3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #11, San Diego, CA, USA, 21 – 24 May 2001
Tdoc N5-010455

Source:
Lucent :

Andy Bennett (andybennett@lucent.com),

Gareth Carroll (garethcarroll@bell-labs.com) &

Tip Apaseesod (ta39@lucent.com)

Title:
Clarification of service instance configuration
Agenda Item:
Formerly N5-010387
Document for:
Approval
Category:
TS
Work Item ID:

Doc Summary:

Specs involved:
120070-3
Problem

The service factory is passed some properties when it is asked to create a new service instance. These properties should represent not only the properties that the service was registered with, but also any restrictions that apply for the client application (as per the service level agreement). The specification does not currently make this clear.

Proposal

Lucent would like to modify the descriptions of the discoverService() and signServiceAgreement() methods to take into account the situation when service subscription is active on the framework. If service subscription is being used within the framework, then each client application will be assigned to a service profile/contract (through a SAG – Subscription Assignment Group). This service profile/contract will contain a set of dates and also a set of subscription properties that will restrict the client application’s use of the service.

When an application calls discoverService() when service subscription is active, the properties that are returned should be the set of properties formed by the registration properties and the subscription properties contained in the contract/profile. This means that the service properties returned will form a more complete view of what the client application will be able to do with that service.

Likewise, when an application invokes signServiceAgreement() when service subscription is active, the service instance should be created using be the set of properties formed by the registration properties and the subscription properties contained in the contract/profile.

Resulting changes

The following changes will be made to the method descriptions for IpServiceDiscovery.discoverService() and

IpAccess.signServiceAgreement(). Also the text around the sequence diagram in section 6.3.1 should be updated as it is incorrect/misleading.

8.2.1 Interface Class IpServiceDiscovery

Method

discoverService()

The discoverService operation is the means by which a client application is able to obtain the service IDs of the services that meet its requirements. The client application passes in a list of desired service properties to describe the service it is looking for, in the form of attribute/value pairs for the service properties. The client application also specifies the maximum number of matched responses it is willing to accept. The framework must not return more matches than the specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the specified maximum. The discoverService() operation returns a serviceID/Property pair list for those services that match the desired service property list that the client application provided. The service properties returned will form a complete view of what the client application will be able to do with the service, as per the service level agreement. If the framework supports service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties.
Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter conveys the required service type. It is key to the central purpose of "service trading". It is the basis for type safe interactions between the service exporters (via registerService) and service importers (via discoverService). By stating a service type, the importer implies the service type and a domain of discourse for talking about properties of service.
· If the string representation of the "type" does not obey the rules for service type identifiers, then the P_ILLEGAL_SERVICE_TYPE exception is raised.
· If the "type" is correct syntactically but is not recognised as a service type within the Framework, then the P_UNKNOWN_SERVICE_TYPE exception is raised.
The framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the properties of its supertypes.
desiredPropertyList : in TpServicePropertyList

The "desiredPropertyList"parameter is a list of service property {name, mode and value list} tuples that the discovered set of services should satisfy. These properties deal with the non-functional and non-computational aspects of the desired service. The property values in the desired property list must be logically interpreted as "minimum", "maximum", etc. by the framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It is suggested that, at the time of service registration, each property value be specified as an appropriate range of values, so that desired property values can specify an "enclosing" range of values to help in the selection of desired services.
max : in TpInt32

The "max" parameter states the maximum number of services that are to be returned in the "serviceList" result.
serviceList : out TpServiceListRef

This parameter gives a list of matching services. Each service is characterised by its service ID and a list of service property {name, mode and value list} tuples associated with the service.
Raises

TpGeneralException,TpFWException
8.1.6 Interface Class IpAccess

Method

signServiceAgreement()

This method is used by the client application to request that the framework sign an agreement on the service, which allows the client application to use the service. If the framework agrees, both parties sign the service agreement, and a reference to the service manager interface of the service is returned to the client application. The service manager returned will be configured as per the service level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties. If the client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is returned.
Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
agreementText : in TpString

This is the agreement text that is to be signed by the framework using the private key of the framework. If the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.
signatureAndServiceMgr : out TpSignatureAndServiceMgrRef

This contains the digital signature of the framework for the service agreement, and a reference to the service manager interface of the service.

structure TpSignatureAndServiceMgr {

digitalSignature:
TpString;

serviceMgrInterface:
 IpInterfaceRef;

};

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client application.

The serviceMgrInterface is a reference to the service manager interface for the selected service.
Raises

TpGeneralException,TpFWException
Service Discovery Sequence Diagrams

6.3.1 Service Discovery

The following figure shows how Applications discover a new Service Capability Feature in the network. Even applications that have already used the OSA API of a certain network know that the operator may upgrade it any time; this is why they use the Service Discovery interfaces.

Before the discovery process can start, the Application needs a reference to the Framework's Service Discovery interface; this is done via an invocation the method obtainInterface on the Framework's Access interface.

Discovery can be a three-step process. The first two steps have to be performed initially, but can subsequently be skipped (if the service type and its properties are already known, the application can invoke discoverService() without having to re-invoke the list/discoverServiceType methods)
�PAGE \# "'Page: '#'�'" �� The Tdoc number for the CN5 plenary meeting will be allocated by the CN5 Secretary: Adrian ZOICAS (ETSI MCC), � HYPERLINK "mailto:Adrian.Zoicas@etsi.fr" ��Adrian.Zoicas@etsi.fr�

