	3GPP TSG_CN5 (Open Service Access – OSA)

Meeting #15, Cancun, MEXICO, 26 – 30 November 2001
	N5-011132

	

	Parlay API –Phase 4 Requirements

	

Status
:
Draft

Issue
:
v0.04
Date
:
1 November 2001

Editor
:
Richard Stretch

BT Exact Technologies

CONTENTS

4Chapter 1 Introduction

1.1 Purpose
4
1.2 Scope and Focus
4
1.3 Separation of responsibiliites
4
1.4 Framework Interface and Service Interface
4
1.5 Revision Control
4
1.6 References
5
1.7 Acronyms
5
Chapter 2 Phase 4 Parlay API Domains
7
Chapter 3 Proposed enhancements to existing Interfaces
8
3.1 General requirements
8
3.1.1
Proposals about style
8
3.1.2
Backwards Compatibility/Deprecation
9
3.1.3
Emergency preparedness
9
3.1.4
Balancing up of Interfaces
10
3.2 Framework
10
3.2.1
Framework Information model
10
3.2.2
Framework Management Tool
12
3.2.3
Enhancements on event notification handling
14
3.2.4
Framework Operator Administration Interfaces
14
3.3 Call control
15
3.3.1
IM Call control Functions
15
3.3.2
Multi Media Channel Control
16
3.3.3
Packet Switching Call Control Functions
17
3.4 Terminal Capabilities
18
3.4.1
Discovery of Client terminal capabilities
18
3.5 User Interaction
18
3.5.1
Interact with a user
18
3.6 Call Control, Charging Issues
19
3.6.1
Multi media call control
19
3.7 Event notification
19
3.8 Content Based Charging
20
3.8.1
Reference architecture
20
3.8.2
Service Properties
21
3.8.3
User Confirmation
21
3.8.4
Support of Roaming/Multi-Network Scenarios
22
3.8.5
Separation of Rating and Non-Rating Functionality
23
3.8.6
Split Charging
24
Chapter 4 New interfaces and areas of involvement
25
4.1 Information Transfer function
25
4.2 Functions for retrieval of Network Capabilities
25
4.3 Information Services functions
26
4.4 Presence Service Functions (OSA Rel5 Req)
26
4.5 User Data management Requirements (OSA Rel5 Req)
27
4.6 Security Requirements on User Profile Access management (OSA Rel5 Req)
29
4.7 Data Hosting Service interface for User Profile and Application Data Eurescom (N5-0108937)
30
Issue Definition
30
Scenarios
32
Advantages
32
Requirements
33
Solution Elements
33
4.8 Journalling requirements (OSA R5 Req)
34
4.9 Policy Management (OSA R5 Req)
34
4.10 User Profile Service interface
35
4.11 Parlay and SIP
35
4.12 Inclusion of SOAP/XML as an alternative Transport Mechanism
35
Appendix 1
38
1.0 CPL
38
2.0 Service Creation environment (SCE)
38
3.0 E-Commerce
38
4.0 Parlay Lite a new API
39
4.1 Why Parlay Lite
39
4.2 Conclusions
42
5.0 Tax Calculation and Collection
42

Chapter 1 Introduction

1.1 Purpose

This document is a living document, capturing the agreed requirements for Phase 4.0 of the Parlay API.

1.2 Scope and Focus

This document contains the functional requirements for the fourth phase of the Parlay API. The Parlay API shall be specified and designed using the requirements identified in this document. The requirements are intended to provide the necessary functionality for benchmark applications.

This draft captures the requirements as defined since the last Parlay meeting in San Diego and those captured during the proceeding meeting in Munich (Sept 2001).

It is the intention that the new requirements should build upon the Parlay 3.0 specification and should be fully backward compatible. This means that any network operator implementing Parlay 4.0 should be able to interwork with a client application provider implementing Parlay 3.0. In other words Parlay 4.0 will retain Parlay 3.0 as a complete subset.

1.3 Separation of responsibiliites

The document is split into two parts. The first part refers to those issues that have been agreed to be part of the Joint working group of Parlay, ETSI, 3GPP and JAIN. The second aprt contained within the appendix capture all other issues that are under the remit of separate working groups of Parlay itself. It is the intention that both sets of Requirements will be visible to both groups.

1.4 Framework Interface and Service Interface

The Parlay API provides the common interfaces to a variety of services. For the services to work together in a coherent fashion, "framework" functions are required and are also included in this document.

Services and the framework functionality will be exposed via interfaces. These interfaces will be called the service interface and framework interface respectively.

1.5 Revision Control
Revisions of this document will be controlled using a numeric system where the first digit represents major revisions (changes resulting from formal steering committee review) and the second set of two digits represents minor revisions (any other changes).

	Number
	Date
	Editor
	Reason for Change

	0.01
	9 Aug 2001
	Richard Stretch
	Initial draft for comment, further input.

	0.02
	28 Sept 2001
	Richard Stretch
	Capturing of comments and additions, made at the Munich Parlay meeting Sept 2001,

	0.03
	1 Nov 2001
	Richard Stretch

Karsten Luettge
	Updated as a result of comments/further contributions presented at the Brighton meeting

	0.04
	1 Nov 2001
	Richard Stretch
	Comments to v0.03

	0.05
	14 Nov 2001
22 Nov 2001
	Richard Stretch
	Comments received from the Parlay TAC to the Appendix
Changes made by S1 to 3GPP Reqmts Rlse 5.0

1.6 References

<<to be provided>>

1.7 Acronyms

	Acronym
	Description

	AAA
	

	ACID
	

	ACL
	

	ADSL
	Asymmetric Digital Subscriber Line

	API
	Application Program Interface

	ATM
	Asynchronous Transfer Mode

	BCD
	

	BCS
	Billing and Charging Service

	BGP4
	

	CAMEL
	

	CGI
	

	CS-2
	IN Capability Set #2

	CTI
	

	DiffServ
	Differentiated Services

	GCCS
	Generic Call Control Service Interface

	HLR
	Home Location Register

	IC
	

	ID
	Identifier

	IE
	Information Element

	IKE
	

	IMEI
	

	IMSI
	

	INAP
	Intelligent Network Application Protocol

	IP
	Internet Protocol

	IPsec
	

	ISDN
	

	ISP
	Internet Service Provider

	ISUP
	ISDN User Part of SS7

	L2TP
	

	LDAP
	

	LSA
	

	MExe
	

	MPLS
	

	MS
	Mobile Subscriber

	MSC
	

	MSG
	Messaging Service Interface

	NA
	Not Applicable/Available

	NAT
	

	NCP
	Network Control Point

	NSP
	Network Service Provider

	OA&M
	Operations, Administration and Maintenance

	PLMN
	

	PSTN
	Public Switched Telephone Network

	RAI
	

	RSVP
	

	QoS
	Quality of Service

	SET
	

	SLA
	

	SLG
	

	SP
	Service Provider

	SMS
	

	SRF
	Specialized Resource Function

	SS7
	Signaling System 7

	SVC
	Switched Virtual Circuit

	VLR
	Visitor Location Register

	VoIP
	Voice over IP

	VPN
	Virtual Private Network

	WAP
	

	WIN
	

	
	

	
	

	
	

Chapter 2 Phase 4 Parlay API Domains

The Parlay API is an open, technology-independent, and extensible interface into networking technologies. The Parlay API is therefore applicable to a number of business and application domains, not just telecommunications network operators.

Examples of business domains that may use the Parlay API include:

· Third Party Telephony Service Providers

· Interactive Multimedia Service Providers

· Corporate Businesses

· Small Businesses

· Residential Customers

· Network Operators

All of these businesses have networking requirements, ranging from simple telephony and call routing to call centre's, virtual private networks and fully interactive multimedia.

The rest of this document is structured to capture all of the requirements that are deemed necessary to enhance the existing Parlay 3.0 specification to a Release 4.0 status.

Chapter 3 Proposed enhancements to existing Interfaces

3.1 General requirements

3.1.1 Proposals about style

Source: Internal

Issue/Motivation:

It is said that good style leads to clarity and (in software) reliability, this can be shown in Elements of Style by Strunk & White; Elements of Programming Style by Kernighan & Plauger. Clarity in any documentation leads to ease of use. This does not mean that it is necessarily easy to use, but that the overall concepts are clear and without ambiguity.
One problem that we have with Parlay is that we need to be able to explain it to a number of differing audiences. High level explanations can be explored here, but to fully understand the API it is necessary to dig deep into the specifications. Unfortunately as they are presented so far, it makes it very hard to explain the API to colleagues within the industry, this effectively makes our job of selling the API very difficult.

Requirement Description:

Editor’s Note: The exact “non-functional” requirements need to be filled in here. According to the preliminary minutes from CN5#14 (tdoc N5-010916), Ard-Jan, Chelo and Andy will prepare a white paper on this.

Possible solution and further considerations:

· More complete and rigorous method and data structure definitions

· Full explanation of all arguments and fields

· Why as well as what would be helpful

· Method pre-conditions and post conditions expressed in OCL or comparable formal notation

· Ladder diagrams would be useful but not these on there own are not enough

· One needs to provide fully worked out state-charts (not the same as FSMs)

· Sample code to supplement ladder diagrams

· Sample code has been a great help in figuring out JAIN SPA APIs and this would be equally helpful with Parlay

· Finding things in the specs is very difficult, especially in the Data Definition specs. There seems to be some attempt to organize things by topic, but for reference purposes, alphabetic order would be more helpful (or at least an alphabetical index). Another point is that Web-based version as utilized in the JAIN web documentation would be a good model to emulate.

Editor’s Note: E.g. there are duplicate types in the call control specs.

3.1.2 Backwards Compatibility/Deprecation

Editor’s Note: This requirement has been added according to the minutes from CN#14 (Brighton).

Source: Parlay

Issue/Motivation:

It needs to be considered what can be done if we find that certain interfaces in Release 3.1 are found to be unstable and therefore require appropriate modification. If we use the concept of deprecation then we can effectively provide new methods to that interface where the old methods are incorrect. This means that the two methods will exist side by side in the same interface for the same purpose in Release 4.0. One method may not be complete but the other is! The methods that are incorrect would be removed in further versions of the API.

Requirement Description:

The Parlay 4.0/OSA 2.0/ETSI SPAN 2.0 APIs shall be backwards compatible. This has two aspects:

· A client application utilizing Parlay 3.0/OSA 1.0/ETSI SPAN 1.0 APIs shall run without change (not even re-compilation) against a server providing Parlay 4.0/OSA 2.0/ETSI SPAN 2.0 APIs.

· A deprecation mechanism shall be defined that allows to remove outdated methods or interfaces in a well-defined, step-wise approach.

3.1.3 Emergency preparedness

Source: Telcordia

Issue/Motivation:

There is a need to extend A/IN-based facilities defined for national emergency calls to Next Generation Networks and APIs. The U.S. Government and other countries have sponsored programs over the past 15 years to ensure, via standards and implementation programs, that National Emergency calls enjoy priority handling, Network Management Control exception and Alternate Carrier Routing, etc. This initiative is known as Emergency Telecommunications Service (ETS).Although this is currently available for voice calls only there is also a need to handle new types of communication (data, email, video, multimedia), new types of networks (wireless, packet) and technology (protocols, architectures). These requirements impact Call Control and Policy Management and may also impact Mobility, Charging and Framework (e.g. for location-based service, accounting bypass, security, etc.)
Requirement Description:

The Parlay/OSA/ETSI SPAN APIs shall support the Emergency Telecommunications Service. In particular, they shall provide client applications with means to make use of the Emergency Telephony Service.

Possible solution and further considerations:

To support the Emergency Telecommunications Service, an optional parameter could be provided within the call control and other interfaces (e.g. CC, MPCC, DSC).

3.1.4 Balancing up of Interfaces

Editor’s Note: An LS ping-pong with Eurescom is currently under way to clarify the exact meaning of the following requirement (Chelo, Richard).

Source: Eurescom (see N5-0108937 of CN5#13, Munich)

Issue/Motivation:

Many of the Parlay/OSA/ETSI SPAN APIs are highly asymmetric between application and gateway. As the capabilities of terminals connected to networks continues to grow, network based applications will require greater awareness of these capabilities. Likewise, as new network protocols such as SIP, which are peer-to-peer in nature, are developed, new types of functionality and control will become possible. The ‘Balancing up’ of interfaces is concerned with identifying areas where the asymmetry of Parlay may cause limitation in functionality or feature interaction problems.

Although many of these asymmetries are particularly apparent on SIP networks, many aspects identified will not be restricted to SIP.

The work is aimed at identifying and suggesting changes to Parlay to help in solving feature interaction problems and to support fully the flexibility which new networks, protocols and terminals enable.
Scenarios

This section provides scenarios and examples of situations where more balanced interfaces might be beneficial.

At present the work is expected to have a broad impact across the service interfaces, for example.

Call Control

An application can create a new call leg within a call, but a network cannot create a call leg and notify an application that a call leg has been created. Terminals and protocols which allow a client to add an additional party to the call should be able to do so, making the application aware of the new party.

An application can attach and detach call legs from a call, but the application cannot be notified that the call legs have been attached or detached by the connected party. This causes problems because if a caller detaches from a call, then the application is not aware of this. In a symmetrical model, the media stream could be connected or disconnected by either application or client, and the application could be notified of changes

Mobility interfaces

The mobility interfaces allow an application to query the status and location of an address. However, an application cannot request notification of incoming requests for the status or location of address and return a response. A scenario where this causes a problem is where a unified communications application provides a ‘one-number’ service, and a second application requests the status or location of the user. The unified communications application must have be able to receive status requests and respond to them.

Requirements Description:

· To identify aspects of Parlay where asymmetries can cause limitations. This includes call control, mobility, terminal capabilities and user interaction interfaces

· To collate the information from the comparisons and to identify service scenarios where the existing interfaces are too restrictive and where symmetrical behaviour would be advantageous

· To ensure that any symmetrical interfaces proposed do not compromise compatibility with existing asymmetric networks

Possible solution and further consideration

Modified Parlay interface class diagrams, interface definitions and data types or recommendations via reports

3.2 Framework

3.2.1 Framework Information model

Source: Eurescom (tdoc N5-0108937 from CN5#13, Munich)

Issue/Motivation:

An Information Model for the Parlay/OSA Framework (FIM, Framework Information Model) can answer to several needs, coming from different actors in the possible business models, but the first reason to define such a model is to have an agreed, common view and a “common language” to address the same concepts when analysis related to complex data structures, relationships and objects, have to be done. Since work done so far, both on standard and on the vendors’ side, indicates that the Framework functionality is the heart of the Parlay Gateway system, the availability of a Framework Information Model appears more and more relevant.

The needs of new interfaces (e.g. User profile service interface), or to improve the existing ones, makes the FIM definition relevant also on the standard side. In particular, a clear definition of the objects belonging to the framework domain, and how they interact, can help and shorten the analysis/modeling phase of possible new Parlay services; consequently the definition of new interfaces and improvements/enhancements of existing ones can take advantage of a FIM in terms of speed, easiness, completeness etc.

Vendors planning to develop Parlay Gateways have surely to face the problem of defining data/information models of their system, including a model of the framework functionality, but such models will be obviously tied to the specific implementation. In addition, parts of a FIM are already, implicitly, defined in the specification of current framework APIs, such as service subscription, service registration, and service properties.

The Framework Information Model, objective of the present work, to be useful in different contexts, should be carefully structured and defined at a proper detail level: not so deep to impose implementation constraints and not so abstract to hide aspects (namely entities, relationships, objects or other) that are needed to achieve the aforesaid objectives.

Scenarios:

This section describes two possible scenarios/contexts that could take advantage of the FIM.

The Service Registration is a good example of a scenario that could take advantage in using a Framework model. Before a service can be accessed and used, it has to be registered in the Framework, where information on the available services is contained. The registration procedure is described in the specifications, as well as some relationships among the involved entities (namely Service Supplier Administrator, Framework, the Service that has to be registered); moreover some of the involved objects can be deduced from the interface definition, but a clear, high level view of the whole procedure is not available. Part of this issue could be covered by FIM.

The second scenario a FIM can be useful, is related to Service Subscription (this subject is treated in paragraph 4.17 of “Framework Interfaces, Client Application View – Version 2.1” specification). Even though the Service Subscription phase is described by the specification in some detail (e.g. in terms of a “Subscription Business Model”, defining high level actors and relationships, with pictures and text), it is not simple to analyse all the relationships among the various involved entities (e.g. the Enterprise Operator, the Framework and the Client Application, that have precise roles in the Service Subscription phase), or to have a clear vision, as an example, of all the SAG (Subscription Assignment Group) aspects. A more formal and detailed representation, including the involved Framework entities that can be defined in the Framework model, can be helpful.

Requirements Description:

A useful Framework Information Model should be able to support analysis (as mentioned before both standard-oriented and implementation oriented) of several aspects. In particular the following functionalities should be addressed:

1.
Service Subscription and subscription management: objects and relationships description

2. Service Interface and Framework Interface subscription by applications: each involved entity should be correctly defined, together with the configuration data related to application subscription. Possible aspects related SLA constraints to applications subscription should be addressed as well.

3.
Services and service interfaces registration and configuration.

4.
Service discovery

5.
Usage data management (e.g.. logging data, Service Interface usage data)

Possible solution and further consideration:

Services and Service Interfaces configurations are typically done through properties. A property is composed of a name, a type and a value (data or policy). Moreover, each property can be tied to validation rules. The model should be able to cover these aspects (and consider their relationship with service properties).

A further need is that the model should be easily extensible, to allow Service Interfaces incremental introduction. Each Service Interface is characterized by set of properties. Some of such properties can be defined by standards, others can be proprietary, marking out a particular implementation.

The FIM definition will consist of a formal UML description, in terms of set of Class Diagrams describing objects and relationships; a textual description of the objects and their attributes will be given as well.

In addition to the model, other outputs can be proposals of enhancements to existing APIs as well as new APIs. As an example, a suggestion of API to manipulate some of the identified Framework objects, if useful, can be done.

3.2.2 Framework Management Tool

Editor’s Note: This requirement requests a management API for the data model of the Framework. The meeting agrees to request clarification on the following points:

· Is this requirement just about the SLA, or is the SLA is just an example, and the vendor independence is intended to be of a broader scope?

· Is this a requirement to enhance the Framework-EntOp interfaces, or is it a different API?

Richard will request this clarification.

Source: Eurescom (N5-0108937)

Issue/Motivation:

The Information Model
 for Framework Functions should be accessible from some sort of management tool. To make this possible one should define the API to configure and access the data model.

Information from off-line Service Level Agreements and information needed for on-line Service Agreements should be entered via this API.

Scenarios

This section describes a scenario where the extension will make the work of the network operator easier.

When a third party wants to access a service a Service Level Agreement (SLA) between the third party and the network operator. This contract gives a detailed description of all aspects of the deal, such as the extent of the contract (which services should be accessible and the usage allowed), the responsibilities of the network operator and the third party, and actions to be taken if one of the parties does not keep their part of the deal. Many of the points in the SLA needs to be transferred to the Framework so that it can supervise that the contract is respected by the third party and also take action if the contract is not respected. With a Framework Management Tool API (together with a Framework Management Tool) this process would be easier and the possibility to transfer the data from one Framework to another Framework (i.e. if one wants to change vendor) would be there.

The advantages lie in easier management of Parlay/OSA access:

· Quick and easy set-up of access from new third parties.

· Notification (or service denial) if a third party reaches its allowed use, can be sent to both the network operator and the third party.

· Easy change from one vendor to another, because the Management tool uses specific standardised interfaces.

Requirements Description:

The Framework management tool API must be designed to be able to access and make changes to data concerning the agreements between network operator and third party whilst the Framework is running.

The Framework management tool API must be designed to be independent of vendor and implementation language.

The Framework management tool API should provide access to the Framework Information Model that should contain these (and possibly other) aspects of the Service Level Agreement:

· The SCSs open to access by the third party (or part of SCSs functionality).

· Maximum traffic/usage of SCSs

· Actions to be taken when maximum traffic/usage is reached.

· Restrictions in the use of methods

· Restrictions in visibility of certain information (parameters) and restrictions in modification of certain parameters

·
·
·
·
·

Possible Solution and Further Consideration:

The definition of the Framework management tool API should be based on the Framework Information Model.

3.2.3 Enhancements on event notification handling

Editors Note: The following requirements address the same topic of invoking multiple applications on one single call and were received from two separate sources. Both are included for completeness.

Source: NTT (N5-010910)

Requirements Description:

The behaviour of event notification handling shall be described in more detail:

· Define rules on how to deal with multiple applications registered on the same event criteria.

· Define behaviour of the Parlay Gateway when multiple applications invoke methods that may interrupt processing of the same call. Those methods include enableCallNotification and routeReq enabling interception of a controlled call.
· Define rules on how to deal with events that are matching multiple event criteria e.g a service registered on a criterion on CLI and another on a criterion on dialled number.

Possible Solution and Further Consideration:

Define a general mechanism, based on policies/rules, to allow a better control of event-based application activation/trigger, and event notification;
Let IpCallControlManager have a service interaction management capability and define behaviour when

· Requesting event report (e.g., enableCallNotification, routeReq)

· Notifying event (e.g., callEventNotify, routeRes)

· Requesting processing a call (e.g., routeReq, release)

The service interaction management capability could:
· introduce some ordering;

· allow the forwarding to all the registered applications

· apply some load balancing criteria at application side.

Editor’s Note: One simple rule could be to ensure that the application deals with originating events before terminating events. This maybe where the terminating end is under the control of another application.
3.2.4 Framework Operator Administration Interfaces

Source: Lucent (Andy Bennet)

Issue/Motivation:

Editor’s Note I: Use cases/Scenario/Motivation to be added. Contributions invited.

Editor’s Note II: The following scenarios or motivation I added from what I captured during CN5#14 (Brighton), and in some off-line discussion:

Service Type Managment: Currently, the Parlay/OSA/ETSI framework allows for dynamic registration of SCSs that have not been known at deployment time. However, the SCSs have to register for a certain service type, which must be known before an SCSs can register itself for that service type. In other words, new SCSs can be added to a framework without any configuration effort, but only for service types the framework knows about.

Adding this feature means that it allows SCSs to add an appropriate service type before registering themselves and that would improve the concept of dynamic configuration of the framework..

Framework/Service Interface expansion:

Editor’s Note I: Use cases/Scenario/Motivation to be added. Contributions invited.

Service Property: There are a number of ways that Service Properties are currently used (Parlay 3.0) but once a Service is registered the properties cannot be changed. There are scenarios where changing them may be desirable, e.g. when a service is selected based on a certain usage price (specified as a service property), and then the provider decides to offer a discount, there should be a means for the SCS to inform the application about it.

Criteria matching while doing service discovery is primitive in Parlay 3.0. It should be possible for a Client to define how the requested properties should be matched to the registered properties.

Contract/SLA Format: There is currently no definition for the structure of contracts/SLAs. A “default” one may be desirable as it could allow more automated discovery and signing of agreements.

Editor’s Note: Scenarios are needed for better understanding of this requirement.

Requirments Description:

Service Type Management: Interfaces that enable management (creation/deletion etc) of Service Types shall be added. Lucent has already proposed a draft API for this.

Framework/Service Interface expansion: Parlay 3.0 saw the replacement of the Service Factory with the Service Instance Lifecycle Manager. This currently has create and destroy methods. This interface could be extended to provide suspend/resume methods, for example.

Service Properties:
· There shall be a means at the framework-service interface as well as at the framework-application interface to propagate a change of service property values.

· There shall be a means for the application to request how maching of requested service properties against registered service properties is done by the framework.

Contract/SLA Format: A “default” structure for SLAs shall be defined.

Editor’s Note: The phrasing for the service properties and contract/SLA format paragraphs is a proposal added by the editor.

Proposed Solution and further consideration: void

3.3 Call control

3.3.1 IM Session control Functions

Editor’s Note I: A CR is being currently discussed in SA1 that updates this, which will be taken into account if/when approved (Minutes from CN5#14, Brighton).

Editor’s Note II: This section has been moved in front of “Multi Media Channel Control”, since here requirements to control IM calls as a whoe are collected, while in “Multi Media Channel Control” requirements to control individual channels of a call are collected.

Source: SA1

Issue/Motivation:
Editor’s Note: Text added by the editor.

The OSA APIs shall provide a means to control sessions in the IP multimedia domain (IMS).

Requirements Description:
· Session Control

· Create Multi-media Sessions
The application shall be able to establish sessions between two or more parties with certain media capabilities. The application may add and remove parties at any time for any ongoing session. An application may add additional sessions with certain media capabilities between any parties already involved in an ongoing session. Sessions with multiple parties may lead to the creation of a Multi-media Conference Call. This can either be an ad-hoc conference creation or it can refer to resources that were reserved in advance.
· Release Multimedia calls

This provides the ability for an application to force the release of a multimedia session. This may be limited to the release of certain parties from the session or may be the release of all the parties.

· Relinquish control over session

This allows an application to relinquish control over the session.

· Party join/leave control
The application shall be capable to be informed when a new call party wants to join/leave the conference. It shall be possible for the application to allow or reject the inclusion of the new party to a conference.
· Presentation of, or restriction of, information associated with a party involved in a call (e.g. calling line ID, calling name);

Editor’s note : This needs additional clarification.

· Media Control

· Control media channels
The application shall have the ability to control media channels originated by (or on behalf of) a user or media channels terminated to a user. This control includes, but is not limited to the barring of a media channel request, allowing the media channel establishment to continue with or without modified information, addition or removal of additional media channels, temporarily suspend a media channel (place on hold), open, close or modify the parameters of the media channels.

· Relinquish control over specific media channels

This allows an application to relinquish control over the media stream. When it relinquishes control over certain media channels it does not lose control over the entire session.

Editor's Note: Further clarification is required on this requirement.

· Reserve/Free conference resources
The application shall be able to reserve resources in the network or free earlier reserved resources for a conference in advance.

Editor's Note: Need to determine if there is a requirement to allow the applications to redirect media channels/session

· Information

Editors' note: Is there a need for asynchronous requesting of session/ media channel information (e.g. codec, session/media channel duration)?

· Request Notification of Media channel events
The application shall be able to request notification of certain events associated with a type of media channel. Events include, but not limited to: a user initiating or closing a session, an incoming session request to user or a terminating user unable to accept an incoming session request.

· Monitoring of Media channels
The application shall be able to request all the media channels currently available on a call. In addition the application must be able to monitor on the opening and closing of channels for media for a specified call.

Editor's note: Is there a use case that would require the ability to monitor the bandwidth of a session?

Editor's note: Are there any requirements for Interaction with the User (see requirement under CS call control).

Editor's Note: It may become necessary to modify or add to this list of capabilities according to the IM call control model based on SIP

Proposed solution and further considerations: void
Editors note: This text is altered in line with S1-011110 (S1001114) The text needs re-tabulating into grayed out boxes as before. (not enough time).
3.3.2

This text is deleted in line with S1-011110 (S1001114)

3.3.3 Packet Switching Call Control Functions
Editor’s Note: These are requirements which were already in Rel-4 and remain in Rel​-5, but were missing from Parlay requirements. Probably covered by Data Session Control.
Source: SA1

Issue/Motivation:

This subclause details with packet switched call control functions. The purpose of this function is to allow applications to control and monitor GPRS sessions. A GPRS Session may consists of one or more GPRS PDP context.
Requirements Description:
Applications should have the ability to :

· Release a PDP context: This provides the ability for the application to force a PDP context to be released. The application may provide an indication of the reason for release of the PDP context.

· Control a PDP context: This provides the ability for an application to modify the information pertaining to the PDP context at the time of establishment. The application may also allow the PDP context to continue with or without the modified information pertaining to the PDP context. The application shall have the ability to request events to be observed by the network and reported back to the application.
· Monitor a PDP context: This provides the ability for an application to monitor for PDP context duration and tariff switching moments.. An application may specify a threshold for the duration of a PDP context or a part thereof. The application shall have the ability to grant new thresholds when the expiry of a previously set threshold has been reported to the application.

· Monitor a GPRS session: This provides the ability for an application to monitor for GPRS session data volume. An application may specify a threshold for the amount of data allowed to be transferred within a GPRS session. The application shall have the ability to grant new thresholds when the expiry of a previously set threshold has been reported to the application.

3.4 Terminal Capabilities

3.4.1 Discovery of Client terminal capabilities

Source: (lost)

Issue/Motivation:

This provides the ability for an application to discover terminal/device capabilities and enable it to make intelligent decisions.

Requirements Description:

OSA shall enable an application to obtain information about a terminal’s capabilities. Terminal capabilities include: terminal hardware, terminal software, and terminal browser.

Possible solution and further considerations: (void)

Editor’s Note: For the moment it is covered. More information expected from SA1, will be considered when arrives (from CN5#14, Brighton, minutes)

3.5 User Interaction

3.5.1 Interact with a user

Source: (lost)

Issue/Motivation:

This provides the ability for an application to interact with a user. An application may be able to send specific information to the user using any media of its choice (text, video, redirection to a web page etc.) and may request the collection of data from the user in a specific media format (voice, DTMF etc.).

Editor’s Note: What was the conclusion of CN5#14 about this requirement?

Requirements Description:

Proposed Solution and Further Considerations: (void)

3.6 Call Control, Charging Issues

Editor’s Note: Update of this section according to CN5#14 results still needed.

A question that needs to be considered here is should we leave the existing Call Control interfaces as is and ensure that any new call control capabilities are placed in new object classes? These new classes should then be subclasses of, for example, MPCC.

· There is a need to consider extensions to the charging mechanisms in respect of areas such as Media, user Interaction and any other objects that may be identified. The following bullet points apply to new functionality that was agreed in the Munich parlay meeting 9/2001.

· It should be considered whether or not charging and supervision functionality should be separated from the Call Control API and made more generic. This would allow it to be more applicable to other services such as user interaction and data session. Till now a charging SCF has been defined handling Amount and Unit charging. It is therefore proposed to add Usage sessions and to inherit these sessions at the application and service level so that the charging and supervision functionality can be removed from the Call Control API’s and the other API’s. (See N5-010753/4/9/760).

· It is proposed to add methods, to request and report charging information. During a call several communication configurations can be established. For each communication configuration it may be possible to request and report charging information allowing the methods to be invoked on multiple occasions. Presently it is not possible for an application to take into account a charging influence communicated from the destination. (see N5-010755)
· It is proposed that additions on tariff and subtariff are introduced to allow flexibility and that the parameters for charging are lined up with the content based charging. In order to support multimedia sessions, the possibility to indicate charge per time unit seems to be rather limited. It is also preferable to indicate charging per consumed unit. (see N5-010756).

It is proposed to add a method addOnCharge() allowing to add on charges on top of the running charges for the usage charging. (see N5-010758)
· As the Call Control API is independent of the underlying network, it may be appropriate to include a parameter that indicates the Network Operator, since several network operators may be involved in sending charging related information.

3.6.1 Multi media call control

Editor’s Note: Update of this section according to CN5#14 results still needed.

· There should be a way to indicate the QOS for any media, so that end users are provided with the correct grade of service.

· Allow an application to send a multi media message to a subscribed set of users. (Nortel

3.7 Event notification

Editor’s Note: Update of this section according to CN5#14 results still needed.

Event Notification Function (OSA R5 Req)
The Event Notification Function shall allow an application to specify the initial point of contact, which it is interested in. The Event Notification Function provides the necessary mechanisms, which enables an application to request the notification of subscriber or network-related event(s). An application may in addition request the cancellation of subscriber or network related event notification. For all subscriber-related events the application shall always specify the subscriber for which the Event Notification Function is valid. Once an application has enabled the notification of event(s), the Event Notification Function shall report the event(s) until such time the application explicitly requests the termination of the event(s) notification.

When the event occurs, the application that requested the event is informed. The notification of the event shall be accompanied by unambiguous information identifying the original request and event related data. For example, in case of an application is interested in “message” the notification to the application shall indicate whether it is incoming or outgoing, in case of chargeable events, the application shall receive details as used at the network to create a Call Detail Record. In this case, processing in the network is not suspended after notification of the event to the application.

The Event Notification Function includes the availability of offering additional criteria to be specified by the application. The set of criteria is individual and may vary for the event requested.
Subscriber Related events:

· A chargeable event happens.

When a chargeable event occurs for a given user and this event is armed by an application, that application shall be notified.

· The Terminal Capabilities are changed.

When the capabilities of a terminal change (e.g. when a keyboard is attached) and this event is armed by an application, that application shall be notified.
· A change in the presence related information.

If any presence related information changes (such as one or more presence information attributes or a user’s availability), and this event is armed by the application, that application shall be notified. Presence information may be associated with a user, device or service, or may be a more abstract entity that has the ability to report presence information.
Note:
The ability to support this function is dependent on the ability of a terminal (through e.g. MExE or WAP) to notify changes in its capabilities. Therefore this function will not be able to supply event notifications for terminals not supporting notification of their terminal capabilities.

3.8 Content Based Charging

3.8.1 Reference architecture

The content based charging reference architecture is given in Figure 1 for information.

[image: image1.wmf]www.parlay.org

©

 2000 The Parlay Group, Inc. All Rights Reserved.

Reference Architecture

User

Agent

User

Agent

Request

Engine

Request

Engine

Rating

Engine

Rating

Engine

Payment

Engine

Payment

Engine

Settlement

Settlement

ASP MIS

ASP MIS

1

5

6

2

4

3

Interfaces:

(1)

Payload Channel

(2)

Payment Processing

(3)

Clearing/Recharging

(4)

User Dialogue

(5)

Rating

(6)

Statistics/Logging

(7)

Authorization

Interfaces:

(1)

Payload Channel

(2)

Payment Processing

(3)

Clearing/Recharging

(4)

User Dialogue

(5)

Rating

(6)

Statistics/Logging

(7)

Authorization

Authorization

Engine

Authorization

Engine

7

Figure 1
3.8.2 Service Properties

Source: Parlay

Issue/Motivation:

In Parlay 3.0, there is the concept of Service Properties that provides a standardized format to exchange service configuration data. Service Properties are exchanged in XML format. There are XML elements specific to each Parlay API; these XML elements are defined by an XML-DTD. Currently, there is a Service Property specification for the call control API. They are kept in a single DTD.

Requirements Description:

Service Properties should be defined for the Content Based Charging API.

Proposed Solution and Further Considerations:

The particular Service Properties and their exact semantics need to be discussed by the workgroup. The following attributes are given as examples to give an idea what should be configurable by Service Properties:

· Lifetime of a charging session

· Maximum reservation/maximum charge amount allowed

3.8.3 User Confirmation

Source: Parlay

Issue/Motivation:

It is well understood that in general an implementation of a Payment Engine needs to have a means to request explicit user confirmation from a subscriber before debiting his account. However, with respect to the time and resources available for completing the Content Based Charging API specification for Parlay 3.0, user confirmation has not been investigated so far.

For Parlay 4.0, user confirmation shall be considered in detail. The issues identified so far are discussed below.

Requirements Description:

User Confirmation Mechanisms: To better understand the requirements on the Content Based Charging API that are introduced by the need to obtain a user confirmation, appropriate mechanisms that are deployed today will be investigated.

The workgroup should investigate different confirmation mechanisms. A representative selection of confirmation mechanisms shall be fixed, similar to the benchmark scenarios that comprise the base of the Parlay 3.0 specification of the Content Based Charging API. Eventually, the existing Content Based Charging API should be enhanced in a backwards-compatible manner.

User Confirmation Support in Content Based Charging API: The confirmation mechanism that suits a given service and user will depend on different factors, one of them being the communication protocol and media utilised between the Request Engine and the User Agent.

It shall be investigated if the existing Content Based Charging API provides sufficient information to the Payment Engine to select and perform an appropriate confirmation mechanisms. If not, appropriate extensions will be introduced for Parlay 4.0.

Proposed Solution and Further Considerations:

The representative selection of confirmation mechanisms could consist of, for instance

· SMS based confirmation

· confirmation based on Web/WAP redirect, and

· implicit confirmation based on a user-configured sensitivity level.

For instance, if the Consumer buys physical goods in a shop, a confirmation based on a voice call may be appropriate. If the Consumer is accessing a Web service, a confirmation based on Web redirect will be more convenient for this Consumer. Although the Content Based Charging API should be independent on the confirmation mechanisms available, it still could be useful if the Request Engine has a means to provide information about the communication protocol and media utilized between the Request Engine and the User Agent. The information could be relayed by the Payment Engine towards the Authorization Engine.

The mechanism to be used here could be the Service Parameter argument of all methods. Expected changes will consist of

· defining new Service Parameter IDs’.

3.8.4 Support of Roaming/Multi-Network Scenarios

Source: Parlay

Issue/Motivation:

In Parlay 3.0, no effort has been spent in supporting Content Based Charging across multiple networks. However, in general it is desirable that subscribers who have subscribed as Consumers to one Payment Service Provider can also access services offered in other networks and pay for them through the Content Based Charging Mechanism.

Although the Parlay API’s shall not impose any specific network architecture, the Content Based Charging workgroup shall make sure that the methods on the API map to functionality that is in fact available in the network.

Requirements Description:

The workgroup should ensure that Content Based Charging works in Roaming and Multi-Network scenarios.

Proposed Solution and Further Considerations:

This task could possibly comprise the following activities:

· Sketch how a roaming and multi-network scenario could look like. Add this to the benchmark scenarios.

· Check the technical impact on the specification.

· Change the specification if necessary, according to the requirements derived from the benchmark scenario.

3.8.5 Separation of Rating and Non-Rating Functionality

Source: Parlay

Issue/Motivation:

When designing the class model for the Content Based Charging API, care has been taken to support a distribution of the Charging Session contexts over multiple servers. This resulted in a separation between a Charging Manager interface (which is typically instantiated once per service), and a Charging Session interface (being instantiated once per service instance).

On the other hand, there are different types of payment operations: Some take a currency amount as input parameter (the rating of the service is done by the service implementation), while some take only events (or units) as input parameters (the rating is then done by the implementation of the Payment Engine). The possibility to mix both types of operations is limited: Once a reservation for a currency amount has been made, no reservation for units is allowed (see the STD in the Parlay 3.0 specification).

However, vendors may wish to host Charging Sessions that do use rating on different systems than the ones that do not use rating. This is currently not possible since upon creation of the Charging Session it is unknown if it will use rating or not.

Requirements Description:

The workgroup should discuss if the client should make the intended use of the rating functionality explicit, and if so, provide appropriate means in the specification.

Proposed Solution and Further Considerations:

The desired behavior could be achieved by adding specific creation methods to the Charging Manager interface.

3.8.6 Split Charging

Source: Parlay (N5-01044)

Issue/Motivation:

The current specification (Parlay 3.0) of the Content Based Charging API assumes that a single instance of the merchant application (acting as a request engine) serves a single consumer. This is appropriate for many merchant applications, such as video on demand or stock exchange rate information. However, there are cases where a single instance of the merchant application may serve more than a one service user. Examples are multi-user games or conferences. Typically, the costs for the resources consumed by the single service instance will be split amont all service users.

On the other hand, a merchant may show advertisements within its application, and in turn the company that is advertised may subside a certain percentage of the application cost. A consumer connecting to the merchant application pays only part of the costs, while the remainder is paid by the advertised company.

Requirements Description:

The Content Based Charging API shall allow clients to specify multiple users within a single charging operation. The charge shall be split among the specified users. The split of the charge between the given user identities could be determined by the request engine or by the payment engine. The given users may either use the client application simultaneously, or may have agreed to subsidize the costs without actually using the application.

Proposed Solution and Further Considerations:

The scenarios described above require that the request engine is able to specify multiple user identities within a single charge request. The split of the charge between the given user identities could be determined by the request engine or by the payment engine.

Chapter 4 New interfaces and areas of involvement

4.1 Information Transfer function

Source: (lost)

Issue/Motivation:

The Information Transfer function shall enable an application to indicate to a user respectively an application in the UE or USIM about the presence of existing information for her. Physically, this indication may be sent by the underlying network e.g. as a SMS, Instant Messaging, USSD message to the terminal. The Information Transfer function provides the means to inform the underlying network that an indication shall be sent to the user.

NOTE:
For 3G release 99 mechanisms like USSD or SMS may be employed to transfer the indication to the users terminal. For 3G Release 5 IMS Instant Messaging may be employed to transfer indication to the users terminal.

Requirements Description:
The following functions shall be supported:

· Send information notification provides the means to inform the underlying network that an indication shall be sent to a user respectively an application in the UE or USIM about the presence of existing information for her;

· request message receipt notification: the application can request to receive a notification every time a message is received in the mailbox for the user. This allows the application to take the appropriate action, e.g. informing the user.

Proposed Solution and Further Considerations: (void)

4.2 Functions for retrieval of Network Capabilities

Source: SA1 (S1-010659 resp. CR 016)

Issue/Motivation: (void)

Requirements Description:

The functions for retrieval of Network Capabilities shall enable the application to discover the network capabilities of the serving network of a subscriber.

Information provided to the application shall contain the following information, if available:

· Available network toolkits, including level of support (e.g. CAMEL Phase X, OSA version Y),

· Available Service Capability Servers (e.g. SMSC, CSE),

· Supported Network access, (e.g. GPRS, CS, IMS).

Proposed Solution and Further Considerations: (void)

Editors Note I: This part may be better placed within section 3.2.2. (Maybe a better way of doing this is for the information on the type of network supported be carried in the initial information sent to the Application and should not therefore be requested from the app to the gateway.)

4.3 Information Services functions

Source: SA1 (S1-010660, CR 22.127-17)

Issue/Motivation:
The information services functions enable applications to supply information that is available for later retrieval as determined by the Home Environment.
Note: The HE is not requested to broadcast service information received from OSA applications to any application user.

The HE shall be able to restrict the maximum size of information supplied by OSA applications. The information is kept in the HE for retrieval by OSA applications. The HE provides the information on OSA application request. The main purpose is to pass textual information between OSA applications.

The information itself shall clearly allow to be classified in HE-defined categories.
Examples of such categories could be traffic information, weather, headlines, local services etc.
Requirements Description:

The following functions shall be provided:

· Supply and update of Information: The application shall be able to supply and update details to the information service in order to make it available to other applications. This action may take place by applications own initiative, or when requested by the network.
· Retrieval of Information: The application shall be able to retrieve details from the information service

·
·
Proposed Solution and Further Considerations: (void)

Editors note: This section has been updated by S1 All their changes are now incorporated. (seeS1001095.
All of this is outside of Parlay/OSA. It should be up to the applications concerned to provide this information itself and not to request it via the API.

4.4 Presence related capability Functions (OSA Rel5 Req)

This section has been updated as per S1-011112 (S1001119)

The OSA interface shall allow an application access to presence capabilities within the network. Presence related information may be requested or supplied by an OSA application and may include, but not limited to presence information pertaining to the presence service as described in [7] or user availability.

An OSA application may act as a requester of presence information (i.e. act as a watcher) and/or act as a supplier of presence information (i.e. act as a presentity). All the capabilities offered to presence service watchers and presentities are described in [7] and may be offered to OSA applications. In addition to the authorisation performed by the OSA Framework, the presence service checks that the application is permitted to access the presence service.

An OSA application may manage or query availability status and/or preferences of a user which may be associated with one or more services (e.g. voice call, IMS sessions, MMS …etc.). Such availability may be determined from a range of existing capabilities.

The following OSA capabilities shall be supported for an application:

-
register as a presentity and/or watcher:

· the application shall be able to request the registration as a presentity and/or as a watcher in the presence service. This registration shall include the ability to establish as well as cancel a registration.
Note : Registration of a watcher is not covered in TS 22.141 and hence FFS.

-
supply presence related information to the network:

the application shall be able to supply and/or update presence related information (presence information or availability) at any time. An application may modify the availability of a user.

-
request the querying and/or modification of presence related data:

-
the application shall be able to request the querying and/or modification of data other than - presence information related to watchers and/or presentities. Such data includes but is not limited to any access rules pertaining to the presentity to be modified. An application may be able to request the management of availability preferences of a user. Management includes the setting, modification and deletion of availability preferences.
-
request presence related information:

-
The application shall be able to request presence related information . The application shall be able to request presence information about a presentity or may request the availability of a user. Such requests may be for the current information, on a periodic basis or for future changes in the presence related information (e.g. arming of event notifications).

-
retrieve watcher information:

-
the application shall be able to request watcher information about a presentity.

	Editors Note: This information should be provided by the PAM work. Should OSA adopt the whole of the PAM interface?

4.5 User Data management Requirements (OSA Rel5 Req)

The User Profile logically is a set of information relevant for a given user. The set of information is provided by Service Capability Servers and – if permitted – from Value Added Services. The amount of User Profile information might be distributed over various physically separated entities. The concept of distributed information is not within the scope of this specification. The detailed content of the User Profile is not subject herein.

However, subscribers are able to subscribe or use services provided from Value Added Service Providers. Subscriber may customise these VAS according to their needs equally as the subscriber customise her GSM/UMTS services provided by the network operator. To avoid malicious or conflicting situations it is needed to allow VAS to access the users USER Profile. The co-existence of several services and the correct inter-working between them are founded on sufficient information about other services subscribed to.

VAS shall not be allowed to access the User Profile without permission. It is important to prevent the User Profile from malicious attacks. The OSA Framework functions restrict the applications access to the User Profile Management (UPM) functions.

UPM functions check the applications rights to make these actions regarding each seperate part of the user profile.

Depending on the authorisation, the User Profile Management functions may permit the VAS to read from and/or to add to and/or to modify the User Profile or parts of it. This decision is based upon:

· Subscriber identity

· Acces information in the User Profile of the Subscriber

· Application identity

· Access type (read, add or modify)

Access information shall contain the user specific access rights per application. These may be given either for individual parts of the User Profile or for a group of data or even all data in the User Profile.

The figure below gives an logical overview of the relation between VAS, UPAM and the User Profile itself.

[image: image2.wmf]Service C

Service Profile

Broker for

Service A, B, C

VAS Personal

Settings 2

VAS Personal

Settings 1

User

Profile

Management

function

U

S

E

R

P

R

O

F

I

L

E

Value

Added

Services

Service B

Service A

Set of information

provided by

GSM/UMTS

Service Capability

Servers

Set of information

provided by

GSM/UMTS

Service Capability

Servers

Set of information

provided by

GSM/UMTS Service

Capability Servers

Network Operator Domain

Value Added Service Provider Domain

Note: the dotted line refers to additional Personal Settings. The reference itself shall unambiguously identify the location of the additional personal settings.

User specific information from the e.g. HLR and/or HSS are equally part of the User Profile as terminal settings and VAS specific preferences. The User Profile in principle is the summary and collection of information with a relevance for the services supported for a given subscriber.

The figure above shows User and Network Service and VAS specific information, customised by the user. It is assumed that the user profile consists of several parts. The User Profile elements shall at least be capable to store a reference to additional information stored else where. The User Profile shall act as a root towards all user specific information.

Even when the content of the User Profile is outside this specification, the following figure shows how a content could look like.

[image: image4.wmf]•

Telecom Subscribers Identity

•

Subscribed Telecom Services

•

Multiple Subscriber Profiles

•

Authentication Information

•

CAMEL Service Ref & Trigger

•

Access Information

•

Policy Information

•

Terminal Capability

•

Link to Settings & References

•

Reference to WAP Gateway

•

Reference to other Gateways

•

Reference to Service 1 e.g.

Unified Resource Locator

•

Reference to Service 2 e.g.

Object Reference

•

Reference to Service Broker,

e.g. Server Identity

On the left side of the figure above, typical GSM/UMTS information are listed (this is not an exhaustive list).

The right side depict references to VAS specific information. The representation of references to VAS specific information above, is an example and does not insist to be complete.

Editors note: This text has been updated in line with S1011107 (S1001104)
4.6 Security Requirements on User Profile Access management (OSA Rel5 Req)

The User Profile Management functions shall be able to grant or deny access to individual parts of of the subscribers User Profile as described in the clause 7:

·
·
·
·
·
·
The User Profile Management Functions shall ensure that all operations on parts of the User Profile data are authorised.

The type of access is one out of:

· Reading user profile information; in case parts of the User profile is subject for reading it shall unambiguously be identified by the application,

· Adding information to the user profile,

· Modify existing information in the user profile.

The control of access rights are in principle on the users discretion. The user shall have the possibility to allow or restrict the retrieval and presentation of her user related data. The mechanism how a user is able to maintain access rights is for further study.

a)
b)
Editors note: This section has been updated in line with S1-011108 (S1001105)
4.7 Data Hosting Service interface for User Profile and Application Data Eurescom (N5-0108937)
	Editors Note: I believe that this requirement from Eurescom is a combination of sections 5.4 and 5.5.

Issue Definition

This enhancement is related to the definition of a new service interface to manage the hosting/housing of data defined and used by Parlay client applications.

Parlay/OSA APIs could be seen as a way to "sell" network capabilities and functions traditionally under the control of a network operator to external applications.

Examples are:

· Generic Call Control APIs could be seen as a way to offer SSF functions;

· User Interaction APIs could be seen as a way to offer Special Resource Functions related to IVRs, advanced IVRs, etc.;

· Messaging APIs could be seen as a way to offer Special Resource Functions related to e-mail, voice mail, unified messaging, etc.

Through these APIs an external application provider can develop services that integrate different network capabilities managed by the network operator, without needing to deploy its own network equipment.

The SDF (Service Data Function) could be an additional capability that could be offered through Parlay APIs. SDF in the traditional IN architecture is used to access (in read and in write mode) data related to an IN service. In general SDF are implemented by systems that fulfil requirements concerning high-availability, reliability, fault-tolerance and real-time.

A Parlay API could be defined in order to allow:

· third parties to access, in a secure, controlled and, possibly, accountable way, SDF-like functions;

· network/gateway providers to house third party data.

Such an API could be used by an external application (or a group of applications managed by the same service provider) to store some critical data (e.g., configuration data, user profile data, etc.); in this way, the applications can reuse the reliable systems of a network operator without the need to deploy dedicated DBs or directories.

The data stored and retrieved though such an API are specific of a single application (or of a group of applications managed by the same service provider). Examples are:

· data related to a user/subscriber of the application: subscription data, configuration data, personalisation data, history/profiling data, logging data, etc.

· Application specific data: calendar data, instant messaging data, network call center data, etc.

· Data related to the configuration of the applications.

Therefore, each application/application provider has to define its own data model, according to the requirements of the application.

According to this scenario, an API to support "Application User Profile Housing" should fulfil the following requirements:

· it is application independent;

· support to write/modify, read, create and delete application data stored in network operator systems;

· secure and controlled access: the application can only access the storage space allocated to them and no other applications can access the space allocated to another application;

· Support to (simple) query/search on the stored data.

[image: image6.wmf]application 2

Gateway

Application UP IF

Framework

…….

SDF

application 1

Appl

. 1

Data

Appl

. 2

Data

Figure 2: Interface for Data Housing

Extension: User Profile for specific business cases

The User Profile Service Interface could be used in addition to access data, which are horizontal to specific applications and service providers, defined in order to address specific business cases (e.g., VHE, personalized networks, etc.). In this case, the User Profile Service Interface must be coupled with a data model specific to the particular application scenarios to be addressed.

Some of the accessible data could, in addition, be under the control of the Network Operator (e.g., Nicknames, Password, List of Subscribed Services, etc.) and modified under its control (e.g., through/by its systems). The Network Operator could "certify" the correct usage of these data (by subscribers/users and service providers).

A first example of such data model is the one defined by the PAM forum and underlying the Parlay Presence&AvailabiltyManagement API, which is mainly addressing presence status and routing preferences.

Another example is the data model the CC/PP (Composite Capability/Preference Profile) defined by W3C: it is a general, yet extensible framework for describing user preferences and device capabilities to be applied to access/search the World Wide Web.

Additional examples are data models to support the business model based on Virtual Home Environment concepts, such as those under definition in 3GPP for the mobile network scenario; examples are the data that form the profile of a VHE subscriber (e.g., the list of subscribed applications, the list of used terminals, the account preferences, the customisation data, nicknames, password, etc.).

[image: image7.wmf]application 2

Gateway

Business UP IF

Framework

…….

HLR

application 1

Business

-

related

Data Model

SDF

system n

Figure 3: Interface for Business Case-specific User Profile

Scenarios

This section describes two possible service scenarios that could take advantage of the Data Housing Service Interface.

The first one is an application of Network Call Center. In addition to the usage of the relevant service interface (e.g., call control, user interaction), the application could use the User Profile Service Interface to store the information concerning the agents, the rules to select them, the profiling of the customers, etc.

The second service scenario is related to the application of the User Profile Service Interface to a specific business case. The Network Operator offers to the Service Providers some information on its Subscribers, by keeping them anonymous:

· the subscribers are identified by nicknames (the others service interface should be enhanced in order to map CLI, IP addresses, etc. to Nicknames);

· user profiles, associated to the nicknames, contains information such as the list of user preferences, etc.

Let assume that a user is interested in "science fiction" movies, books, etc.

When he accesses an application that provides information on cinemas, the application could access the data stored in the user profile associated to his Nickname in order to identify which are his preferences and return first the related movies (science fiction movies in this case). The same information could be accessed from applications (of other service providers) that deal with books, videogames, etc.

The user can access his user profile in order to change the stored information. In case of secure information (e.g., a password), the network operator can provide applications to do this in a trusted way.

Advantages

The possible advantage for the Network operator is to enrich the set of offered service interfaces, by allowing a richer support to the service providers.

The possible advantages for the service providers is to have access to a data storage function, that fulfils requirements concerning high-availability, reliability, fault-tolerance and real-time, without the need to deploy its own DB/directory systems.

The definition of data models specific to some application scenarios could support the development of new business models and the co-operation of multiple actors and roles.

Requirements

The User Profile Service Interface must address the following requirements:

1. application independent: it must be used by any application and must not refer to specific application scenarios;

2. data model definition: an application must be able to define a data model (e.g., by instantiating a "meta-model") in order to allow to store its data according to the preferred data schema;

3. data handling operations: support the following operations to handle the application data:

· create new instances of the entities defined in the data model;

· delete instances of the entities defined in the data model;

· read the values of the instances of the entities defined in the data model;

· store/write/modify the values of the instances of the entities defined in the data model;

· search instances of the entities defined in the data model, matching simple queries (e.g., based on the entities values);

4. data model changes: an application must be able to modify the data model; the definition of the changes must also consider the rules for migrating the data values from the current to the new data model;

5. data migration: an application must be able to migrate the data from the current version to the new version of a data model;

6. application sharing (i.e., secure and controlled access): the application can only access the its data and no other applications can access the data of another application;

Some optional requirements are:

7. handling of notifications of changes in data (in case of group of applications owned by the same service provider): an application must be able to subscribe to be notified when specific data are modified (e.g., by another application) and the new values match some given conditions;

8. Cryptography: the data could be stored in a coded way, in order to improve security.

In the case of the usage of User Profile Service Interface for a specific business case, additional requirements are:

9. specialized operation: some generic operation to access data could be specialised for the access of some critical value (e.g., get_Nickname);

10. handling of notifications of changes in data: this requirement becomes mandatory;

11. data model definition and modification: these operations must be reserved to the Network Operator; versions must guarantee backward compatibility;

12. Restriction: an application could have restrictions/constraints on the operations it can invoke and on the data it can access.

Solution Elements

The interface for "application user profile", to provide data housing capabilities to applications, could be defined by starting from the definition of existing protocols to access directory records, such as LDAP, or XML-based Repository.

The interface could be separated into the following parts (some of them optional):

· Functions to manage the data model (definition, modification, data migration, etc.);

· Functions to handle the stored data (creation, deletion, read/write access, search, etc.);

· Functions to handle events (e.g., subscription, notification, etc.).

4.8 Journalling requirements (OSA R5 Req)
Applications, that use the OSA interface, may perform actions in the network that might cause costs or potentially undesired effects to the user or operator. Therefore it shall be possible to log usage of the OSA interface and thus to make actions performed through the OSA interface traceable to their originating applications.

Journal Information shall at least consist of the following parts:

· Unique identity of the application

· Date and time of invoking execution of an OSA function

· Name of invoked OSA function

· Identity of the served subscriber.

Additional information may be provided by the application (e.g. name of the service or reference to an application in the terminal).

The OSA shall offer sufficient capabilities to:

· Request an application to supply the network with the application’s Journal Information. The network operator may decide on the level of granularity (i.e. with which OSA functions Journal Information shall be provided).

· Reject execution of OSA functions if insufficient or inaccurate Journal Information is provided by the application.

· Supply a (logging-)application with Journal Information collected from various applications.

Collection of Journal information may take place in the network or by a dedicated application using the OSA interface

4.9 Policy Management (OSA R5 Req)
Applications should have the ability to interact with policy-enabled Service Capability Features in a secure manner. The network policies always take precedence over the application-defined policies.

The interface shall provide sufficient capabilities to enable applications to request:

· To manage the application’s policy-related information

This allows applications to create, modify and delete policies, policy events and to activate and deactivate policy rules.

· To manage policy event notification

This allows applications to register for specific policy events. Once registered for such events, the application shall receive notification of the events until it explicitly requests the termination of the notification request

· To collect policy statistics

This allows an application to collect policy related statistics from the network. Examples include success or failure of operations on policies and time stamps of policy events.

Note: From a 3GPP point of view we need to check to see if the whole of PAM is needed or a suitable sub-set.

4.10 User Profile Service interface

· Requirements:

· a service interface to "sell" to third parties a reliable storage; it could be used by an application (or an application provider) to store and retrieve data concerning its users/subscribers (e.g., subscription data, customisation data, etc.);

· an API to allow third parties to access user/subscriber data managed by the network operator; these data are horizontal to specific applications, but they are defined in order to support specific business models.
· Proposed Enhancement:

· Definition of a Service Interface to define and access application data;

Instantiation of the Service Interface with data models to support specific business models;

	Editors Note: (1) This area should be considered along with section 4.5

(2) Eurescom Project P1110 are also considering this area and reference should be made to their work wherever possible.

4.11 Parlay and SIP

As part of the ongoing work it is imperative that we ensure that the API is able to be mapped to the underlying network technologies.

Requirements Description:

Ensure that the API is compatible with SIP: All of the capabilities associated with the API should be able to be transported by SIP where necessary. It may also be appropriate to make changes to the API in line with SIP requirements.

4.12 Inclusion of SOAP/XML as an alternative Transport Mechanism

Release 3.0 of the Parlay APIs have not effectively embraced the IT and developer communities from a membership and technical content perspective. A UML to XML mapping rules for Parlay 3.0 would revive interest from the IT industries.
Having an XML interface specification would greatly dispel those who say that Parlay is not IT or Internet friendly because it doesn't have an XML interface specification. We need to consider whether this 'mapping' document is provided as part of Parlay 3.1 or created in parallel in Parlay 4.0.

The goal here is to address the IT and developer communities and get them actively participating in the Parlay Group, to work with those industries to make Parlay easier to use, to make Parlay visible, and to dispel myths created by competitive marketing.

In order to achieve a XML support for the current OSA / Parlay APIs some outstanding issues need to be resolved. For some of them a possible solution is already proposed in N5-010894, but nevertheless we feel it is useful to outline the issues and sketch multiple potential solutions.

· Distribution technology for the XML APIs:

· in principle one could define an XML based set of messages, transferred using HTTP, as currently LIF is doing.

· However, SOAP seems to be a more appropriate technology as this is especially designed as XML based request / response protocol
. SOAP is not yet an open solution although the W3C Recommendation of SOAP version 1.2 is expected to be available in May 2002.

· For the OSA / Parlay API, the most promising option for achieving an XML version of the API seems to be Web Services Description Language (WSDL) as this specifically designed to describe the interface and functionality of a so-called Web-Service. A Web-Service is just a capability that can be invoked via standard internet protocols (e.g. XML/SOAP or XML/HTTP) an as such an implementation of the OSA/Parlay APIs could as well serve as Web-Service. WSDL can be seen as the IDL of web-services and also offers bindings to different distribution protocols like SOAP or HTTP and thus is independent of the actual underlying protocol. Asynchronous call-backs: as already noted in N5-010894 at the moment there is no defined solution when using SOAP to cope with asynchronous call-backs. A proposal that is one to one in line with the current OSA/Parlay API, where we have object references as parameter of the request message, is to define in the XML schemas an object reference as URL + String. In the request message the object reference would then be provided as a parameter together with all other parameters and in the response message the object reference would be located in the SOAP header.

· Production process of XML APIs: XML version of the API could be produced from the UML model as we are currently producing IDL from the model. An alternative could be that the XML is generated from the IDL as the OMG defines a set of rules to translate IDL into XML format
, see figure below. Furthermore, there are already tools available that are able to transform IDL to WSDL.

[image: image8.wmf]OSA UML

IDL

Annex A

XML

(Annex C)

WSDL

(Annex C)

Modelling

Definition

CORBA

HTTP

SOAP

Distribution

Requirements

· Identify the most suitable solution for incorporating XML support for the current OSA/Parlay APIs. Could this be achieved by the joint API group specifying the APIs in WSDL? Or should we target to XML/SOAP or XML/HTTP ?

· Identify the way to generate WDSL/XML, either via IDL generated from the UML model or directly from the UML model.

· Identify the best solution for providing call back functionality (object references) where we should look for the solution that is optimal alignment with the current APIs.

Appendix 1

1.0 CPL
Editors note:

Parlay TAC group have reviewed this and agreed that as no champion has come forward, that this area will not be part of Parlay 4.0. However we await contributions from members to either identify a champion for this area or to show where this may fit into an existing work area. Contributions are invited.
Call Processing Language (CPL) is a language that can be used to describe and control telephony services. Although it has been often associated with Internet telephony such as SIP, in practice, it could be used on many networks. The draft CPL specification can be found at http://www.ietf.org/internet-drafts/draft-ietf-iptel-cpl-04.txt . Although the content of CPL scripts is defined by the draft, if an application wishes to load a CPL script, there are still issues about how it can be used in a secure environment, e.g. how does an application authenticate itself before uploading a CPL script, how can a CPL script be checked prior to deployment, etc. It is possible that Parlay could offer an environment in which CPL scripts could be deployed in a secure manner.

2.0 Service Creation environment (SCE)
Editors Note:

Parlay TAC group have reviewed this and agreed that as no champion has come forward, that this area will not be part of Parlay 4.0. Contributions are invited.
· There is interest in defining certain aspects of SCE

· Basic building blocks and design patterns

· Basic facilities (simulation, customization etc)

· Interaction and deployment with a Service Logic Execution Environment (or Application Server)

· Two types of SCE

· Component-based SCE e.g. CORBA Beans, JavaBeans

· XML-based SCE e.g. Service Creation Markup Language (SCML) based on JCC

· JAIN has started an effort in this direction in the Java Service Creation Environment (JSCE) Expert Group

· See Java Specification Request (JSR)

· Requirements document draft in discussion. Target spec date Jan 02

· Co-Leads: Telcordia and TBD

· We need to keep other industry groups informed as we proceed
3.0 E-Commerce
Editors Note:

Parlay TAC group have reviewed this and agreed that as no champion has come forward, that this area will not be part of Parlay 4.0. Contributions are invited.
At present the E-commerce group is in the stage of establishment within the parlay organisation. It has been agreed but as yet has not produced any definite requirements.

The text below has been captured from a slide presentation made at the Parlay meeting in San Diego.

· The payment process should support:

· To initiate a secure payment (session or transaction)

· To authenticate buyer & seller based on, for example, PKI and MeT work (WPKI)

· To charge the buyer

· To commit payment (session or transaction)

· Characteristics of an e-payment solution :

· Any type of buyer device (e.g. Mobile station, PC, DTV,…)

· Any type of seller application (e.g. Appl server, Web Shop, Vending machine, …)

· Third party content

· Distributed pricing

· Any size of value, micro -> macro payments

· Several payment methods

· Contracts i.e. dynamic T&Cs supporting ad-hoc purchases

· Non-repudiation

4.0 Parlay Lite a new API
Editors Note:

The Parlay TAC group agree that this should remain part of the Document. However this concept needs to be re-explained to the Joint Group to further clarify the differences between this and Parlay X. Contributions are once more invited.
4.1 Why Parlay Lite

Application developers have commented on the complexity of the Parlay API and the difficulties they have in implementing this within their application platforms. The purpose of this section is to explore how one can make the Parlay API more user friendly. It is not necessarily a requirement to remove the existing API. The options open to us will be explored later on in this section. First of all we must address the problems that have been highlighted. The following was based upon release 2.1 of Parlay but is also applicable to Release 3.0:

· The Parlay specifications are large - about 7.8 MB of documentation - and growing!

· New developers will find Parlay a sizeable specification to learn - encouraging new developers will be crucial to Parlay’s adoption

· Many applications do not require the full sophistication of the Parlay specification and so a wider range of application development environments could be provided with a simpler Parlay specification. The following figures highlight how one may reduce the existing interfaces to something more manageable.

[image: image9.wmf]Metrics for

Lite

-

ness

Number of methods in interface

Number of arguments in method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parlay API

Figure 1

Figure 1 represents the total methods present in a particular interface.

[image: image10.wmf]Metrics for

Lite

-

ness

Number of methods in interface

Number of arguments in method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parlay API

Figure 2

Figure 2 shows that one alternative would be to reduce the methods per interface.

[image: image11.wmf]Metrics for

Lite

-

ness

Number of methods in interface

Number of arguments in method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parlay API

Figure 3

Or, as shown here in Figure 3, to reduce the number of parameters per method.

Analysis of Parlay 2.1 data types and interfaces reveals:

· A total of 516 data types consisting of

· 153 structures

· 282 type defs

· 81 enumerations

· Some data types are complex - e.g.

· union data types are not universally familiar

· Structures contain many elements - it is cumbersome if these all have to be initialised explicitly

· A total of 92 interfaces

· Average 4 methods per interface
Using these statistics we need to consider how one can produce an equivalent leaner API, without loosing the capabilities it provides. Options open to us are to:

· Create a style guide, which must be adopted for all lite specifications. This ensures:

· a consistency in naming conventions throughout specification

· a specification which can be very widely implemented

· simplify data definitions, interfaces, methods

…BUT…
· Keep a logical mapping onto Parlay Classic, e.g. default values for data members and arguments

· Use Parlay Classic naming, concepts and models as much as possible
So where will Parlay Lite be situated?

· Parlay-Lite at the Application Layer

· Ensures interworking between all Parlay-Lite applications and Parlay Classic gateways

· Allows a mix-and-match approach, e.g. Parlay Lite toolkit could come from different vendor to gateway implementations or we could allow an application to use both Parlay Classic and Parlay-Lite simultaneously
· Parlay-Lite at the Gateway Layer

· Keeps applications truly lightweight

· Parlay-Lite gateways need not support full Parlay
The following is an example of how these reductions could be made.

[image: image12.wmf]An Example

routeReq

(

callSessionID

 : in

 TpSessionID

 ,

responseRequested

 : in

 TpCallReportRequestSet

 ,

targetAddress

 : in

 TpAddress

 ,

originatingAddress

 : in

 TpAddress

 ,

originalDestinationAddress

 : in

 TpAddress

 ,

redirectingAddress

 : in

 TpAddress

 ,

appInfo

 : in

 TpCallAppInfoSet

 ,

callLegSessionID

 : out

 TpSessionIDRef

) :

 TpResult

routeReq

(

callSessionID

 : in TpInt32

,

notifyEvents

 :

TpCallEventType

 (

enum

),

interruptEvents

 :

 PCallEventType

 (

enum

),

noAnswerDuration

: TpInt32,

targetAddress

 : in

 TpString

 ,

originatingAddress

 : in

TpString

,

callLegSessionID

 : out TpInt32Ref) :

 TpResult

CLASSIC

4x-element

structures

2 arrays

of unions

LITE

basic data

types

4.2 Conclusions

· All service APIs could have a lite version

· A lite Framework could be developed

Way forward …
· Identify an area of the interface for a lite version and create an example

· Create a style guide

· Apply to other existing interfaces if successful ...

· What about future specifications? This would inevitably require some sort of maintenance and or mapping,
5.0 Tax Calculation and Collection
Editors note:

Why is this added to the Appendix? The Parlay TAC group feels that this should be part of the Content Based Charging Interface.
At a very high level, the tax due on any transaction is a function of

· what you are buying,

· who is selling it,

· who is buying it and

· where both parties are located for tax purposes

Typically, the merchant is responsible for calculating and collecting taxes. In case the merchant and the payment provider are different companies, the merchant’s application server needs to implement tax collection function. However, this applicaiton server might not have sufficient information to do so. For instance, he might not know the location of the consumer. However, the location is a sensible information and it depends different circumstances whether the payment provider will disclose the location towards the merchant.

Requirement

The content charging API shall provide a means to convey all information to the merchant that are needed to do taxation.

However, it is not yet fully understood what information is exactly needed by the merchant to do taxation. Further study, based on use cases and scenarios, has to be done to identify the particular requirements.

A typical deployment scenario is that both the merchant role and the payment provider role are taken by a network operator. In these cases it does not matter if tax calculation is done on the merchant application or on the payment engine. In order to centralize functionality that is needed by different clients, and to keep the merchant application lean, it seems appropriate to have the tax collection function located on the payment engine.

Even if the merchant application is provided and operated by an independent company, the payment provider may still provide tax calculation and collection. In this case, the payment provider acts as a retailer, and consumer buys the service from him.

Requirement

The Content Charging API shall support calculation and collection of tax in the payment engine. This is applicable only in deployment scenarios where the request engine (the Parlay/OSA client) and the payment engine (the Parlay/OSA service capability server) are operated by the same stakeholder, or when the payment provider acts as a retailer.

National tax schemes need to be supported, such as city tax/state tax/VAT or percentage-based vs fixed taxes need to be supported.

The Content Charging API shall allow clients to provide sufficient information to allow the payment engine to calculate the tax.

Again, it is not yet fully understood what information is exactly needed by the content charging SCF to do taxation. Further study, based on use cases and scenarios, has to be done to identify the particular requirements.

LITE GATEWAY

LITE APP

Parlay Gateway

Translate

LITE to FULL

LITE APP

PARLAY GATEWAY

LITE APP Translate

	 LITE to FULL

� This is the Information Model for Framework Functions enhancement proposed by Telecom Italia Lab

� From the SOAP specification: SOAP is a lightweight protocol for exchange of information in a decentralized, distributed environment. It is an XML based protocol that consists of three parts: an envelope that defines a framework for describing what is in a message and how to process it, a set of encoding rules for expressing instances of application-defined datatypes, and a convention for representing remote procedure calls and responses.

� See OMG ORBOS CORBA/ SOAP RFP: Initial RFP: orbos/00-09-07 and Joint Initial CORBA/SOAP mapping submission: orbos/01-06-07.

1
1

_1056809877.ppt
www.parlay.org

© 2000 The Parlay Group, Inc. All Rights Reserved.

Reference Architecture

Interfaces:

(1)	Payload Channel

(2)	Payment Processing

(3)	Clearing/Recharging

(4)	User Dialogue

(5)	Rating

(6)	Statistics/Logging

(7)	Authorization

User

Agent

Request

Engine

Rating

Engine

Payment

Engine

Settlement

ASP MIS

1

5

6

2

4

3

Authorization

Engine

7

		This architecture reflects the result of our discussion in session 3.

		The Request Engine sends payment requests to the Payment Engine via interface (2). The payment requests may contain either absolut prices or abstract product categories. If they contain abstract product categories, the Payment Engine relays the payment requests to the Rating Engine, that computes absolut price. After this, the Payment Engine processes the payment request as if it had contained the absolute price from the beginning. The Rating Engine is closely coupled with the Payment Engine and interface (5) probably not part of Parlay.

_1059229974.ppt

		Telecom Subscribers Identity

		Subscribed Telecom Services

		Multiple Subscriber Profiles

		Authentication Information

		CAMEL Service Ref & Trigger

		Access Information

		Policy Information

		Terminal Capability

		Link to Settings & References

		Reference to WAP Gateway

		Reference to other Gateways

		Reference to Service 1 e.g.

 Unified Resource Locator

		Reference to Service 2 e.g.

 Object Reference

		Reference to Service Broker,

 e.g. Server Identity

_1064664081.ppt

Set of information provided by GSM/UMTS Service Capability Servers

Set of information provided by GSM/UMTS Service Capability Servers

Set of information provided by GSM/UMTS Service Capability Servers

Service C

Service Profile

Broker for

Service A, B, C

VAS Personal

Settings 2

VAS Personal

Settings 1

User

Profile

Management

function

USER

PROFILE

Value Added

Services

Service B

Service A

Network Operator Domain				Value Added Service Provider Domain

UNKNOWN-0

UNKNOWN-1

UNKNOWN-2

UNKNOWN-3

UNKNOWN-4

_1058879413.ppt

Metrics for Lite-ness

Number of methods in interface

Number of arguments in method

Parlay API

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

_1058879465.ppt

Metrics for Lite-ness

Number of methods in interface

Number of arguments in method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parlay API

_1058943600.ppt

An Example

CLASSIC

4x-element

structures

2 arrays

of unions

LITE

basic data

types

routeReq(callSessionID : in TpSessionID ,

	responseRequested : in TpCallReportRequestSet ,

	targetAddress : in TpAddress ,

	originatingAddress : in TpAddress ,

	originalDestinationAddress : in TpAddress ,

	redirectingAddress : in TpAddress ,

 	appInfo : in TpCallAppInfoSet ,

	callLegSessionID : out TpSessionIDRef) : TpResult

routeReq(callSessionID : in TpInt32 ,

	notifyEvents : TpCallEventType (enum),

	interruptEvents : PCallEventType (enum),

	noAnswerDuration: TpInt32,

	targetAddress : in TpString ,

	originatingAddress : in TpString,

	callLegSessionID : out TpInt32Ref) : TpResult

_1058879376.ppt

Metrics for Lite-ness

Number of methods in interface

Number of arguments in method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parlay API

Parameters

Method

_1052845978.ppt

Set of information provided by GSM/UMTS Service Capability Servers

Set of information provided by GSM/UMTS Service Capability Servers

Set of information provided by GSM/UMTS Service Capability Servers

Service C

Service Profile

Broker for

Service A, B, C

VAS Personal

Settings 2

VAS Personal

Settings 1

User

Profile

Access

Manager

USER

PROFILE

Value added

Services

Service B

Service A

Network Operator Domain				Value Added Service Provider Domain

UNKNOWN-0

UNKNOWN-1

UNKNOWN-2

UNKNOWN-3

UNKNOWN-4

_1052846781.ppt

		Telecom Subscribers Identity

		Subscribed Telecom Services

		Multiple Subscriber Profiles

		Authentication Information

		CAMEL Service Ref & Trigger

		Location Information

		Policy Information

		Age of Location Information

		Terminal Capability

		Link to Settings & References

		Reference to WAP Gateway

		Reference to other Gateways

		Reference to Service 1 e.g.

 Unified Resource Locator

		Reference to Service 2 e.g.

 Object Reference

		Reference to Service Broker,

 e.g. Server Identity

_1042271541.ppt

application 2

Gateway

Application UP IF

Framework

…….

SDF

application 1

Appl. 1

Data

Appl. 2

Data

_1042275599.ppt

application 2

Gateway

Business UP IF

Framework

…….

HLR

application 1

Business-related

Data Model

SDF

system n

