3GPP TSG_CN WG5#11

Tdoc N5-010360

San Diego, USA

21st – 24th May, 2001

Source:
Telcordia Technologies
Title:
Clarification of IpMultiPartyCall STD
Agenda item:

Document for:
APPROVAL

1 Introduction

This contribution was discussed during the ad-hoc meeting in Antwerp. A number of minor improvements were suggested. These are mentioned in the Change Log. The meeting is kindly requested to accept this contribution.

2 Change Log

	Date
	Change
	Source

	April 5, 2001
	Initial release
	John-Luc Bakker

	April 6, 2001
	· Changed createAndRouteCall in STD to createAndRouteCallLeg

· Add a getState() method and appropriate constants

· Fixed pre- & post conditions for create-CallLeg and createAndRouteCallLeg
	Richard Stretch, Andy Bennett, John-Luc Bakker

	April 23, 2001
	· Accepted all blue changes

· Updated getState method

· Checked pre/post conditions

· Added “incoming call” to STD

· Applied “no state change” notation to post conditions
	Ad-hoc meeting

7.3.3 Interface Class IpMultiPartyCall
Inherits from: IpService
The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the charging of the call, to release the call and to supervise the call. It also gives the possibility to manage call legs explicitly. An application may create more then one call leg.
	<<Interface>>

IpMultiPartyCall

	IDLE : int = 1
FAULTY : int = 2
ACTIVE : int = 3
RELEASED : int = 4

	getCallLegs (callSessionID : in TpSessionID, callLegList : out TpCallLegIdentifierSetRef) : TpResult

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef, targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, callLeg : out TpCallLegIdentifierRef, connectionProperties : in TpCallLegConnectionProperties) : TpResult

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef, callLegReference : out TpCallLegIdentifierRef) : TpResult

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

deassignCall (callSessionID : in TpSessionID) : TpResult

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : TpResult

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : TpResult

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : TpResult
getState(callSessionID : out TpSessionID) : int

Method

getState()

This method is used to retrieve the state.
Pre conditions:

All states

Post condition:

No change

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
Raises

TpGCCSException,TpGeneralException
Method

getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the order of creation.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” != IpMultiPartyCall.FAULTY
Post condition:

No change
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callLegList : out TpCallLegIdentifierSetRef

Specifies the call legs associated with the call. The set contains both the sessionIDs and the interface references.
Raises

TpGCCSException, TpGeneralException
Method

createCallLeg()

This method requests the creation of a new call leg object.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” == (IpMultiPartyCall.ACTIVE || IpMultiPartyCall.IDLE)

Post condition:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” == IpMultiPartyCall.ACTIVE
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.
targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.
originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.
appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service identities and interaction indicators).
callLeg : out TpCallLegIdentifierRef

Specifies the interface and sessionID of the call leg created.
connectionProperties : in TpCallLegConnectionProperties

Specifies the properties of the connection.
Raises

TpGeneralException,TpGCCSException
Method

createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination party is established successfully the CallLeg is attached to the call, i.e. no explicit setMedia() operation is needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide through the appLegInterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, otherwise the network provided numbers will be used.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” == (IpMultiPartyCall.ACTIVE || IpMultiPartyCall.IDLE)

Post condition:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” == IpMultiPartyCall.ACTIVE
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these criteria are reported. Examples of events are "adress analysed", "answer", "release".

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.
originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.
appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).
appLegInterface : in IpAppCallLegRef

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested events will be reported by the eventReportRes() operation on this interface.
callLegReference : out TpCallLegIdentifierRef

Specifies the reference to the CallLeg interface that was created.
Raises

TpGCCSException,TpGeneralException
Method

release()

This method requests the release of the call object and associated objects. The call will also be terminated in the network. If the application requested reports to be sent at the end of the call (e.g., by means of getInfoReq) these reports will still be sent to the application.

Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” == IpMultiPartyCall.ACTIVE

Post condition:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” == IpMultiPartyCall.RELEASED
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
cause : in TpCallReleaseCause

Specifies the cause of the release.
Raises

TpGCCSException,TpGeneralException
Method

deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has call information reports, call leg event reports or call Leg information reports requested, then these reports will be disabled and any related information discarded.

Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” == (IpMultiPartyCall.IDLE || IpMultiPartyCall.ACTIVE)
Post condition:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” != (IpMultiPartyCall.IDLE || IpMultiPartyCall.ACTIVE || IpMultiPartyCall.FAULTY || IpMultiPartyCall.RELEASED)
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
Raises

TpGCCSException,TpGeneralException
Method

getInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for example, to calculate charging). This method must be invoked before the call is routed to a target address. Two types of reports can be requested; a final report or intermediate reports.

A final call report is sent when the call is ended. The call object will exist after the call is ended if information is required to be sent to the application at the end of the call. The call information will be sent after any call event reports.

Intermediate reports are received when the destination leg or party terminates or when the call ends.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” == IpMultiPartyCall.IDLE

Post condition:

No change
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.
Raises

TpGCCSException,TpGeneralException
Method

setChargePlan()

Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to a target address. Depending on the operator the method can also be used to change the charge plan for ongoing calls.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” == (IpMultiPartyCall.IDLE || IpMultiPartyCall.ACTIVE)
“Call leg state” != (IpMultiPartyCall.ALERTING || IpMultiPartyCall.CONNECTED)
Post condition:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” != (IpMultiPartyCall.IDLE || IpMultiPartyCall.ACTIVE)
“Call leg state” != (IpMultiPartyCall.ALERTING || IpMultiPartyCall.CONNECTED)
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.
Raises

TpGCCSException,TpGeneralException
Method

setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this information.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” == (IpMultiPartyCall.IDLE || IpMultiPartyCall.ACTIVE)

Post condition:

No change
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.
tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.
Raises

TpGeneralException,TpGCCSException
Method

superviseReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If an application calls this operation before it routes a call or a user interaction operation the time measurement will start as soon as the call is answered by the B-party or the user interaction system.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” == (IpMultiPartyCall.IDLE || IpMultiPartyCall.ACTIVE)

Post condition:

No change
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
time : in TpDuration

Specifies the granted time in milliseconds for the connection.
treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.
Raises

TpGCCSException,TpGeneralException
7.3.4 Interface Class IpAppMultiPartyCall
Inherits from: IpInterface
The Multi-Party call application interface is implemented by the client application developer and is used to handle call request responses and state reports.
	<<Interface>>

IpAppMultiPartyCall

	

	getInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : TpResult

getInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration) : TpResult

superviseErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : TpResult

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : TpResult

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegIdentifier, errorIndication : in TpCallError) : TpResult

Method

getInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause depending on which information has been requested by getInfoReq. This information may be used e.g. for charging purposes. The call information will possibly be sent after reporting of all cases where the call or a leg of the call has been disconnected or a routing failure has been encountered.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” == (IpMultiPartyCall.RELEASED || IpMultiPartyCall.ACTIVE)
Post condition:

No change
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callInfoReport : in TpCallInfoReport

Specifies the call information requested.
Raises

TpGCCSException,TpGeneralException
Method

getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” == IpMultiPartyCall.FAULTY

Post condition:

No change
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGCCSException,TpGeneralException
Method

superviseRes()

This asynchronous method reports a call supervision event to the application when it has indicated it's interest in these kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is invoked as a response to the request also when a tariff switch happens in the network during an active call.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” == (IpMultiPartyCall.RELEASED || IpMultiPartyCall.ACTIVE)
Post condition:

No change
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call
report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.
usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).
Raises

TpGCCSException,TpGeneralException
Method

superviseErr()

This asynchronous method reports a call supervision error to the application.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” == IpMultiPartyCall.FAULTY

Post condition:

No change
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGCCSException,TpGeneralException
Method

callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No reports will be sent to the application.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” == IpMultiPartyCall.FAULTY

Post condition:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” != IpMultiPartyCall.FAULTY
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.
fault : in TpCallFault

Specifies the fault that has been detected.
Raises

TpGCCSException,TpGeneralException
Method

callEnded()

This method indicates to the application that the call has terminated in the network.

Note that the event that caused the call to end might have been received separately if the application was monitoring for it.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” == IpMultiPartyCall.RELEASED
Post condition:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” != IpMultiPartyCall.RELEASED
Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.
report : in TpCallEndedReport

Specifies the reason the call is terminated.
Raises

TpGeneralException,TpGCCSException
Method

createAndRouteCallLegErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call could not be routed to the destination party (for example, the network was unable to route the call, the parameters were incorrect, the request was refused, etc.). Note that the event cases that can be monitored and correspond to an unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and not by this operation.
Pre conditions:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” == IpMultiPartyCall.ACTIVE

Post condition:

“Call Control Manager state” == IpMultiPartyCallControlManager.IN_SERVICE

“Call state” == (IpMultiPartyCall.ACTIVE || IpMultiPartyCall.RELEASED)
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callLegReference : in TpCallLegIdentifier

Specifies the reference to the CallLeg interface that was created.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGCCSException,TpGeneralException
7.3.5 State Transition Diagrams for IpMultiPartyCall

The state transition diagram shows the application view on the MultiParty Call object.
[image: image1.png]@ [pMultiPartyCallianager. createCall 1oLz |

ing call"

createCalliéy

eCallLeg

ACTIVE "timer xpires"

detected"

RELEASED

FAULTY |

ZultDetected

deassign

Figure : Application view on the MultiParty Call object

7.3.5.1 IDLE state

In this state the Call object has no Call Leg object associated to it.

The application can request for charging related information reports, call supervision, set the charge plan and set Advice Of Charge indicators. When the first Call Leg object is requested to be created a state transition is made to the Active state.

7.3.5.2 ACTIVE State

In this state the Call object has one or more Call Leg objects associated to it. The application is allowed to create additional Call Leg objects.

Furthermore, the application can request for charging related information reports, call supervision, set the charge plan and set Advice Of Charge indicators.

7.3.5.3 RELEASED State

In this state the last Call leg object has released or the call itself was released. While the call is in this state, the requested call information will be collected and returned through getCallInfoReq() and / or superviseCallReq(). As soon as all information is returned, the application will be informed that the call has ended and Call object transition to the end state.

7.3.5.4 FAULTY State

A transition to this state is made when the Call object is in state IDLE and no requests from the application have been received during a certain period or when a non-recoverable fault was detected during the ACTIVE state.

In case the application requested for call related information previously, the application will be informed that this information is not available and additionally the application is informed that the call object is transitioning to end state.

7.3.5.5

7.3.5.6

7.3.5.7

7.3.5.8

7.3.5.9

7.3.5.10

7.3.5.11

7.3.5.12

