header field may be seen as presentation Address since the UA will only use the contact or via address to decide the routing destination.

	CallAppGenericInfo
(TpString)
	?
E..g. convey info in a “container” in SIP when ISC is used ?!.

Open how – needs further study !

	Carries unspecified service-service information

Application dependent information to be conveyed to the application (transported transparently from S-CSCF to SIP server in OSA SCS. ?=??

	CallAppAdditionalAddress
(TpAddress)
	N/A
	Indicates an additional address.

No mapping: Not fined in SIP

	CallAppOriginalDestinationAddress
(TpAddress)
	SIP TO Header field
	Contains the original address specified by the originating user when launching the call.

Even if the call is forwarded or redirected by the SIP server, the TO header field will be unchanged and will remain the same. So the TO Field always specifies the original destination of the call

	CallAppRedirectingAddress
(
	N/A

The request-URI in some forwarding cases?
	Contains the address of the user from which the call is diverting.

	
	
	

[Another table for mapping to SIP needed ? e.g. for routeReq
 - and there may be difference if map to SIP / from SIP ??].

6.5 TpCallError

Table 6-5: TpCallError Table mapping

	To TpCallError
	From SIP
	Remarks

	ErrorTime (TpDateAndTime)
	N/A
	Time should be provided locally by the OSA SCS.

Note:
In order to have the accurate time, the Timestamp header field may be added to the SIP send by the participant or the SIP server.
However, it is not possible to rely on timestamp to be recived in message.

	ErrorType (TpCallErrorType)
	See TpCallErrorType mapping table from SIP

	

	AdditionnalErrorInfo (TpCallAdditionalErrorInfo)
	N/A
	See also TpCallErrorType

	Note:

6.6 TpCallErrorType
Table 6‑6: TpCallErrorType Table mapping

	To: TpCallErrorType

	From: SIP
	Remark

	P_CALL_ERROR_UNDEFINED
	Undefined
	

	P_CALL_ERROR_INVALID_STATE
	481 Call/
Transaction Does Not Exist
	

	P_CALL_ERROR_INVALID_ADDRESS
	400 Bad Request,

413 Request Entity Too Large

414 Request URI Too Long

484 Address Incomplete

485 Ambigous
	

6.7 TpCallEventInfo
Table 6-7: TpCallEventInfo Table mapping.

	To: TpCallEventInfo

	From: SIP
	Remark

	CallEventType (TpCallEventType)
	See Table
TpCallEventType
mapping from SIP.
	

	AdditionalCallEventInfo
(TpCallAdditionalEventInfo)
	See Table
TpCallEventType mapping from SIP.
	

	CallMonitorMode
(TpCallMonitorMode)
	See Table
TpCallMonitorMode mapping from SIP.
	

	CallEventTime
(TpDateAndTime)
	N/A
	Timestamp provided by OSA SCS at event reporting.

6.8 TpCallEventRequest

Table 6-8: TpCallEventRequest Table mapping
	To TpCallEventRequest
	From SIP
	Remark

	CallEventType (TpCallEventType)
	See Table
TpCallEventType
mapping from SIP
	.

	AdditionalCallEventCriteria
(TpAdditionalCallEventCriteria)
	See Table
TpAdditionalCallEventCriteria
mapping from SIP
	

	CallMonitorMode (TpCallMonitorMode)
	See Table
TpCallMonitorMode mapping from SIP
	

	Note:

6.9 TpCallEventType

Table 6-9: TpCallEventType Table mapping
	To TpCallEventType
	From SIP
	Remark

	P_CALL_EVENT_UNDEFINED
	N/A
	No mapping from SIP.

	P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT
	N/A
	Originating Call Leg event.
Not applicable to SIP; would mean an empty To: header

	P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED
	N/A
	Originating Call Leg event.

	P_CALL_EVENT_ADDRESS_COLLECTED
	INVITE
	Originating Call Leg event.
No direct mapping to any SIP Method/Response.
Correspond to the point in processing where INVITE is received and no location service lookup performed yet, i.e. before destination address determined.

	P_CALL_EVENT_ADDRESS_ANALYSED
	INVITE
	Originating Call Leg event.
No direct mapping to any SIP Method/Response.
Correspond to the point in processing where INVITE is received and destination address is determined after location service lookup has been performed.

	P_CALL_EVENT_ORIGINATING_SERVICE_CODE
	INVITE
	Originating Call Leg event.
RE-INVITE case - mapping ffs

	P_CALL_EVENT_ORIGINATING_RELEASE
	BYE, CANCEL
See corresponding Table for details
	Originating Call Leg event.
Request for termination of session from calling party.

	P_CALL_EVENT_TERMINATING_CALL_ATTEMPT
	INVITE
	Terminating Call Leg event.
Incoming INVITE received at destination requesting the termination of the session (i.e. dialogue invitation request) for callee.

	P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED
	INVITE
	Terminating Call Leg event.
Incoming INVITE received at destination requesting the establishment of the terminating session for the callee

	P_CALL_EVENT_ALERTING
	SIP: 180 Ringing
	Terminating Call Leg event.
The user agent receiving the INVITE is trying to alert the callee. This response may be used to initiate local ringback for the caller.
Note: Implies that the corresponding INVITE request passed through the OSA SCS

	P_CALL_EVENT_ANSWER
	ACK
-confirmation of invitation. (INVITE -
200 OK)
	Terminating Call Leg event.
The ACK method is used to acknowledge the successful response (answer - 200 OK) to the invitation (INVITE).
The user agent receiving the invitation has answered (and media session is established).
Note: Implies that the corresponding INVITE request passed through the OSA SCS.

	P_CALL_EVENT_TERMINATING_RELEASE
	BYE,
4xx, 5xx, 6xx
See corresponding Table for details
	Terminating Call Leg event.
Request for termination of session (i.e. release of dialogue) from called party/destination.

	P_CALL_EVENT_REDIRECTED
	181 Call Is Being Forwarded
	Terminating Call Leg event.
This status code is used to indicate that the call is being forwarded to a different (set of)
destination(s)

	P_CALL_EVENT_TERMINATING_SERVICE_CODE
	INVITE
	Terminating Call Leg event.
RE-INVITE case - mapping ffs

	P_CALL_EVENT_QUEUED
	SIP:182 Queued
	Terminating Call Leg event.

In case of ISC, implies that the corresponding INVITE request passed through the OSA SCS.

Note: support for supplementary information?
The reason phrase could give further details about the status of the call. For example “5th call in the queue, expected waiting time 10 minutes”.

6.10 TpCallInfoType

Table 6‑10: TpCallInfoType Table mapping

	From: TpCallInfoType

	From: SIP
	Remark

	P_CALL_INFO_UNDEFINED
	N/A
	-Undefined

	P_CALL_INFO_TIMES
	N/A
	- Relevant call time

	P_CALL_INFO_RELEASE_CAUSE
	See Table
TpReleaseCause
for mapping from / to SIP
	- Call release cause

	P_CALL_INFO_INTERMEDIATE
	N/A
	- Send only intermediate reports.
When this is not specified the information report will only be sent to the spplication when the call has ended.
When intermediate reports are requested a report will be sent between follow-on calls, i.e. when a party leaves the call.

	Note: Defines the type of call information requested and reported. The values may be combined (logical ‘OR’)

6.11 TpCallLegInfoType mapping from SIP
Table 6‑11: TpCallLegInfoType Table mapping

	From: TpCallLegInfoType

	From: SIP
	Remark

	P_CALL_LEG_INFO_UNDEFINED
	N/A
	Undefined

	P_CALL_LEG_INFO_TIMES
	N/A
	Relevant call times

	P_CALL_LEG_INFO_RELEASE_CAUSE
	See Table ???
	Call leg release cause

	P_CALL_LEG_INFO_ADDRESS
	See Table ???
	Call leg connected address.

	P_CALL_LEG_INFO_APPINFO
	N/A
	Call leg application related information

	NOTE: Defines the type of call leg information requested and reported. The values may be combined by a logical 'OR' function.

6.12 TpCallLegConnectionProperties to SIP
Table 6‑12: TpCallLegConnectiomProperties Table mapping

	From: TpCallLegConnectionProperties

	To: SIP
	Remark

	P_CALLLEG_ATTACH_IMPLICITLY
	N/A
	SIP ACK message directly sent.
It means that the callLeg should be implicitly attached to the call. In this case, the mapping to SIP is done naturally since in SIP, the natural behavior is to start media session with others parties in the call once the signaling is established (INVITE, 200 OK, ACK)

	P_CALLLEG_ATTACH_EXPLICITLY
	INVITE SDP on hold ??
	It means that the callLeg should be explicitly attached to the call. In this case, the mapping to SIP is done do as to start media session with the party on hold once the signaling is established(INVITE with SDP “on hold”, 200 OK, ACK)
[which call leg to be addressed here –callee?
- details for hold to be added].

Attach method need to be called by the application to establish the media connection. See description for attachMedia().

6.13 TpCallMonitorMode

Table 6-13: TpCallMonitorMode Table mapping

	From TpCallMonitorMode
	To SIP
	Remarks

	P_CALL_MONITOR_MODE_INTERRUPT
	N/A
Processing interrupted
	SIP Server set to observe for SIP event as requested and if encountered interrupt SIP processing, nitify the application and await a request to resume processing.

	P_CALL_MONITOR_MODE_NOTIFY
	N/A
Processing NotifyAnd
Continue
	SIP server set to observe for SIP event as requested and if encountered notify the application.; SIP Procesing continues.

	P_CALL_MONITOR_MODE_DO_NOT_MONITOR
	N/A
Processing transparent
	SIP server set not to observe for SIP event –no application interest.

6.14 TpCallNotificationReportScope
Table 6-14: TpCallNotificationReportScope Table mapping

	To: TpCallNotificationReportScope

	From SIP
	Remark

	DestinationAddress (TpAddressRange)

If transaction issued from caller (e.g. INVITE)
OR
OriginatingAddress, if transactin from callee (e.g Re-INVITE, BYE)-
 Note1
	SIP Request-URI header field
URL SIP To header field
URL

	Depends on applied filtering criteria

I don’t think it depends on the filter (if you speak about the 3GPP filter, as filters are specific to the originating or terminating party already). It is more related to the perception of the call to be incoming or outgoing. This can be achieved by different ports being used to receive the ISC/SIP messages.

	OriginatingAddress
(TpAddressRange)

If transaction from caller (e.g. INVITE)
OR
DestinationAddress , if transaction issued from caller (e.g. Re-INVITE, BYE)
Note1
	SIP From header field URL
	Depends on applied filtering criteria

	NotificationCallType (TpNotificationCallType)

 [Editor note:
Data type TpNotificationCallType does not exists !!!
Parameter should be removed !]
	N/A
	Indicates if the notification was reported

	Note1: In SIP, destination (To: header) and origination address (From: header) are relative to the transaction and not to the call as in OSA.

6.15 TpCallNotifiationRequest

Table 6‑15: TpCallNotificationRequest Table mapping

	From: TpCallLegInfoType

	To: SIP
	Remark

	CallNotificationScope
(TpCallNotificationScope):
	
	

	 DestinationAddress
(TpAddressRange)
	SIP URL
(see NOTE)
	Parameter specific to filtering criteria (event triggering) of destination address information. Address plan that can only be accepted is URL (SIP URL).

	 OriginatingAddress
(TpAddressRange)
	SIP URL
(see NOTE)
	Parameter specific to filtering criteria (event triggering) of originating address information (like e.g. in From header Field in SIP messaging). Address plan that can only be accepted is URL (SIP URL).

	CallEventsRequested (set):
(TpCallEventsRequest (set)

Note: A set of TpCallEventRequest
	See Table TpCallEventRequest
mapping from SIP
	

	NOTE: The SIP server responsible for event filtering (e.g. S-CSCF) is to monitor for SIP events requested to be notified if encountered to the application.

6.16 TpCallTreatmentType

Table 6-16: TpCallTreatmentType Mapping
	TpCallTreatmentType

	To SIP
	Remark

	P_CALL_TREATMENT_DEFAULT
	undefined
	Depends on any applied default

	P_CALL_TREATMENT_RELEASE
	SIP: 503 Service Unavailable
	Service Unavailable response sent to deny invite request for a new session .Already established call sessions are not affected

	P_CALL_TREATMENT_SIAR
	SIP: 503 Service Unavailable
or
BYE
	BYE only after user interaction if it implies and established session (e.g. to MRF) Service Unavailable response sent to deny invite request for a new session.

	Note: Already established call sessions should not be affected by the overload call treatment.

6.17 TpRelaseCause, mapping to SIP response
Table 6‑17: TpReleaseCause Table mapping to SIP

	From: TpReleaseCause

	To: SIP
	Remark

	P_UNDEFINED
	N/A
See Note 3
	

	P_USER_NOT_AVAILBLE
	480 Temporarily Unavailable
	The callee is currently unavailable.
Normal call clearing, unspecified reason.

Note: No support for include additional information in the Retry-After header.
This header in the response may indicate a better time to call.

	P_BUSY
	486 Busy Here
	The callee is currently not willing or able to take additional calls (user busy).

Note: No support for include additional information in the Retry-After header.
This header in the response may indicate a better time to call.

	P_NO_ANSWER
	603 Decline
	The callee explicitly does not wish to or cannot participate in the call.

Note: No support for include additional information in the Retry-After header.
This header in the response may indicate a better time to call.

	P_NOT_REACHABLE
	480 Temporarily Unavailable

	The callee is currently unavailable.
The user is absent or not reachable e.g. MS turned off or out of coverage area.

	P_ROUTING_FAILURE
	404 Not Found
	The user does not exist at the domain specified in the Request-URI. This status is also returned if the domain in the Request-URI does not match any of the domains handled by the recipient of the request.

	P_PREMATURE_DISCONNECT
	N/A
See Note 3

	

	P_DISCONNECTED
	N/A

See Note2.
See Note 3
	Normal call clearing.

Recommended value when an established session is to be released.

	P_CALL_RESTRICTED
	406 Not Acceptable
	

	P_UNAVAILABLE_RESOURCE
	503 Service Unavailable
	

	P_GENERAL_FAILURE
	500 Server Internal Error

	

	P_TIMER_EXPIRY
	504 Gateway Timeout
	

	Note 1 : SIP CANCEL will be sent if any pending invitations (INVITE) to be cancelled in response to the release() method independent of TpReleaseCause value

Note 2: SIP BYE will be sent if an established session (SIP leg) is to be released in response to the release() method independent of TpReleaseCause value. However, the recommended value is in this case P_DISCONNECTED.

Note 3: Where no mapping is defined, a default mapping to 480 Temporarily Unavailable is recommended.

6.18 TpRelaseCause, mapping from SIP
Table 6‑18: TpReleaseCause Table mapping

	From: TpReleaseCause

	To: SIP
	Remark

	P_UNDEFINED
	N/A
	No mapping

	P_USER_NOT_AVAILBLE
	410 Gone

604 Does Not Exist Anywhere
	The callee is unavailable.
Normal call clearing, unspecified reason.

	P_BUSY
	486 Busy Here

600 Busy EveryWhere
	

	P_NO_ANSWER
	408 Request Timeout

603 Decline
	-No response from participant

	P_NOT_REACHABLE
	480 Temporarily Unavailable

301 Moved Permanently ?

302 Moved Temporarily ??
	

	P_ROUTING_FAILURE
	404 Not Found

400 Bad Request,
482 Loop Detected,
483 Too Many Hops

484 Address Incomplete

485 Ambiguous,
502 Bad Gateway

505 Version Not Supported

	

	P_PREMATURE_DISCONNECT
	SIP CANCEL
	Pending invitation (INVITE) abandoned by caller before answer (i.e. before the request has been acknowledged (ACK)).

	P_DISCONNECTED
	SIP BYE
	Normal call clearing

	P_CALL_RESTRICTED
	406 Not Acceptable,
606 Not Acceptable
	

	P_UNAVAILABLE_RESOURCE
	503 Service Unavailable
	

	P_GENERAL_FAILURE
	500 Server Internal Error

	

	P_TIMER_EXPIRY
	504 Gateway Timeout
	

6.19 TpAoCInfo, mapping to SIP

Table 6‑19: TpAoCInfo Table mapping

	From: TpAoCOrder

	To: SIP
	Remark

	ChargeOrder (TpAoCOrder)
	See Table
TpAocOrder
	

	Currency (TpString)
	??
	Currency unit according to ISO-4217:1995

	Note: Defines the Sequence of Data Elements that specify the Advice Of Charge information to be sent to the terminal

6.20 TpAoCOrder, mapping to SIP
Table 6‑20: TpAoCOrder Table mapping

	From: TpAoCOrder

	To: SIP
	Remark

	TpAoCOrderCategory:
	-
	

	P_CHARGE_ADVICE_INFO (TpChargeAdviceInfo)
	??
	

	P_CHARGE_PER_TIME
(TpChargePerTime)
	??
	

	P_CHARGE_NETWORK
(TpString)
	??
	

	Note: Defines the Data Elements that specify the charge plan for the call.

A Annex A (informative):Introduction to API Mapping for OSA

A.1 OSA Service Provision in IMS

The figure below depicts an overall view of how services can be provided.

[image: image54.wmf]S

-

CSCF

S

-

CSCF

HSS

HSS

OSA service

capability server

(SCS)

OSA service

capability server

(SCS)

OSA

application

server

OSA

application

server

Cx

ISC

(SIP)

SIP

UE

OSA API

Sh

Figure 4-1: Functional architecture for support of Service Provision for IP Multimedia subsystem

The OSA SCS is the controlling entity and S-CSCF the controlled entity [14].

Filtering is done in the S-CSCF on SIP requests messages only and can be e.g. be based upon:

· The method of the SIP request.

· Whether the request was received in the originating or terminating case.

· A particular media type included in the SDP of a request.

· The presence/content of a particular SIP header.

Filter Criteria (FC) is the information the S-CSCF receives from the HSS or the OSA SCS (AS) that defines when in the call process a particular application should be notified in order to be invoked. They select the subset of SIP requests received by the S-CSCF that should be sent/proxied to a particular application. When the S-CSCF receives a SIP request, it evaluates the filter criteria. If the SIP request matches the filter criteria, the S-CSCF proxies the SIP request to the corresponding OSA SCS.

 Initial Filter Criteria (iFC) are filter criteria that are stored in the HSS as part of the user profile and are downloaded to the S-CSCF upon user registration. They represent a provisioned subscription of a user to an application.
After downloading the User Profile from the HSS, the S-CSCF activates for the indicated OSA SCS the filtering on SIP requests messages. Initial Filter Criteria are valid throughout the registration lifetime of a user or until the User Profile is changed.

- Constrains:

Initial Filtering is in S-CSCF on SIP request messages only !.
In case an application is to be invoked on a final SIP response (e.g. 486 Busy Here) the S-CSCF will filter on the INVITE request message in order to get the OSA SCS SIP server into the call chain. The OSA SCS shall however, in this case not invoke the application until a final response is received. The filtering for invocation of an application may be based on basic or complex triggers [14]invokatiois final response may be bsending noticationReport() until the upon receipt of the final response matching the initial filtering criteria (e.g. Busy Here) as specified at enabling the notification (e.g. createNotfication())

A.2 MPCCS

A.2.1 Introduction

The MPCCS allows application to establish multi-party calls where several legs can simultaneously be connected. In SIP, several models for multi party are supported and can be found in [6]. In fact, the MPCCS as defined, allows application to create a leg and to route it. In SIP, to establish a session it requires at least two SIP endpoints (UAs).
MPCCS which beside 2-party call encompasses application initiated call 1 party and multi-party calls can be mapped to SIP implying the OSA SCS behaves as a SIP application server on the ISC interface. The SIP application server hereby may act in different roles e.g. using the B2BUA [13] and 3rd Party Controller [6] concepts.

A.2.2 SIP Server Roles in OSA SCS

A.2.2.1 Introduction

The OSA SCS behaves as a SIP application server on the ISC interface.

The role of UAC and UAS as well as proxy and redirect servers are defined on a transaction-by-transaction basis.
For example, the user agent initiating a call acts as a UAC when sending the initial INVITE request and as a UAS when receiving a BYE request from the callee.
Similarly, the same software can act as a proxy server for one request and as a redirect server for the next request.

However, besides these mode of operation for more advanced service application demands also the B2BUA role an 3rd Party controller mode have been defined [6].

A.2.2.2 OSA SCS acting as a SIP Proxy server

[image: image1.png]In this mode of operation the incoming SIP Request is proxied by the S-CSCF to the OSA SCS which then acts as a proxy proxying the Request back to the S-CSCF which then proxies it towards the destination.

- Scope:
Service applications that need to manipulate data conveyed in the SIP signalling between a UAC and a UAS, like changing destination address (call forwarding services), but do not to intervene on the call as such.

During the proxy operation the OSA SCS may add, remove or modify the header contents contained in the SIP request according to the Proxy rules specified in [13].
Applicable for 2-party calls. However, forking may occur resulting in more SIP dialogues being established between the Caller) UAC and 2 or more callees (UASs).

- Constrains:
The control and visibility of forking in the application is not currently covered by the OSA API MPCCS.

A.2.2.3 OSA SCS acting as Redirect server

In this mode of operation the incoming SIP Request is proxied by the S-CSCF to the OSA SCS which then acts as a Redirect Server as specified in [13].

[image: image56.wmf]

OSA SCS

AS

-

LCM

LSM

LCM

S

-

CSCF

1. INVITE

OR

2. INVITE

Service logic

3. 200 OK

4. 200 OK

OSA SCS

AS

-

LCM

L

SM

LCM

S

-

CSCF

2. INVITE

1. INVITE

Service logic

4. 200 OK

3. 200 OK

SIP

dialog

#1

From: X

To: Y

Call

-

ID: Z

SIP dialog #1

From: X

To: Y

Call

-

ID: Z

SIP

dialog

#1

SIP dialog leg #1

From: X

To: Y

Call

-

ID: Z

From: X

To: Y

Call

-

ID: Z

Terminating

Endpoint

Originating

Endpoint

- Scope:
Service applications that need to request a redirection of a call by the network to a new destination, e.g. due to number changed (callee moved). Hereby the application is to provide the new contact address(es) and leave the call.

During the Redirect operation the OSA SCS may terminate the dialog by requesting a call redirection given a list of 1 or more possible new addresses to contact contained in the redirection response request according to the Redirect rules specified in [13].

- Constrains:
The control and possible of requesting a redirection (3XX response) is not currently supported by the OSA API.

A.2.2.4 OSA SCS acting as UA

· terminating UA
In this mode of operation the incoming SIP Request is proxied by the S-CSCF to the OSA SCS which then acts as a terminating UA (UAS) as specified in [13].

· [image: image57.wmf]

 OSA SCS

AS

-

LCM

LSM

LCM

S

-

CSCF

1. INVITE

2. INVITE

3. 3o1/

 302

5. INVITE to new

 destination

4. 301/302

Service logic

SIP

dialog

#1

SIP dialog #1

From: X

To: Y

Call

-

ID: Z

From: X

To: Y

Call

-

ID: Z

originating UA
In this mode of operation the OSA SCS acts as an originating UA (UAC) as specified in [13] and generates a SIP Request which it sends to the S-CSCF which then proxies it towards the destination.

- Constrains:
The control of media resources when action as UA is outside the scope of this specification.

A.2.2.5 OSA SCS acting as a B2BUA

In this case the controller, i.e. the OSA SCS, takes over the ownership of the call setup by a different party by acting as a Back to Back User Agent (B2BUA). The OSA SCS looks deceptively like a proxy, but it is not. The OSA SCS acts as a UAS for the INVITE received from caller (UAC), and then as a UAC when it initiates a call to the callee (UAS).

[image: image58.wmf]

 OSA SCS

AS

-

ILCM

AS

-

OLCM

LSM

ILC

M

OLCM

S

-

CSCF

1. INVITE

2. INVITE

3. INVITE

4. INVITE

5. 200 OK

5. 200 OK

6. 200 OK

7. 200 OK

Service logic

SIP dialog #1

SIP dialog#1

From: X

To: Y

Call

-

ID: Z

From: X

To: Y

Call

-

ID: Z

SIP

dialog

#1

SIP

dialog

#1

From: X

To: Y

Call

-

ID: Z

From: X

To

: Y

Call

-

ID: Z

In this case the incoming SIP Request is proxied by the S-CSCF to the OSA SCS which then generates a new SIP Request for a different SIP dialog which it sends to the S-CSCF which then proxies it towards the destination.
In this mode the OSA SCS behaves as a B2BUA for the multiple SIP dialogs as specified in [13].

- Usage:
Service applications that need advanced signalling control, i.e. the capability to intervene on a call.
Some examples may be applications that needs to release a call (e.g. prepaid service) or a call participant (follow-on call), needs to generate messages during the call, act on mid-call events from a call party (e.g. re-INVITE).
Example: Pre-Paid card runs out of money:

- Constrains:
The mode B2BUA is to be determined based on SIP requests messages only as it will not be possible e.g. to change from Proxy mode to B2BUA mode – and vice versa. An application that is to be invoked on a response or after session established , e.g. mid-call event therefore implicit demands the OSA SCS to operate in B2BUA mode- despite that the application may not be activated (e.g. no mid-call event encountered from the user).

Moreover, the end-to-end call between caller will be split into a multitude of different SIP dialogues , due to different OSA SCSs AS acting as B2BUAs. This seems to demand a lot of computing / processing power in the network and will also delay the call flows.

A.2.2.6 OSA SCS acting as a 3rd Party Controller

[image: image59.wmf]

 OSA SCS

AS

-

ILCM

AS

-

OLCM

-

1

LSM

-

1

ILCM

OLCM

-

1

S

-

CSCF

2. BYE

LSM

-

2

Service logic

1. BYE

3. 200 OK

4. 200 OK

AS

-

OLCM

-

2

LSM

-

3

OLCM

-

2

10. INVITE

11. 200 OK

5. INVITE

9. INVITE

12. 200 OK

6. INVITE

7. 200 OK

8. 200 OK

SIP dialog #1

SIP dialog #3

SIP dialog #2

SIP

dialog

#2

SIP

dialog

#3

From: X

To: Y

Call

-

ID: Z

From: X

To: Y

Call

-

ID: Z

From: P

To: Q

Call

-

ID: R

From: P

To: B

Call

-

ID: W

From: P

To: B

Call

-

ID: W

From: P

To: Q

Call

-

ID: R

B2BUA

 end

-

to

-

end

session

 split into

 two SIP

 dialogues

-

 terminating and

 originating.

UAC

-

 originating 3

rd

 party

SIP dialog

SIP

dialog

#1

In this mode the OSA SCS generates a new SIP Request for a different SIP leg which it sends to the S-CSCF which then proxies it towards the destination. The OSA SCS may generate one or more different SIP dialogues in this way. This may be combined with the OSA SCS behaviour as a B2BUA for the multiple SIP legs as specified in RFC2543bis, i.e. when more than 2 parties are involved in the call.

- Usage:
Application initiated one party , two-party and multi-party calls.
It may also be associated with B2BUA mode of operation, e.g. where the application demands to invite a 3rd part into a 2-party.

- Constrains:
The control of media resources for application initiated calls is outside the scope of this specification.

A.2.3 SIP Server Role Mode Transitions

Figure 5 provides an overview of the states and transitions of the FSM for Call Control Signalling Terminations. These states and transitions are more precisely defined in the following clauses.

[image: image55.wmf]

UA

3

rd

 PARTY

 B2BUA

E3

 E2

E4

E5

E7

E6

 E1

PROXY

E9

REDIRECT

E8

Figure 4-1: Operation Mode for the OSA SCS

The server mode diagram above for the OSA SCS shows the possible mode transitions.
It contains the following transitions (events):

E1
Incoming Invite received from the network (caller) or
request received from the application to initiate a call “out of the blue”.off detected

E2
Application request to act as B2BUA on call received from the network

E3
Application request to act as Redirect server on call received from the network

E4
Application request to act as Proxy server on call received from the network

E5
Application request to act as single UA on call received from the network

E6
Application request to act as 3rd Party controller on call received from the network

E7
Application request to act as B2BUA on call received from the network

E8
Application request to act as 3rd Party controller on call initiated from application

E7
Application request to act as single UA.

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

[image: image60.wmf]

 OSA SCS

AS

-

ILCM

AS

-

OLCM

-

1

LSM

-

1

ILCM

OLCM

-

1

S

-

CSCF

2. BYE

LSM

-

2

Service logic

1. BYE

3. 200 OK

4. 200 OK

5. INVITE

6. INVITE

7. 200 OK

8. 200 OK

SIP dialog #1

SIP dialog #2

SIP

leg

#2

From: X

To: Y

Call

-

ID: Z

From: X

To: Y

Call

-

ID: Z

From: P

To: Q

Call

-

ID: R

From: P

To: Q

Call

-

ID: R

B2BUA

 end

-

to

-

end

session

 split into

 two SIP

 dialogues

-

 terminating and

 originating.

SIP

dialog

#1

[image: image61.wmf]

 OSA SCS

AS

-

ILCM

AS

-

OLCM

-

1

LSM

-

1

ILCM

OLCM

-

1

S

-

CSCF

2. BYE

LSM

-

2

Service logic

1. BYE

3. 200 OK

4. 200 OK

5. INVITE

6. INVITE

7. 200 OK

8. 200 OK

SIP dialog #1

SIP dialog #2

SIP

leg

#2

From: X

To: Y

Call

-

ID: Z

From: X

To: Y

Call

-

ID: Z

From: P

To: Q

Call

-

ID: R

From: P

To: Q

Call

-

ID: R

B2BUA

 end

-

to

-

end

session

 split into

 two SIP

 dialogues

-

 terminating and

 originating.

SIP

dialog

#1

[image: image62.wmf]

 OSA SCS

AS

-

LCM

LSM

LCM

S

-

CSCF

1. INVITE

2. INVITE

3. 3o1/

 302

5. INVITE to new

 destination

4. 301/302

Service logic

SIP

dialog

#1

SIP dialog #1

From: X

To: Y

Call

-

ID: Z

From: X

To: Y

Call

-

ID: Z

[image: image63.wmf]

OSA SCS

AS

-

LCM

LSM

LCM

S

-

CSCF

1. INVITE

OR

2. INVITE

Service logic

3. 200 OK

4. 200 OK

OSA SCS

AS

-

LCM

L

SM

LCM

S

-

CSCF

2. INVITE

1. INVITE

Service logic

4. 200 OK

3. 200 OK

SIP

dialog

#1

From: X

To: Y

Call

-

ID: Z

SIP dialog #1

From: X

To: Y

Call

-

ID: Z

SIP

dialog

#1

SIP dialog leg #1

From: X

To: Y

Call

-

ID: Z

From: X

To: Y

Call

-

ID: Z

Terminating

Endpoint

Originating

Endpoint

[image: image64.wmf]

 OSA SCS

AS

-

ILCM

AS

-

OLCM

-

1

LSM

-

1

ILCM

OLCM

-

1

S

-

CSCF

2. BYE

LSM

-

2

Service logic

1. BYE

3. 200 OK

4. 200 OK

AS

-

OLCM

-

2

LSM

-

3

OLCM

-

2

10. INVITE

11. 200 OK

5. INVITE

9. INVITE

12. 200 OK

6. INVITE

7. 200 OK

8. 200 OK

SIP dialog #1

SIP dialog #3

SIP dialog #2

SIP

dialog

#2

SIP

dialog

#3

From: X

To: Y

Call

-

ID: Z

From: X

To: Y

Call

-

ID: Z

From: P

To: Q

Call

-

ID: R

From: P

To: B

Call

-

ID: W

From: P

To: B

Call

-

ID: W

From: P

To: Q

Call

-

ID: R

B2BUA

 end

-

to

-

end

session

 split into

 two SIP

 dialogues

-

 terminating and

 originating.

UAC

-

 originating 3

rd

 party

SIP dialog

SIP

dialog

#1

_1067087670.doc

Participant

SIP server

SCS

Application

superviseRes

OSA SCS

_1067152659.doc

Participant

SIP server

SCS

Application

SIP Server set to stop the observation for call events to be notified to the application.

destroyNotification

OSA SCS

_1067272576.doc

Participant

SIP server

SCS

Application

 2. ISC: INVITE� (no SDP)

ISC: 200 OK

 3a. ISC: 100 Trying

 3c. ISC: 183 Progress (SDP)

OSA SCS

1. createAndRouteCallLegReq

ISC :PRACK

ISC: COMET

ISC: 180 Ringing

ISC: 200 OK

_1067272887.doc

Participant

SIP server

SCS

Application

 ISC: 400, 404, 413, 414, 481, 484, 485� (response to previous sent INVITE)

createAndRouteCallLegErr

ACK

OSA SCS

_1067273848.doc

Participant

SIP server

SCS

Application

 2. ISC: INVITE

3b. eventReportRes

B

A

1. routeReq �

ISC :INVITE

_1067274402.doc

Participant

SIP server

SCS

Application

 ISC: 400, 404, 413, 414, 481, 484, 485� (response to previous sent INVITE)

routeErr

ACK

OSA SCS

_1067274548.doc

Participant

SIP server

SCS

Application

 The SIP server of the SCS detects that call leg (OSA leg) has been released

ISC: BYE etc.

 callLegEnded

OSA SCS

_1067273996.doc

Participant

SIP server

SCS

Application

 ISC: 200 OK

 2c. ISC: INVITE� (Re-INVITE, SDP on hold)

: 3c. ISC: ACK

 Note: The application may in� deachMedia request the media to be detached, i.e. to put the media for the participant on hold (disconnected)�See detachMedia method �

3c.detachMedia (detach media) eventReportRes()

4c. attachMedia

ISC: INVITE (Re-INVITE)

 ISC: 200 OK

eventReportRes

OSA SCS

_1067273243.doc

Participant

SIP server

SCS

Application

 2. ISC: INVITE

3b. eventReportRes

: 3a. ISC: 1xx

: 3c. ISC: 200 OK

3d. eventReportRes

1. routeReq �

ISC :ACK

_1067272595.doc

Participants

SIP server

SCS

Application

 2. ISC: INVITE

 4. ISC: PRACK

 3a. ISC: 183Progress

 3c. ISC: PRACK

OSA SCS

1. createAndRouteCallLegReq

3. ISC : 183Progress

 ISC: INVITE (SDP

ISC: 100 Trying

B A

_1067272284.doc

Participant

SIP server

SCS

Application

 ISC: INVITE

 2d. ISC: 3xx, 4xx, 5xx, 6xx

:

 Note: The participant is not yet� conneced.� SIP: Invite has been received � A negative final response � is provided by the application� (e.g.call barring).

1. release

ISC: ACK

OSA SCS

_1067272393.doc

Participant

SIP server

SCS

Application

 2a. ISC: BYE

 ISC: ACK

: 3. ISC: 200 OK

 Note: The participant is already� connected: SIP: 200 OK - ACK �messages have been exchanged

OSA SCS

1a. release

ISC: 200 OK

_1067272508.doc

Participant

SIP server

SCS

Application

 1b.ISC: 1xx, 200, 3xx, 4xx, 5xx, 6xx, BYE, Re-INVITE

2b. reportNotification

OSA SCS

_1067272342.doc

Participant

SIP server

SCS

Application

 ISC: 1xx

 2c. ISC: 3xx, 4xx, 5xx, 6xx

: 3c. ISC: ACK

 Note: The participant is not yet� conneced.� SIP: Invite has been sent � A negative response is received.

3c. eventReportRes()

4c. release

ISC: INVITE

OSA SCS

_1067267911.doc

Participant

SIP server

SCS

Application

ISC: 481 Call Leg/transaction Does Not Exist; Outgoing BYE, CANCEL, INVITE without any response

callAborted

OSA SCS

_1067271051.doc

Participant

SIP server

SCS

Application

 ISC: 200 OK

 2c. ISC: INVITE� (Re-INVITE, SDP on hold)

: 3c. ISC: ACK

 Note: The application may� e.g. in routeReq(connectionproperties) or in deachMedia request the media to be detached implying that the media for the participant is not yet conneced.

3c. e.g. routeReq (detach media) eventReportRes()

4c. attachMedia

ISC: INVITE

 ISC: 200 OK

eventReportRes

OSA SCS

_1067271121.doc

Participant

SIP server

SCS

Application

 ISC: 200 OK

: 3c. ISC: ACK

 Note: The application may in� deachMedia request the media to be detached, i.e. to put the media for the participant on hold (disconnected)�

1.detachMedia

ISC: INVITE (Re-INVITE)

OSA SCS

_1067271518.doc

Participant

SIP server

SCS

Application

Note 1: any appropriate SIP message:INVITE, 1xx, 2xx, 3xx, 4xx, 5xs, 6xx, ?�

2. eventReportRes

1. ISC: see Note 1

OSA SCS

_1067270736.doc

Participant

SIP server

SCS

Application

 The SIP server of the SCS detects that call has been released or the call in terminated in the network(e.g., last leg released or disconnected)

ISC: BYE etc.

 callEnded

OSA SCS

_1067152816.doc

Participant

SIP server

SCS

Application

 1a. ISC: INVITE, CANCEL; Re-INVITE, BYE

2a. reportNotification

OSA SCS

_1067089893.doc

Participant

SIP server

SCS

Application

 SIP call processing resumed� - processing of any interupted� SIP message is resumed.�-

continueProcessing

OSA SCS

_1067109941.doc

Participant

SIP server

SCS

Application

createCallLeg

OSA SCS

_1067114505.doc

Participant

SIP server

SCS

Application

OSA SCS

eventReportReq

_1067090208.doc

Participant

SIP server

SCS

Application

eventReportErr

OSA SCS

_1067090379.doc

Participant

SIP server

SCS

Application

getInfoErr

OSA SCS

_1067090439.doc

Participant

SIP server

SCS

Application

superviseErr

OSA SCS

_1067090308.doc

Participant

SIP server

SCS

Application

getInfoRes

OSA SCS

_1067090072.doc

Participant

SIP server

SCS

Application

deassign

OSA SCS

_1067089816.doc

Participant

SIP server

SCS

Application

getInfoReq

OSA SCS

_1067089856.doc

Participant

SIP server

SCS

Application

getCall

OSA SCS

_1067089016.doc

Participant

SIP server

SCS

Application

 2b. SIP: CANCEL

 SIP: 1xx

: 3. SIP: 200 OK

 Note: The participant is not yet� connected: SIP: INVITE has been sent, but 200 OK - ACK �messages have not been exchanged

OSA SCS

1b. release

SIP: INVITE

_1066631338.doc

Participant

SIP server

SCS

Application

Retrieve the information previously set on call events to be notified for the application.

getNotification

OSA SCS

_1067082565.doc

Participant(s)

SIP server

SCS

Application

 2. ISC: (n x) BYE

OSA SCS

: 3c. ISC: 200 OK

1. release

ISC :ACK

_1067087584.doc

Participant

SIP server

SCS

Application

getInfoErr

OSA SCS

_1067087627.doc

Participant

SIP server

SCS

Application

superviseErr

OSA SCS

_1067087011.doc

Participant

SIP server

SCS

Application

getInfoRes

OSA SCS

_1066733662.doc

E9

PROXY

E5

E7

E6

 E1

REDIRECT

 B2BUA

E8

E3

 E2

E4

3rd PARTY

UA

_1066997990.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

SIP dialog leg #1

SIP dialog #1

SIP dialog #1

Originating�Endpoint

Terminating�Endpoint

From: X

To: Y

Call-ID: Z

From: X

To: Y

Call-ID: Z

From: X

To: Y

Call-ID: Z

SIP dialog #1

From: X

To: Y

Call-ID: Z

3. 200 OK

2. INVITE

4. 200 OK

Service logic

1. INVITE

S-CSCF

LCM

LSM

AS-LCM

OSA SCS

S-CSCF

4. 200 OK

3. 200 OK

Service logic

AS-LCM

2. INVITE

1. INVITE

OSA SCS

OR

LCM

LSM

_935227290.doc

_1066998301.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

SIP dialog #2

SIP dialog #3

SIP dialog #3

SIP dialog #2

SIP dialog #1

 B2BUA� end-to-end session� split into� two SIP � dialogues�- terminating and � originating.

SIP dialog #1

 UAC�- originating 3rd party SIP dialog

From: P

To: Q

Call-ID: R

From: P

To: B

Call-ID: W

From: P

To: Q

Call-ID: R

From: P

To: B

Call-ID: W

From: X

To: Y

Call-ID: Z

From: X

To: Y

Call-ID: Z

12. 200 OK

8. 200 OK

7. 200 OK

6. INVITE

Service logic

9. INVITE

5. INVITE

10. INVITE

11. 200 OK

OLCM-2

LSM-3

AS-OLCM-2

AS-OLCM-1

3. 200 OK

2. BYE

LSM-1

ILCM

LSM-2

OLCM-1

4. 200 OK

1. BYE

 OSA SCS

S-CSCF

AS-ILCM

_935227290.doc

_1067075883.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

 OSA SCS

Service logic

SIP dialog#1

SIP dialog #1

From: X

To: Y

Call-ID: Z

From: X

To: Y

Call-ID: Z

SIP dialog #1

SIP dialog #1

From: X

To: Y

Call-ID: Z

From: X

To: Y

Call-ID: Z

S-CSCF

7. 200 OK

6. 200 OK

5. 200 OK

5. 200 OK

4. INVITE

3. INVITE

2. INVITE

1. INVITE

OLCM

ILCM

LSM

AS-OLCM

AS-ILCM

_935227290.doc

_1066998056.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

SIP dialog #2

SIP dialog #1

From: P

To: Q

Call-ID: R

 B2BUA� end-to-end session� split into� two SIP � dialogues�- terminating and � originating.

SIP dialog #1

From: P

To: Q

Call-ID: R

From: X

To: Y

Call-ID: Z

From: X

To: Y

Call-ID: Z

SIP leg #2

8. 200 OK

7. 200 OK

6. INVITE

Service logic

5. INVITE

AS-OLCM-1

3. 200 OK

2. BYE

LSM-1

ILCM

LSM-2

OLCM-1

4. 200 OK

1. BYE

 OSA SCS

S-CSCF

AS-ILCM

_935227290.doc

_1066997831.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

SIP dialog #1

 OSA SCS

5. INVITE to new

 destination

From: X

To: Y

Call-ID: Z

3. 3o1/� 302

From: X

To: Y

Call-ID: Z

SIP dialog #1

Service logic

AS-LCM

4. 301/302

2. INVITE

1. INVITE

S-CSCF

LCM

LSM

_935227290.doc

_1066635594.doc

SIP Server

SCS

Application

OSA SCS

callOverLoadEncountered

_1066636730.doc

SIP Server

SCS

Application

callOverLoadCeased

OSA SCS

_1066635253.doc

Participant

SIP server

SCS

Application

 Fault detected

mangerInterrupted

OSA SCS

_1066629200.doc

Participant

SIP server

SCS

Application

 SIP Server set to observe for�call events to be notified.�[Editor note:�In the 3GPP IMS architecture the Sh interface is used to store filtering data in HSS ??�For further study]

�

createNotification

OSA SCS

_1066631040.doc

Participant

SIP server

SCS

Application

 SIP Server set to change the observation for call events to be notified for the application.

changeNotification

OSA SCS

_1066631075.doc

Participant

SIP server

SCS

Application

createCall

OSA SCS

_1066630946.doc

Participant

SIP server

SCS

Application

Activate load control

setCallLoadcontrol

OSA SCS

_1066386976.doc

Participant

SIP server

SCS

Application

superviseReq

OSA SCS

_1066387352.doc

Participant

SIP server

SCS

Application

 SIP Server set to create CDR ??

setChargePlan

OSA SCS

_1066472110.doc

Participant

SIP server

SCS

Application

OSA SCS

 Note: The application may in� deachMedia request the media to be detached, i.e. to put the media for the participant on hold (disconnected)�

1.getLastRedirectedAddress

_1066572147.ppt

S-CSCF

HSS

OSA service capability server

(SCS)

OSA application server

Cx

 ISC

 (SIP)

SIP

UE

OSA API

Sh

_1066462484.doc

Participant

SIP server

SCS

Application

 Fault ceased

managerResumed

OSA SCS

_1066387140.doc

Participant

SIP server

SCS

Application

 SIP Server impact ?

setAdviceOfCharge

OSA SCS

_1066386243.doc

Participant

SIP server

SCS

Application

deassignCall

OSA SCS

_1066386856.doc

Participant

SIP server

SCS

Application

getInfoReq

OSA SCS

_1066292173.doc

Participant

SIP server

SCS

Application

getCallLegs

OSA SCS

_1062564837.doc

Participant

SIP server

SCS

Application

superviseRes

