[image: image7.wmf][image: image7.wmf]
Technical Information

3GPP TSG_CN5 (Open Service Access – OSA)

Meeting #15, Cancun, MEXICO, 26 – 30 November 2001
N5-011131

Agenda Item:
OSA Requirements
3GPP TSG-T2 #15

Cancun, Mexico

26-30 November 2001

Description

This contribution provides some enhancements to the OSA set of API Interfaces as a result of work undertaken in the Eurescom Project P1110. They are presented here for discussion and as agreed enhancements which are targeted towards the ETSI Release 2.0/Parlay 4.0/3GPP Release 5.0.

P1110 Open Service Access: Advantages and opportunities in service provisioning on 3G Mobile Networks

Proposal for Enhancements to the Parlay/OSA Specifications
[image: image8.png]Authors:

Michael Walkden (editor), Nick Edwards, David Foster (BT)

Filename: [image: image9.png]PIR4.2_BalancingUp_BT_v2.0.doc

Disclaimer

This document contains material which is the copyright of certain EURESCOM PARTICIPANTS, and may not be reproduced or copied without permission.

All PARTICIPANTS have agreed to full publication of this document.

The commercial use of any information contained in this document may require a license from the proprietor of that information.

Neither the PARTICIPANTS nor EURESCOM warrant that the information contained in the report is capable of use, or that use of the information is free from risk, and accept no liability for loss or damage suffered by any person using this information.

Table of contents

3Table of contents

1
Introduction
4
2
‘Balancing Up’ of Interfaces
5
2.1
Issue Definition
5
2.1.1
Scenarios
7
2.1.2
Requirements
8
2.2
Solution
8
2.2.1
Specification Enhancements
17
2.2.2
Test Scenario
25
2.3
Conclusions/Further work
25

1 Introduction

The purpose of this document is to provide a number of enhancements to the Parlay/OSA specifications. The proposals and solutions are presented as:

· Modifications to the existing specifications

· Proposals for new framework/ service interfaces

· New specification features

For each issue proposed in this document, a detailed definition is provided along with examples of scenarios in which the solution provides improvements to the API. A solution is then proposed as defining the way in which the specification may be improved to solve the issue. The EURESCOM P1110 project team have worked towards providing solutions to these issues and enhancements and one of the key results of the work is to present its results to the owning standards bodies of related API specifications such that this work is not duplicated and so that it can provide valuable input into the API specification improvement process.

The following issues are addressed in the following chapters (Chapters):

· “Balancing Up” of Interfaces

· Framework Information Model

· Framework Management Tool

· Protocol APIs

· Data Hosting Service Interface for User Profile and Application Data

Two contributions were considered but time did not permit the issues to be developed into solutions. These contributions are introduced in the Annexes of this PIR.

· Support for an OLO Environment

· Contribution on Parlay “lite”

2 ‘Balancing Up’ of Interfaces

· Category: Enhancement of Framework and Service Interfaces

2.1 Issue Definition

Many of the OSA/Parlay interfaces are highly asymmetric between application and gateway. As the capabilities of terminals connected to networks continues to grow, network based applications will require greater awareness of these capabilities. Likewise, as new network protocols such as SIP, which are peer-to-peer in nature, are developed, new types of functionality and control will become possible. The ‘Balancing up’ of interfaces task is concerned with identifying areas where the asymmetry of OSA may cause limitation in functionality or feature interaction problems.

Although many of these asymmetries are particularly apparent on SIP networks, many aspects identified in this task will not be restricted to SIP. In this document, SIP may be used as an example to illustrate the network signalling involved.

In the first part of the document, the concepts of balanced and symmetric interfaces are presented, illustrated with examples from OSA. The OSA interfaces are then examined in detail, looking for examples where the interfaces are unbalanced. Finally recommendations are given for modifications to the specifications.

This document analyses the interfaces given in the current OSA drafts at ETSI,

These are:

Call Control
http://docbox.etsi.org/tech-org/span/open/span12/Drafts/120070_4_v007.zip

Terminal Capabilities http://docbox.etsi.org/tech-org/span/open/span12/Drafts/120070_7_v006.zip

User Interaction
http://docbox.etsi.org/tech-org/span/open/span12/Drafts/120070_5_v007.zip

Mobility
http://docbox.etsi.org/tech-org/span/open/span12/Drafts/120070_6_v005.zip
What is meant by balanced interfaces?

In this section we consider the definition of balanced interfaces and why they are attractive. In OSA, the roles of Application and Gateway are fundamentally different, and thus it is expected that network API interfaces will not in general be symmetric.

There are only a very small number of completely symmetric interfaces in Parlay. In the Parlay Framework, the interface IpHeartBeatMgmt is exactly mirrored by the interface IpAppHeartBeatMgmt. This is an example of symmetric interfaces used for symmetric functionality.

For example an application may request notification of calls matching a set of criteria, but it does not make sense for the gateway to issue the same request of an application. This is an example of Asymmetric interfaces used for Asymmetric functionality.
However there are particular circumstances where balanced interfaces are possible and are achievable via some modifications to the existing asymmetric or symmetric interfaces. The reason why this occurs is that in general, network connections are symmetric, and network addresses are considered equivalent. Giving an example of how this statement is realised in SIP networks the SIP protocol allows communication of the same information from SIP Proxy to end terminal and from end terminal to Proxy and thus the network interfaces are balanced.

This principle becomes particularly apparent when scenarios are considered with multiple OSA applications being caused to interact. This can perhaps best be understood by considering the situation of two applications interacting with one-another via two gateways and a network, as shown in Figure 1.

[image: image1.wmf]Gateway 2

Application 1

Gateway 1

Application 2

OSA

OSA

SSP 1

SSP 2

Internal API

Internal API

Party B

Party A

Figure 1: Two OSA applications interacting with each other

Suppose as in figure 1, the applications are interacting with a single logical call leg. This is as a result of Application 1 providing a freephone service, which routes the incoming call (from Party A) to a valid network number. Unbeknown to Application 1 the network number used is actually a second service number (perhaps for a find-me type service) and therefore triggers up to Gateway 2. At this point application 2 routes the call onwards. In order to terminate the logical call leg (originating leg) in OSA, Application 1 sends an IpCallLeg::Release(), and this causes Application 2 to receive an IpAppCall::callLegEnded(). Of course, Application 2 can equally well terminate the call leg, and the message directions will be reversed.

Thus in this situation, we have symmetric functionality which is being represented by asymmetric interfaces. For comparison, consider an equivalent situation for two SIP applications, as shown in Figure 2.

[image: image2.wmf]Gateway 2

Application 1

Gateway 1

Application 2

OSA

OSA

SIP Application Server 1

SIP Application Server 2

Internal API

Internal API

Party B

Party A

Figure 2: Two SIP applications interacting with each other

When application 1 terminates the call, a SIP BYE message is sent across the network. Application 2 receives a SIP BYE message. This is a symmetric situation.

To make the OSA interfaces symmetric, the IpAppCall::callEnded() method would be renamed release() and have the same function arguments as IpCall::release(). In this example, the reason why an asymmetric interface is used is that the callEnded() method carries additional information (e.g. timing) on the call.

Why balanced interfaces?

There are a number of motivations for using balanced interfaces

1) It reduces the possibility of limitations to the capabilities of the interfaces because certain operations are only possible in one direction

2) It reduces the risk of feature interaction problems between applications

3) If interfaces can be made symmetric then it minimises the numbers of data types and interface definitions, thus reducing documentation size and learning time for developers

2.1.1 Scenarios

This section provides scenarios and examples of situations where more balanced interfaces might be beneficial. The balancing of Parlay/OSA interfaces involves taking a general look at the interfaces and seeing where imbalance occurs. As stated earlier, one of the benefits of this work will be to reduce the number of feature interaction issues experienced when two applications are controlling network behaviour simultaneously:

The possible scenarios are:

1) Application 1 is running mobility and application 2 is running mobility and call control

2) Application 1 is running user interaction and call control, and application 2 is running user interaction and call control

3) Application 1 is running call control and application 2 is running call control

At present the work is expected to have a broad impact across the service interfaces, for example.

2.1.2 Requirements

· To identify aspects of Parlay where asymmetries can cause limitations. This includes call control, mobility, terminal capabilities and user interaction interfaces

· To collate the information from the comparisons and to identify service scenarios where the existing interfaces are too restrictive and where symmetrical behaviour would be advantageous

· To ensure that any symmetrical interfaces proposed do not compromise compatibility with existing asymmetric networks

2.2 Solution

Multi-Party Call Control Interfaces

In order to understand the symmetry of multi-party call control considers the situation shown in figure 3.

[image: image3.wmf]Gateway 2

Application 1

Call Control

Gateway 1

Application 2

Call Control

OSA

OSA

Network Resource 1

Network Resource 2

Internal API

Internal API

Party A

Party B

Figure 3: Two OSA call control applications interacting with each other

Interface: IpCallLeg

Symmetric Operations with Asymmetric Interfaces

routeReq()

The mirror operation is where a new incoming call leg is received. There is no single mirror operation. An incoming call event will trigger IpAppCallControlManager::callEventNotify() for a new call.

In SIP terms routeReq corresponds to the gateway sending an INVITE message, and thus the mirror operation would be where an INVITE message is received by the gateway. Multi-Party call control only supports the situation where the INVITE is not in the context of an existing call.

Note that this situation is supported with conference call control, as a partyJoined() method is triggered. However, there is no way to associate a new incoming call leg with an existing multi-party call.

attachMedia()

There is no mirror event defined here – if the network disconnects the media stream then the application cannot be informed.

In SIP terms, this corresponds to the gateway sending a re-INVITE message containing SDP information on a call leg that is on-hold. There is no way to inform an application that a re-INVITE has been received (and accepted) on a call-leg that is on-hold.

detachMedia()

There is no mirror event defined here – if the network disconnects the media stream then the application cannot be informed.

In SIP terms, this corresponds to the gateway sending a re-INVITE message containing null SDP information on an active call leg. There is no way to inform an application that a re-INVITE has been received (and accepted) which puts a call-leg on-hold.

release()

The mirror operation is callLegEnded(). The callLegEnded() method contains additional gateway supplied information for the application, but the releaseCause data is symmetric.

In SIP terms this corresponds to the gateway sending a BYE message for the call leg if set up, or a CANCEL message if being set up. Thus the mirror operation is the gateway receiving a BYE or CANCEL message on the call leg.

deassign()

There is no exact mirror event, but the equivalent is IpAppMultiPartyCallControlManager::callAborted(), indicating that no further communication will be possible between the call and the application.

setAdviceOfCharge()

This method allows advice of charge information to be sent to terminals that are capable of receiving this information. The mirror operation is where advice of charge information is received by the gateway, and this situation is not supported in OSA.

Asymmetric Operations

setChargePlan()

This method is used for setting the cost of an outgoing call leg before routing it. It does not apply to incoming call legs, and thus no mirror operation is needed.

getInfoReq(), getCall(), getLastRedirectedAddress()

These operations do not need a mirror operation because the application is requesting information from the gateway

eventReportReq()

This method is used by the application to request reports of events on a call leg. It affects information flow between the gateway and application, and there is therefore no mirror operation required.

superviseReq()

This method is used when the application wants to set a granted connection time for an outgoing call leg, and is called before it calls routeReq(). It does not apply to incoming call legs, and thus no mirror operation is needed

continueProcessing()

This method is used after an event has been received in interrupt mode to instruct the gateway to continue the default behaviour of the call leg. The application does not have its own interrupt mode events, and therefore no mirror operation is necessary.

Interface: IpAppCallLeg

Symmetric Operations with Asymmetric Interfaces

eventReportRes()

A number of the event reports do not have explicit mirror operations,

P_CALL_EVENT_ALERTING
, It is not possible to send an alerting message to a call leg

P_CALL_EVENT_ANSWER, It is not possible to answer a call leg explicitly

P_CALL_EVENT_QUEUED, It is not possible to send a queued message.

P_CALL_EVENT_ORIGINATING_SERVICE_CODE, It is not possible to send a service code

P_CALL_EVENT_TERMINATING_SERVICE_CODE, It is not possible to send a service code

In SIP terms, these events correspond to the gateway receiving a response message, e.g. 200 OK, 180 Ringing, etc. Thus the mirror operation is where the gateway sends a response message on a call leg.

It is assumed that these events are automatically forwarded by the gateway when received on an outgoing call leg to an incoming call leg. If the events are requested in interrupt mode, then the events are not forwarded to the incoming call leg automatically. However, the continueProcessing() method can be used to forward the event on if required.

callLegEnded()

The mirror operation for this is Release(). The callLegEnded() method contains additional gateway supplied information for the application, but the releaseCause data is symmetric.

In SIP terms, this corresponds to the gateway receiving a BYE message for a call leg which has been set up, or a CANCEL message for one which is being set up.

Asymmetric Operations

eventReportErr(), getInfoRes(), getInfoErr(), superviseRes(), superviseErr()

These operations do not need a mirror operation because the application is receiving information from the gateway

Interface: IpMultiPartyCall

Symmetric Operations with Asymmetric Interfaces

createCallLeg() and createAndRouteCallLegReq()

The mirror operation is where a new incoming call leg is received. There is no single mirror operation. An incoming call event will trigger IpAppCallControlManager::callEventNotify() for a new call.

In SIP terms these operations correspond to the gateway sending INVITE messages, and thus the mirror operation would be where an INVITE message is received by the gateway. Multi-Party call control only supports the situation where the INVITE is not in the context of an existing call.

Note that this situation is supported with conference call control, as a partyJoined() method is triggered. However, there is no way to associate a new incoming call leg with an existing multi-party call.

release()

The mirror operation is callEnded(). The callEnded() method contains additional gateway supplied information for the application, but the releaseCause data is symmetric.

In SIP terms this corresponds to the gateway sending a BYE message for a call leg in the call which has been set up, or CANCEL message for a call leg being set up. Thus the mirror operation is the gateway receiving a BYE or CANCEL message on a call leg in the call.

deassignCall()

There is no exact mirror event, but the equivalent is IpAppMultiPartyCallControlManager::callAborted(), indicating that no further communication will be possible between the call and the application.

setAdviceOfCharge()

This method allows advice of charge information to be sent to terminals that are capable of receiving this information. The mirror operation is where advice of charge information is received by the gateway, and this situation is not supported in OSA.

Asymmetric Operations

setChargePlan()

This method is used for setting the cost of an outgoing call leg in a call before routing it. It does not apply to incoming call legs, and thus no mirror operation is needed.

getInfoReq(), getCallLegs()

These operations do not need a mirror operation because the application is requesting information from the gateway

eventReportReq()

This method is used by the application to request reports of events on a call leg. It affects information flow between the gateway and application, and there is therefore no mirror operation required.

superviseReq()

This method is used when the application wants to set a granted connection time for an outgoing call leg in a call, and is called before it calls createAndRouteCallLegReq(). It does not apply to incoming call legs, and thus no mirror operation is needed.

Interface: IpAppMultiPartyCall

Symmetric Operations with Asymmetric Interfaces

callEnded()

The mirror operation for this is Release(). The callEnded() method contains additional gateway supplied information for the application, but the releaseCause data is symmetric.

In SIP terms, this corresponds to the gateway receiving a BYE message for a call leg which has been set up, or a CANCEL message for one which is being set up.

Asymmetric Operations

createAndRouteCallLegErr(), getInfoRes(), getInfoErr(), superviseRes(), superviseErr()

These operations do not need a mirror operation because the application is receiving information from the gateway.

Interface: IpMultiPartyCallControlManager

Symmetric Operations with Asymmetric Interfaces

createCall()

The mirror operation is where a new incoming call is received. There is no single mirror operation. An incoming call event will trigger IpAppCallControlManager::callEventNotify() for a new call.

setLoadControl()

This operation lets an application limit the rate of incoming call notifications. The mirror operation is where the gateway refuses to create and route new call legs. This can be achieved by sending a TpCallError response of type P_CALL_ERROR_RESOURCE_UNAVAILABLE asynchronously or a P_RESOURCES_UNAVAILABLE exception synchronously.
Asymmetric Operations

getNotification()

This operation does not need a mirror operation because the application is requesting information from the gateway.

createNotification(), destroyNotification(), changeNotification()

These operations do not need a mirror operation because the application is sending information to the gateway.

Interface: IpAppMultiPartyCallControlManager

Symmetric Operations with Asymmetric Interfaces

callAborted()

There is no exact mirror event, but the equivalent is to use IpMultiPartyCall::release() or IpMultiPartyCall::deassignCall()

callOverloadEncountered(), callOverloadCeased()

These methods are called to inform the application that overload control has been started or stopped by the gateway. If the gateway is refusing to route outgoing call legs because of overload control, then the application will be made aware that the overload condition has ceased because attempts to route call legs will be successful.

Asymmetric Operations

reportNotification(), managerInterrupted(), managerResumed()

These operations do not need a mirror operation because the application is receiving information from the gateway

Mobility Interfaces

In order to understand the symmetry of mobility consider the situation shown in Figure 4

[image: image4.wmf]Gateway 2

Application 1

Mobility

Gateway 1

Application 2

Mobility

OSA

OSA

Network Resource 1

Network Resource 2

Internal API

Internal API

Party A

Party B

Figure 4: Two OSA mobility applications interacting with each other

The mobility interfaces consist of a set of interfaces, IpUserLocation, IpUserLocationCamel, IpUserLocationEmergency and IpUserStatus together with the corresponding application interfaces. All of the interfaces have the same pattern – the application is able to request an asynchronous report on a network address, requesting some kind of location or status information. These reports can be requested either one-off, or in a triggered or periodic mode, where updates are sent back to the application either because of a change of state or after a given time interval.

Conceptually the simplest of these interfaces to analyse is the user status interface, so this document contains a detailed analysis of IpUserStatus and IpAppUserStatus. The analysis can then be easily applied to the other interfaces.

Interface: IpUserStatus

Symmetric Operations with Asymmetric Interfaces

statusReportReq()

This method is called by the application to request a status report on a given network address. The gateway returns an asynchronous response, e.g. busy, unavailable, or available. There is no mirror operation for if a statusReportReq is received for a given network address.

In SIP terms, this operation is best mapped to the gateway sending an OPTIONS message. The OPTIONS message is treated very similarly to an INVITE, except that a user agent which receives an OPTIONS message should return how it would respond had it received the equivalent INVITE message without alerting the user. The mirror SIP operation is the situation where the gateway receives an OPTIONS message for an address. The only way it can know what response to return is to ask the application, but there is no OSA/Parlay way to do this.

triggeredStatusReportingStartReq(), triggeredStatusReportingStop

These methods request that the application should be notified of any changes of status on one or more network addresses.

There is no SIP operation, which directly maps to this. The required functionality can be achieved if the gateway sends regular OPTIONS messages to poll the status of a particular network address, and then informs the application whenever the received response changes. The gateway is effectively

There is no mirror operation for receiving an event for a triggered status report

Asymmetric Operations

There are no asymmetric operations on this interface

Interface: IpAppUserStatus

Symmetric Operations with Asymmetric Interfaces

statusReportRes(), statusReportErr

This method is used by the gateway to send a status report following a statusReportReq. There is no mirror operation to allow the application to send a status Report result or error having received a request from the gateway for such a report.

In SIP terms this corresponds to the application requesting that a response to an OPTIONS message is sent.

triggeredStatusReportRes(),triggeredStatusReportRes()

There is no mirror operation for sending a triggered status report result or error.

Asymmetric Operations

There are no asymmetric operations on this interface

Interface: IpUserLocation, IpUserLocationCamel and IpTriggeredUserLocation

The IpUserLocation interfaces are very similar in format to the IpUserStatus interface, except that location reports are requested rather than status reports. In addition to triggered reports, periodic and extended location reports are also used. Thus the analysis of IpUserStatus can be applied to IpUserLocation.
Interfaces: IpAppUserLocation, IpAppUserLocationCamel and IpAppTriggeredUserLocation

The IpAppUserLocation interfaces are very similar in format to the IpAppUserStatus interface, except that location reports are received rather than status reports. In addition to triggered reports, periodic and extended location reports are also used. Thus the analysis of IpAppUserStatus can be applied to IpAppUserLocation.
Interface: IpUserLocationEmergency and IpAppUserLocationEmergency

The IpUserLocationEmergency interface allows an application to request user location information following an outgoing call to the emergency services. This information is network supplied, and thus there is no circumstance in which the application would be expected to supply such information. Thus the functionality is fundamentally asymmetric, and no proposals for changes are required.

User Interaction Interfaces

In order to understand the symmetry of user interaction consider the situation shown in figure 5.

[image: image5.wmf]Party B

Gateway 2

Application 1

User Interaction, Call

Control

Gateway 1

Application 2

User interaction, Call

Control

OSA

OSA

Routing + User

Interaction Resource 1

Routing + User

Interaction Resource 2

Internal API

Internal API

Party A

Figure 3: Two OSA User Interaction applications interacting with each other

OSA Call User Interaction is only possible in the context of Call Control because the network transport is required before content can be delivered.

The primary role of User Interaction as it stands is in the delivery of interactive voice response services to an end user. For example, the ability to play messages and detect DTMF digits gives the capabilities of many telephone services in use today.

Suppose two applications are controlling a call leg, and both have a user interaction object associated. Then in principle, it is possible for one application to play a message, and the other application to record the message for speech recognition, or for one application to send DTMF digits, and for another to detect DTMF digits.

Interface: IpUICall

IpUICall is considered here, which descends from IpUI, and thus covers both interfaces. There has been a lot of criticism of the OSA User Interaction interfaces because they are limited compared to other environments such as voiceXML platforms

Symmetric Operations with Asymmetric Interfaces

sendInfoReq ()

This allows a sound file, url or text to be played. The mirror operation is recordMessageReq(), allowing a new message to be recorded. However there are many limitations in recording messages, e.g. it is not possible to detect silence or a signal using events. Furthermore, it is not possible through OSA to do speech recognition, or to convert the incoming sound into text.

Thus it appears that the capabilities of detecting signals are less than those for creating them.

sendInfoAndCollectReq()

This message plays a sound file, url or text (as in sendInfoReq()), but also specifies criteria for DTMF detection during or following the prompt. The mirror operation is to be able to record a file with recordMessageReq(), and then to play DTMF tones. This can be achieved by having sound files with the appropriate tones, but there is no programmatic way to get these tones.

recordMessageReq()

The mirror operation is sendInfoReq(), although sendInfoReq is much more flexible (see sendInfoReq() above.

deleteMessageReq()

This action is used to delete recorded messages when finished with. The gateway may notify the application that a message being recorded has failed, and thus the message is deleted, but it is not possible for the gateway to notify the application that it has deleted a message (perhaps because it has expired or because the space is now required for new messages). The whole area of content management is extremely limited in the user interaction interfaces, and warrants further investigation

abortActionReq()

This method stops a playing or recording action. There is no exact mirror operation for this, although silence and signal detection could be considered the closest.

Interface: IpAppUICall

IpAppUICall is considered here, which descends from IpAppUI, and thus covers both interfaces. Almost all of the methods in IpAppUICall consist of asynchronous responses or error reports for requests which have been placed on IpUICall. For some of the methods, it is clear why asynchronous responses are required, because any request involving playing, recording or detecting will need some time between the start of the operation and its completion.

Symmetric Operations with Asymmetric Interfaces

sendInfoRes(), sendInfoErr()

These methods report a successful or failed outcome of a sendInfoReq(). The mirror operation is recordInfoRes() and recordInfoErr()

sendInfoAndCollectRes(), sendInfoAndCollectErr()

These methods report a successful or failed outcome of a sendInfoAndCollectReq(). The mirror operation is recordInfoRes() and recordInfoErr()

userInteractionFaultDetected()

This method allows the gateway to report a fault on a userinteraction. The mirror operation is for the application to call IpUIManager::releaseUI()

recordInfoRes(), recordInfoErr()

These methods report a successful or failed outcome of a recordInfoReq(). The mirror operation is sendInfoRes() and sendInfoErr()

deleteMessageRes, deleteMessageErr, abortActionRes, abortActionErr

These methods simply indicate results of deleteMessageReq and abortActionReq. There is no obvious reasons why these methods are asynchronous, and why exceptions are not used to indicate the outcome of the method calls. For this reason, these methods are not considered further here.

Terminal Capabilities Interfaces

In order to understand the symmetry of terminal capabilities, consider the situation shown in figure 6.

[image: image6.wmf]Terminal A

Terminal B

Gateway 2

Application 1

Terminal Capabilities

Gateway 1

Application 2

Terminal Capabilities

OSA

OSA

Network Resource 1

Network Resource 2

Internal API

Internal API

Figure 6: Two OSA Terminal Capabilities applications interacting with each other

Interface: IpTerminalCapabilities

getTerminalCapabilities()

The getTerminalCapabilities method returns the terminal capabilities of a terminal. The terminal identity is supplied as a string, and it is not immediately apparent how this relates to IpAddress. Suppose OSA application 2 receives an incoming call from application 1, and application 1 then requests terminal capabilities for the terminal address associated with the call leg to application 2. There is no mirror operation to allow application 2 to return terminal capabilities.

2.2.1 Specification Enhancements

2.2.1.1 Call Control

2.2.1.1.1 Call Leg Creation

· an application can create a new call leg within a call, but a network cannot create a call leg and notify an application that a call leg has been created. Terminals and protocols which allow a client to add an additional party to the call should be able to do so, making the application aware of the new party.

Proposed modification

The following method could be added to the IpAppMultiPartyCall to enable a gateway to receive notification of a new call leg creation.

<<Interface>>

IpAppMultiPartyCall (new method)

getInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

getInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration) : void

superviseErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

callLegCreated (callSessionID : in TpSessionID, callLegReference : in TpCallLegIdentifier) : IpAppCallLegRef

Method

callLegCreated()

This method reports that a new call leg has been added to an existing call

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callLegReference : in TpCallLegIdentifier

Specifies the reference to the CallLeg interface that was created.
Returns

IpAppCallLegRef

Specifies the IpAppCallLeg interface to be used with the new call leg

2.2.1.1.2 Explicit Sending of Call Leg Events

An application cannot explicitly send an Alerting, Answer, or Service Code message to a call leg.

Proposed modification

<<Interface>>

IpCallLeg (new methods)

sendNetworkEvent (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo): void

Method

sendNetworkEvent()

This method allows an application to send a network event on a call leg. Legal call events are

P_CALL_EVENT_ALERTING
,
P_CALL_EVENT_ANSWER,
P_CALL_EVENT_QUEUED,
P_CALL_EVENT_ORIGINATING_SERVICE_CODE, P_CALL_EVENT_TERMINATING_SERVICE_CODE

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg on which the event was detected.
eventInfo : in TpCallEventInfo

Specifies data associated with this event.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID,P_INVALID_NETWORK_STATE

2.2.1.1.3 Notification of Attaching and Detaching Call Legs

An application can attach and detach call legs from a call, but the application cannot be notified that the call legs have been attached or detached by the connected party. This causes problems because if a caller detaches from a call, then the application is not aware of this. In a symmetrical model, the media stream could be connected or disconnected by either application or client, and the application could be notified of changes

Proposed modification

The following definition is proposed for TpCallEventType:

TpCallEventType

Defines a specific call event report type.

Name
Value
Description

P_CALL_EVENT_UNDEFINED
0
Undefined

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT
1
An originating call attempt takes place (e.g. Off-hook event).

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED
2
An originating call attempt is authorised

P_CALL_EVENT_ADDRESS_COLLECTED
3
The destination address has been collected.

P_CALL_EVENT_ADDRESS_ANALYSED
4
The destination address has been analysed.

P_CALL_EVENT_ORIGINATING_SERVICE_CODE
5
Mid-call originating service code received.

P_CALL_EVENT_ORIGINATING_RELEASE
6
A originating call/call leg is released

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT
7
A terminating call attempt takes place

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED
8
A terminating call is authorized

P_CALL_EVENT_ALERTING
9
Call is alerting at the call party.

P_CALL_EVENT_ANSWER
10
Call answered at address.

P_CALL_EVENT_TERMINATING_RELEASE
11
A terminating call leg isreleased or the call could not be routed.

P_CALL_EVENT_REDIRECTED
12
Call redirected to new address: an indication from the network that the call has been redirected to a new address (no events disarmed as a result of this).

P_CALL_EVENT_TERMINATING_SERVICE_CODE
13
Mid call terminating service code received.

P_CALL_EVENT_QUEUED
14
The Call Event has been queued. (no events are disarmed as a result of this)

P_CALL_EVENT_MEDIA_ATTACHED
15
The connected party is attached to the call

P_CALL_EVENT_MEDIA_DETACHED
16
The connected party is detached from the call

2.2.1.1.4 Advice of Charge Information

An application can set advice of charge on a call leg, but cannot receive it.

Proposed modification

It is proposed that the following method is added to the IpAppCallLeg interface

<<Interface>>

IpAppCallLeg (new methods)

adviceOfChargeReceived (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tarrifSwitch : in TpDuration) : void

Method

AdviceOfChargeReceived()

This method indicates that advice of charge (AOC) information has been received for the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.
aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.
tarrifSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.
2.2.1.2 Mobility interfaces

The mobility interfaces allow an application to query the status and location of an address. However, an application cannot request notification of incoming requests for the status or location of address and return a response. A scenario where this causes a problem is where a unified communications application provides a ‘one-number’ service, and a second application requests the status or location of the user. The unified communications application must be able to receive status requests and respond to them.

A proposed modification is outlined for the User Status interface, but parallel changes could be adopted on the other mobility interfaces.

Proposed modification

The proposed modifications are modelled on the event notification system used in call control, although the data types used are much simpler.:

<<Interface>>

IpUserStatus (new methods)

enableStatusNotification(appStatus : in IpAppUserStatusRef, targetAddress: in TpAddressRange) : TpAssignmentID

disableStatusNotification(assignmentID : TpAssignmentID) : void

changeStatusNotification(assignmentID : targetAddress: in TpAddressRange) : void

statusEventRes(sessionId : in TpSessionID, status : in TpUserStatus) : TpResult

statusEventErr(sessionId : in TpSessionID, cause : in TpMobilityError, diagnostic : in TpMobilityDiagnostic) : void

triggeredStatusEventRes(sessionId : in TpSessionID, status : in TpUserStatus) : void

triggeredStatusEventErr(sessionId : in TpSessionID, cause : in TpMobilityError, diagnostic : in TpMobilityDiagnostic) : void

Method

enableStatusNotification ()

This method is used to enable status notifications so that events can be sent to the application. If some application already requested notifications with an address range that overlaps the specified criteria, the request is refused with P_INVALID_PARAMETER_VALUE.
If the same application requests two notifications with exactly the same criteria but different callback references, the second callback will be treated as an additional callback. This means that the callback will only be used in case when the first callback specified by the application is unable to handle the statusEventNotify (e.g., due to overload or failure).

Parameters

appStatus : in IpAppUserStatusRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.

targetAddress : in TpAddressRange

Specifies the range of addresses on which incoming status report requests are requested.

Returns

TpAssignmentID

Specifies the ID assigned by the user status interface for this newly-enabled event notification.

Raises

TpCommonExceptions,P_APPLICATION_NOT_ACTIVATED
Method

disableStatusNotification ()

This method is used by the application to disable status notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the user status manager interface when the previous enableNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the user status manager will return the error code P_INVALID_ASSIGNMENTID.
Raises

TpCommonExceptions,P_INVALID_ASSIGNMENTID,P_APPLICATION_NOT_ACTIVATED

Method

changeCallNotification ()

This method is used by the application to change the address range introduced with enableStatusNotification. Any stored address range associated with the specified assignmentID will be replaced with the specified range.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the user status interface for the event notification.

targetAddress : in TpAddressRange

Specifies the range of addresses on which incoming status report requests are requested.

Raises

TpCommonExceptions,P_INVALID_ASSIGNMENTID,P_APPLICATION_NOT_ACTIVATED

Method

statusEventRes()

Sends a status report for a user.

Parameters

sessionID : in TpSessionID

Specifies the sessionID of the status event request

status : in TpUserStatus

Specifies the status of the user.

Raises

TpCommonExceptions, P_APPLICATION_NOT_ACTIVATED

Method

statusEventErr()

Sends a status error for a user

Parameters

sessionID : in TpSessionID

Specifies the sessionID of the status event request

cause : in TpMobilityError

Specifies the error that led to the failure.

diagnostic : in TpMobilityDiagnostic

Specifies additional information about the error that led to the failure.

Raises

TpCommonExceptions, P_APPLICATION_NOT_ACTIVATED

Method

triggeredStatusEventRes()

Sends a status report for a user in response to a triggeredStatusEventNotifyStart().

Parameters

sessionID : in TpSessionID

Specifies the sessionID of the status event request

status : in TpUserStatus

Specifies the status of the user.

Raises

TpCommonExceptions, P_APPLICATION_NOT_ACTIVATED

Method

triggeredStatusEventErr()

Sends a status error for a user in response to a triggeredStatusEventNotifyStart().

Parameters

sessionID : in TpSessionID

Specifies the sessionID of the status event request

cause : in TpMobilityError

Specifies the error that led to the failure.

diagnostic : in TpMobilityDiagnostic

Specifies additional information about the error that led to the failure.

Raises

TpCommonExceptions, P_APPLICATION_NOT_ACTIVATED

<<Interface>>

IpAppUserStatus (new methods)

statusEventNotify(targetAddress : in TpAddress, assignmentID : in TpAssignmentID, sessionID : in TpSessionID): void

triggeredStatusEventNotifyStart(targetAddress : in TpAddress, assignmentID : in TpAssignmentID, sessionID : in TpSessionID): void

triggeredStatusEventNotifyStop(sessionID : in TpSessionID): void

Method

statusEventNotify ()

This method notifies the application of the arrival of a request for a status report.

Parameters

targetAddress : in TpAddress

Specifies the address for which the report is required

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableStatusNotification() method. The application can use assignment id to associate events with requests.

sessionID : in TpSessionID

Specifies the sessionID for the status event. Each status event has a unique session ID which allows the gateway to correlate the event request with the event response.

Method

triggeredStatusEventNotifyStart()

This method notifies the application of the arrival of a request for triggered status reports.

Parameters

targetAddress : in TpAddress

Specifies the address for which the report is required

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableStatusNotification() method. The application can use assignment id to associate events with requests.

sessionID : in TpSessionID

Specifies the sessionID for the status event. Each status event has a unique session ID which allows the gateway to correlate the event request with the event response.

Method

triggeredStatusEventNotifyStop()

This method notifies the application of the arrival of a request for a triggered status reports.

Parameters

sessionID : in TpSessionID

Specifies the sessionID for the status event. Each status event has a unique session ID which allows the gateway to correlate the event request with the event response.

2.2.1.3 User Interaction

The User Interaction interfaces do not currently allow the programmatic playing of DTMF tones although the playing of pre-recorded announcements is possible.

There is also no way for silence or signal detection to be performed on a call leg where for instance a call leg needs to be monitored during a conference. This feature could be effective if a threshold level is set above or below which the application is triggered.

Finally the management of resources is an issue within the user interaction interface specification which is not rigorously defined. The application can currently delete a message it has finished with but there is no scope for a gateway to manage its own resource and delete messages which have expired, notifying the application of this event.

<<Interface>>

IpUICall (new methods)

playDTMF (callLegSessionID : in TpCallLegSessionID, dtmfDigits : in TpString): void

detectPartyReq (callLegSessionID : in TpCallLegSessionID, thresholdMin : in TpInt32, thresholdMax : in TpInt32, duration : in TpDuration): void

Method

playDTMF ()

This method instructs the network to play DTMF tones to a call leg.

Parameters

callLegSessionID : in TpCallLegSessionID

Specifies the call leg sessionID onto which the DTMF tones should be played.

dtmfDigits : in TpString

Specifies the DTMF tones to be generated. The application can specify a string of tones using the DTMF characters 0-9, *, # and “,” to mean pause.

Method

detectPartyReq ()

This asynchronous method instructs that the user interaction resource listen to a specified call leg in order to detect silence or signals made by the call leg party.

Parameters

callLegSessionID : in TpCallLegSessionID

Specifies the callLegSessionID on which to invoke the silence/signal detection.

thresholdMin : in TpInt32

Specifies the minimum threshold upon which the gateway should notify to the application that silence has been detected.

thresholdMax : in TpInt32

Specifies the maximum threshold above which the gateway should notify the application that a signal has been detected.

<<Interface>>

IpAppUICall

messagesDeleted (userInteractionSessionID : in TpSessionID, lowMessageID : in TpInt32, highMessageID : in TpInt32) : void

detectPartyRes (userInteractionSessionID : in TpSessionID, partyResponse : in TpBoolean): void

Method

messagesDeleted ()

This method notifies the application that the Gateway has deleted one or more messages it owns.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session to which the deleted messages belong.

lowMessageID : in TpInt32

Specifies the lowest messageID of the block of deleted messages.

highMessageID : in TpInt32

Specifies the highest messageID of the block of deleted messages.

Method

detectPartyRes ()

This asynchronous method notifies the application of the outcome of the detectPartyReq() method.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the userInteraction session to which the silence/signal detection belongs.

partyResponse : in TpBoolean

Specifies the response of the call leg, corresponding to either the minimum or maximum thresholds.

2.2.1.4 Terminal Capabilities

There is no capability in OSA for an application to send terminal capabilities on request. A similar eventNotification system as used for IpUserStatus could be used here to provide the mirror functions, but further clarification is needed first on the network environment in which this is to be used.

2.2.2 Test Scenario

Many applications could be improved as a result of this work, which assesses the Parlay specification across a number of the service interfaces. As stated earlier one of the key improvements of providing balanced interfaces is to reduce feature interworking between Parlay applications and other Parlay applications and/or network services.

One example is that of the conflicts between a Personal Number service and a mobility application assessing the status of its users. In this example a mobile user also subscribes to a personal number service.

At some point, the mobility application service will want to test the availability or location of the user. Previously a conflict would arise since the personal number tested would trigger to the second application and then the mobility service would fail. With balanced interfaces it should be possible for the second application to be notified of the request for status information relating to its personal number customer and to subsequently instruct the status information to be supplied for its personal number user thus satisfying the mobility application’s demand.

2.3 Conclusions/Further work

The symmetry of networks and equivalence of network nodes suggest that in general, OSA should offer symmetric functionality. Although at first sight, the OSA interfaces appear to be highly asymmetric, closer inspection shows that much of the required functionality is available both on application interfaces and on gateway. The reason why the interfaces on application and gateway are not identical is that the application and gateway have different roles, with the application being in control of the functionality, and the gateway being in control of the network.

By considering situations of two parlay applications interacting with one-another, it is possible to identify situations across a number of interfaces where functionality is not supported symmetrically, which could lead to a loss of capability and feature interaction problems.

In this document, a number of the OSA interfaces have been analysed in depth, identifying areas where functionality is not symmetric. In some cases, the mapping of Parlay to SIP has been discussed, as SIP provides a convenient peer-to-peer network environment in which to understand how different entities interact. The SIP information is only given for the purpose of further explanation, and the issues identified may be applicable across any network type.

The document contains a number of suggestions for changes to OSA, which would make the interfaces more symmetric. Given the maturity of the OSA specification, only the minimum necessary changes have been made for greater symmetry.

In gv cases, particularly with new OSA interfaces further investigation is required to understand the environment in which these interfaces are to be used before definite recommendations can be given.

 [End of document]

EDIN	0001-xxxx

Project	P1110

EURESCOM confidential

September 2001

Abstract

This document is provided by the shareholders of Eurescom Project P1110 and is intended as input to the Parlay Requirements process. The document consists of a number of specification enhancement definitions relating to the following areas:

Modifications to the existing specifications

Proposals for new framework/ service interfaces

New specification features

The Project P1110 shareholders will pursue the development and solution of the issues defined in this report and wish to provide this document in order to help co-ordinate their actions along side those of the Parlay specification development teams so as to reduce overlap.

_1061999174.ppt

Gateway 2

Application 1

Gateway 1

Application 2

OSA

OSA

SIP Application Server 1

SIP Application Server 2

Internal API

Internal API

Party B

Party A

_1061999391.ppt

Gateway 2

Application 1

Call Control

Gateway 1

Application 2

Call Control

OSA

OSA

Network Resource 1

Network Resource 2

Internal API

Internal API

Party A

Party B

_1061999617.ppt

Gateway 2

Application 1

Mobility

Gateway 1

Application 2

Mobility

OSA

OSA

Network Resource 1

Network Resource 2

Internal API

Internal API

Party A

Party B

_1061995884.ppt

Party B

Gateway 2

Application 1

User Interaction, Call Control

Gateway 1

Application 2

User interaction, Call Control

OSA

OSA

Routing + User Interaction Resource 1

Routing + User Interaction Resource 2

Internal API

Internal API

Party A

_1061996566.ppt

Terminal A

Terminal B

Gateway 2

Application 1

Terminal Capabilities

Gateway 1

Application 2

Terminal Capabilities

OSA

OSA

Network Resource 1

Network Resource 2

Internal API

Internal API

_1028542382.doc
[image: image1.png]

_1061992527.ppt

Gateway 2

Application 1

Gateway 1

Application 2

OSA

OSA

SSP 1

SSP 2

Internal API

Internal API

Party B

Party A

_1001918073.doc

