[image: image1.wmf] :

IpCallControlManage

r

 :

IpAppCall

 :

IpCall

 :

IpAppCallControlManage

r

 :

IpAppLogic

6:’check

status'

7: appropriate release

cause()

3:

callEventNotify

()

4: 'forward event'

5:

new()

1:

new()

2:

enableCallNotification

()

[image: image2.png]Jlexact

TECHNOLOGIES

 STYLEREF Security * MERGEFORMAT
 STYLEREF Issue * MERGEFORMAT

3GPP TSG_CN5 (Open Service Architecture – OSA)

San Diego Parlay meeting 21 - 24 May 2001
Tdoc N5-010468

Source:
BT

Title:

Proposed addition of error P_INVALID_SESSION_ID; P_UNSUPPORTED_ADDRESS_PLAN; and proposed Changes to TpCallReleaseCause
Agenda Item:
Call Control
Document for:
Discussion and endorsement
Category:

Work Item ID:

Doc Summary:

Specs involved:
DES/SPAN - 120070-2 V0.0.2 (2001-03) and 120070-4 v0.0.4 (2001-03)

Call Control Issues

Dr. Nick Edwards, Richard Stretch

Proposed Changes to OSA

Introduction

This report contains proposals for changes to OSA

1) Addition of error P_INVALID_SESSION_ID

At the moment, if an invalid session id is passed by an application or gateway, then the error P_INVALID_PARAMETER_VALUE may be returned. However, this is not a very specific error code, and it would be helpful to define a specific error for this common parameter, consistent with P_INVALID_ASSIGNMENT ID.

Proposed change to the Common Data (120070-2) section 5.4.4 TpResult info add the following:

P_INVALID_SESSION_ID
0035h
The session ID is invalid

2) Addition of error P_UNSUPPORTED_ADDRESS_PLAN

An application which works on one gateway may find errors when working on another because the address types supported by the second gateway are different. It is quite possible for an application to pass in a valid address, but for the gateway to be unable to use it because of the network type. P_INVALID_ADDRESS could be returned, but this may not be the case if the address is valid, but unsupported.
Proposed change to the Common Data (120070-2) section 5.4.4 TpResult info add the following:

P_UNSUPPORTED_ADDRESS_PLAN
0036h
An address contains an address plan which is not supported

3)
Discussion point

Linkage of Load Control to EventNotifications

A possible adjustment to the setLoadControl() method of IpCallControlManager would be to change the addressRange parameter to be an event notification assignment ID. The idea here is that load control of incoming calls is only relevant to a particular application when it has an associated eventNotification. The advantages of this approach are:

a) The application can set multiple call backs for a given incoming call event. Allowing a load control to be explicitly associated with an eventNotification has the advantage of allowing individual load controls to be placed on specific call backs

b) From the gateway perspective, the load control can be explicitly associated with the event Notification, and thus load control can occur at a lower level in the gateway than if all events have to be centrally checked for load control.

4)
Proposed Changes to TpCallReleaseCause

In a previous contribution we highlighted a problem about certain operations being called in notify or interrupt mode. When certain operations are called in interrupt mode and call progressing is stopped an application may require to send some sort of network signal such as busy or released etc. We therefore suggested that a new method be defined called sendNetworkSignal. This was rejected and comments were made that one could utilise either continueProcessing or methods from the user interaction interface. Since then we have noted that the Parlay specification allows a release cause to be sent whenever a call is released by the application or gateway. The cause value and location explaining why the call is being released are defined in the ITU Q.850 documentation. as shown in section 6.6.2 of 120070-4. Many developers may not have easy access to this documentation, so examples of common release code values would be helpful.

One scenario is that an application receives notification of an incoming call, and wishes to release it, rather than to connect it to another party.

It should call IpCall::release(), setting a release cause location of 128, and a release cause value as shown in the following table of equivalent P_CALL_REPORT values.

A new sequence chart is also proposed to explain how this would work.

We therefor propose that the following changes be made:

(A) Proposed changes to 120070-4 section 6.6.2

TpCallReleaseCause

Defines the Sequence of Data Elements that specify the cause of the release of a call.

Sequence Element Name
Sequence Element Type

Value
TpInt32

Location
TpInt32

Note: the Value and Location are specified as in ITU-T recommendation Q.850.

The following example was taken from Q.850 to aid understanding:

Equivalent Call Report
Cause Value Set by Application
Cause Value from Network

P_CALL_REPORT_BUSY
17
17

P_CALL_REPORT_NO_ANSWER
19
18,19,21

P_CALL_REPORT_DISCONNECT
16
16

P_CALL_REPORT_REDIRECTED
23
23

P_CALL_REPORT_SERVICE_CODE
31
31

P_CALL_REPORT_ROUTING_FAILURE
3
Any other value

Note: It should be decided whether or not the Application should add 128 to each of the values above on behalf of the gateway, if the top bit in the octet is set.
The following sequence diagram Number Translation 5, might help to explain how this works

(B) Proposed Changes to 120070 - 4 adding new section 6.1.12

Number Translation5

The following sequence diagram shows a simple number translation service which contains a status check function, initiated as a result of a prearranged event being received. In the following sequence, when the application receives an incoming call, it checks the status of the user, and returns a busy code to the calling party.

[image: image4.png]BTexact Technologies www.btexact.com Adastral Park, Martlesham, Ipswich, Suffolk IP5 3RE, UK
A trademark of British Telecommunications plc. Registered Office: 81 Newgate Street, London ECTA 7A]. Registered in England no. 1800000

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of message 3.

6: This message invokes the status checking function.

7: The application decides to release the call, and sends a release cause to the calling party indicating that the user is busy.

[image: image3.png]

Page 6 of 1

_1053419674.doc

 :

IpCallControlManager

 : IpAppCall

 : IpCall

 :

IpAppCallControlManager

 :

IpAppLogic

6:’check status'

7: appropriate release cause()

3: callEventNotify()

4: 'forward event'

5: new()

1: new()

2: enableCallNotification()

