Page 1

TSG_CN5 (Open Service Access – OSA) Meeting #11
Tdoc N5-010355

San Diego, CA, USA, 21 – 24 May 2001

CR-Form-v4

CHANGE REQUEST

(

29.198
CR
CRNum
(

rev
-
(

Current version:
3.3.0
(

For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

Proposed change affects:
(

(U)SIM

ME/UE

Radio Access Network

Core Network
x

Title:
(

IDL Correction of TpCallEventCriteria

Source:
(

Siemens

Work item code:
(

OSA

Date: (

17 May 2001

Category:
(

F

Release: (

R99

Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

Reason for change:
(

There is a mistake in the IDL specification of the data type TpCallEventCriteria: The attribute MonitorMode is missing.

Summary of change:
(

MonitorMode is inserted according to the data type definition.

Consequences if
(

not approved:
Impossible to specify the MonitorMode parameter when using the IDL.

Clauses affected:
(

9.3.1

Other specs
(

 Other core specifications
(

affected:

 Test specifications

 O&M Specifications

Other comments:
(

The IDL of Release 4 is correct in this respect.

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.
9.3.1
Common Data Types for Call Control

// source file: CC.idl

// Generic Call Data description

#ifndef __OSA_CC_DEFINED

#define __OSA_CC_DEFINED

#include <OSA.idl>

#include <UI.idl>

module org

{

module threegpp

{

module osa

{

module cc

{

/* Defines the mechanism that will be used to alert a called party. */

typedef TpInt32 TpCallAlertingMechanism;

/* Defines the bearer service associated with the call. */

enum TpCallBearerService

{

P_CALL_BEARER_SERVICE_UNKNOWN,

 /* Bearer capability information

 unknown at this time*/

P_CALL_BEARER_SERVICE_SPEECH,

 /* Speech*/

P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTED, /* Unrestricted digital information*/

P_CALL_BEARER_SERVICE_DIGITALRESTRICTED,
 /* Restricted digital information*/

P_CALL_BEARER_SERVICE_AUDIO,

 /* 3.1 kHz audio*/

P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTEDTONES, /* Unrestricted digital information

 with tones/announcements*/

P_CALL_BEARER_SERVICE_VIDEO

 /*Video*/

};

/*This data defines the bearer capabilities associated with the call. (3GPP TS 24.002) This

 information is network operator specific and may not always be available because there

 is no standard protocol to retrieve the information */

enum TpCallNetworkAccessType

{

P_CALL_NETWORK_ACCESS_TYPE_UNKNOWN,

/* Network type information unknown at this time */

P_CALL_NETWORK_ACCESS_TYPE_POT,

/* POTS */

P_CALL_NETWORK_ACCESS_TYPE_ISDN,

/* ISDN */

P_CALL_NETWORK_ACCESS_TYPE_DIALUPINTERNET,
/* Dial-up Internet */

P_CALL_NETWORK_ACCESS_TYPE_XDSL,

/* xDSL */

P_CALL_NETWORK_ACCESS_TYPE_WIRELESS

/* Wireless */

};

/* Defines the category of a calling or called party (e.g. call priority, payphone,

 prepaid).*/

enum TpCallPartyCategory

{

P_CALL_PARTY_CATEGORY_UNKNOWN,

/*calling party's category unknown at this time*/

P_CALL_PARTY_CATEGORY_OPERATOR_F,
/* operator, language French*/

P_CALL_PARTY_CATEGORY_OPERATOR_E,
/* operator, language English*/

P_CALL_PARTY_CATEGORY_OPERATOR_G,
/* operator, language German*/

P_CALL_PARTY_CATEGORY_OPERATOR_R,
/* operator, language Russian*/

P_CALL_PARTY_CATEGORY_OPERATOR_S,
/* operator, language Spanish*/

P_CALL_PARTY_CATEGORY_ORDINARY_SUB,
/* ordinary calling subscriber*/

P_CALL_PARTY_CATEGORY_PRIORITY_SUB,
/* calling subscriber with priority*/

P_CALL_PARTY_CATEGORY_DATA_CALL,
/* data call (voice band data) */

P_CALL_PARTY_CATEGORY_TEST_CALL,
/* test call*/

P_CALL_PARTY_CATEGORY_PAYPHONE

/* payphone*/

};

/* This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High Layer Compatitibility Information, and 3GPP TS 22.003)Defines the tele-service associated with the call (e.g. speech, video, fax, file transfer, browsing). */

enum TpCallTeleService

{

P_CALL_TELE_SERVICE_UNKNOWN,
/* Teleservice information unknown at this time*/

P_CALL_TELE_SERVICE_TELEPHONY,

/* Telephony */

P_CALL_TELE_SERVICE_FAX_2_3,

/* Facsimile Group 2/3 */

P_CALL_TELE_SERVICE_FAX_4_I,

/* Facsimile Group 4, Class I */

P_CALL_TELE_SERVICE_FAX_4_II_III,
/* Facsimile Group 4, Classes II and III */

P_CALL_TELE_SERVICE_VIDEOTEX_SYN,
/* Syntax based Videotex */

P_CALL_TELE_SERVICE_VIDEOTEX_INT,
/* International Videotex interworking via gateways or interworking units */

P_CALL_TELE_SERVICE_TELEX,

/* Telex service*/

P_CALL_TELE_SERVICE_MHS,

/* Message Handling Systems */

P_CALL_TELE_SERVICE_OSI,

/* OSI application*/

P_CALL_TELE_SERVICE_FTAM,

/* FTAM application*/

P_CALL_TELE_SERVICE_VIDEO,

/* Videotelephony*/

P_CALL_TELE_SERVICE_VIDEO_CONF,
/* Videoconferencing*/

P_CALL_TELE_SERVICE_AUDIOGRAPH_CONF,
/* Audiographic conferencing*/

P_CALL_TELE_SERVICE_MULTIMEDIA,
/* Multimedia services*/

P_CALL_TELE_SERVICE_CS_INI_H221,
/* Capability set of initial channel of H.221*/

P_CALL_TELE_SERVICE_CS_SUB_H221,
/* Capability set of subsequent channel of H.221*/

P_CALL_TELE_SERVICE_CS_INI_CALL,
/* Capability set of initial channel associated with an active 3.1 kHz audio or speech call.*/

P_CALL_TELE_SERVICE_DATATRAFFIC,
/* Data traffic.*/

P_CALL_TELE_SERVICE_EMERGENCY_CALLS,
/* Emergency Calls*/

P_CALL_TELE_SERVICE_SMS_MT_PP,
/* Short message MT/PP*/

P_CALL_TELE_SERVICE_SMS_MO_PP,
/* Short message MO/PP*/

P_CALL_TELE_SERVICE_CELL_BROADCAST,
/* Cell Broadcast Service*/

P_CALL_TELE_SERVICE_ALT_SPEECH_FAX_3,
/* Alternate speech and facsimile group 3*/

P_CALL_TELE_SERVICE_AUTOMATIC_FAX_3,
/* Automatic Facsimile group 3*/

P_CALL_TELE_SERVICE_VOICE_GROUP_CALL,
/* Voice Group Call Service*/

P_CALL_TELE_SERVICE_VOICE_BROADCAST
/* Voice Broadcast Service*/

};

/* Defines a specific call event report type. */

enum TpCallAppInfoType

{

P_CALL_APP_UNDEFINED, /* Undefined */

P_CALL_APP_ALERTING_MECHANISM, /* The alerting mechanism or pattern to use */

P_CALL_APP_NETWORK_ACCESS_TYPE, /* The network access type (e.g. ISDN) */

P_CALL_APP_TELE_SERVICE, /* Indicates the tele-service (e.g. speech) and related info such as clearing programme */

P_CALL_APP_BEARER_SERVICE, /* Indicates the bearer service (e.g. 64kb/s unrestricted data). */

P_CALL_APP_PARTY_CATEGORY, /* The category of the calling or called party */

P_CALL_APP_PRESENTATION_ADDRESS, /* The address to be presented to other call parties */

P_CALL_APP_GENERIC_INFO, /* Carries unspecified application-SCF information */

P_CALL_APP_ADDITIONAL_ADDRESS /* Indicates an additional address */

};

/* Defines the Tagged Choice of Data Elements that specify call application-related specific information. */

union TpCallAppInfo switch(TpCallAppInfoType)

{

case P_CALL_APP_TELE_SERVICE:

TpCallTeleService CallAppTeleService;

case P_CALL_APP_BEARER_SERVICE:

TpCallBearerService CallAppBearerService;

case P_CALL_APP_PARTY_CATEGORY:

TpCallPartyCategory CallAppPartyCategory;

case P_CALL_APP_PRESENTATION_ADDRESS:

TpAddress CallAppPresentationAddress;

case P_CALL_APP_GENERIC_INFO:

TpString CallAppGenericInfo;

case P_CALL_APP_ADDITIONAL_ADDRESS:

TpAddress CallAppAdditionalAddress;

case P_CALL_APP_ALERTING_MECHANISM:

TpCallAlertingMechanism CallAppAlertingMechanism;

case P_CALL_APP_NETWORK_ACCESS_TYPE:

TpCallNetworkAccessType CallAppNetworkAccessType;

};

typedef sequence <TpCallAppInfo> TpCallAppInfoSet;

enum TpCallChargeOrderCategory

{

P_CALL_CHARGE_PER_TIME, /* Charge per time*/

P_CALL_CHARGE_NETWORK /* Operator specific charge plan specification, e.g. charging table name / charging table entry*/

};

/* Defines the Tagged Choice of Data Elements that specify the charge plan for the call. */

union TpCallChargeOrder switch(TpCallChargeOrderCategory)

{

case P_CALL_CHARGE_PER_TIME:
TpChargePerTime ChargePerTime;

case P_CALL_CHARGE_NETWORK:
TpString NetworkCharge;

};

/* Defines the Sequence of Data Elements that specify the charge plan for the call This data type is identical to a TpString, and defines the call charge plan to be used for the call. The values of this data type are operator specific. */

struct TpCallChargePlan

{

TpCallChargeOrder ChargeOrderType;

TpString Currency;

TpString AdditionalInfo;

};

const TpInt32 P_EVENT_NAME_UNDEFINED = 0; // Undefined

const TpInt32 P_EVENT_GCCS_OFFHOOK_EVENT = 1; // Offhook event

const TpInt32 P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT = 2; // Address information collected

const TpInt32 P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT = 4; // Address information is analysed

const TpInt32 P_EVENT_GCCS_CALLED_PARTY_BUSY = 8; // Called party is busy

const TpInt32 P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE = 16; // Called party is unreachable

const TpInt32 P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY = 32; // No answer from called party

const TpInt32 P_EVENT_GCCS_ROUTE_SELECT_FAILURE = 64; // Failure in routing the call

const TpInt32 P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY = 128; // Party answered call

typedef TpInt32 TpCallEventName; /*Defines the names of event being notified. */

enum TpCallNotificationType

{

P_ORIGINATING,
// The notification is related to the originating user in the call.

P_TERMINATING
// The notification is related to the terminating user in the call.

};

struct TpCallEventCriteria

{

TpAddressRange DestinationAddress;
/*Destination address or address range*/

TpAddressRange OriginationAddress;
/*Origination address or address range */

TpCallEventName CallEventName; /*Name of the event(s) */

TpCallNotificationType CallNotificationType; /*Indicates whether the criteria are related to the originating or terminating user in the call */

TpCallMonitorMode MonitorMode;

};

/* Defines a sequence of data elements that specify a requested call event notification criteria with the associated assignmentID */

struct TpCallEventCriteriaResult

{

TpCallEventCriteria EventCriteria;

TpInt32 AssignmentID;

};

/* Defines a set of TpCallEventCriteriaResult */

typedef sequence <TpCallEventCriteriaResult> TpCallEventCriteriaResultSet;

//Defines the type of notification.

//Indicates whether it is related to the originating of the terminating user in the call.

struct TpCallEventInfo

{

TpAddress DestinationAddress;

TpAddress OriginatingAddress;

TpAddress OriginalDestinationAddress;

TpAddress RedirectingAddress;

TpCallAppInfoSet CallAppInfo;

TpCallEventName CallEventName;

TpCallNotificationType CallNotificationType;

TpCallMonitorMode MonitorMode;

};

/* Defines the Sequence of Data Elements that specify the cause of the release of a call.*/

struct TpCallReleaseCause {

TpInt32 Value;

TpInt32 Location;

};

/* Defines the Sequence of Data Elements that specify the reason for the call ending.*/

struct TpCallEndedReport

{

TpSessionID CallLegSessionID;

TpCallReleaseCause Cause;

};

/* Defines a specific call error. */

enum TpCallErrorType

{

P_CALL_ERROR_UNDEFINED, /* Undefined */

P_CALL_ERROR_INVALID_ADDRESS, /* The operation failed because an invalid address was given */

P_CALL_ERROR_INVALID_STATE /* The call was not in a valid state for the requested operation */

};

/* Defines the Tagged Choice of Data Elements that specify additional call error and call error specific information. This is also used to specify call leg errors and call information errors. */

union TpCallAdditionalErrorInfo switch(TpCallErrorType)

{

case P_CALL_ERROR_INVALID_ADDRESS: TpAddressError CallErrorInvalidAddress;

default: short Dummy; // allows initialization of the union in the default case

};

/* Defines the Sequence of Data Elements that specify the additional information relating to an undefined call error. */

struct TpCallError

{

TpCallAdditionalErrorInfo AdditionalErrorInfo;

TpCallErrorType ErrorType;

TpDateAndTime ErrorTime;

};

/* Defines the cause of the call fault detected. */

enum TpCallFault

{

P_CALL_FAULT_UNDEFINED, /* Undefined */

P_CALL_TIMEOUT_ON_RELEASE, /* Final report has been sent to the application, but the application did not explicitly release or deassign the call object, within a specified time. */

P_CALL_TIMEOUT_ON_INTERRUPT /* Application did not instruct the gateway how to handle the call within a specified time, after the gateway reported an event that was requested by the application in interrupt mode.*/

};

/* Defines the type of call information requested and reported */

const TpInt32 P_CALL_INFO_UNDEFINED = 0; /* Undefined */

const TpInt32 P_CALL_INFO_TIMES = 1; /* Relevant call times */

const TpInt32 P_CALL_INFO_RELEASE_CAUSE = 2; /* Call release cause. */

const TpInt32 P_CALL_INFO_INTERMEDIATE = 4; /* Send only intermediate reports (i.e., when a party leaves the call). */

typedef TpInt32 TpCallInfoType;

/* Defines the Sequence of Data Elements that specify the call information requested. Information that was not requested may be undefined or not present. */

struct TpCallInfoReport

{

TpCallInfoType CallInfoType;

TpDateAndTime CallInitiationStartTime;

TpDateAndTime CallConnectedToResourceTime;

TpDateAndTime CallConnectedToDestinationTime;

TpDateAndTime CallEndTime;

TpCallReleaseCause Cause;

};

/* Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event. */

enum TpCallMonitorMode

{

P_CALL_MONITOR_MODE_INTERRUPT, /* The call event is intercepted by the call control SCF and call processing is interrupted. The application is notified of the event and call processing resumes following an appropriate API call or network event (such as a call release) */

P_CALL_MONITOR_MODE_NOTIFY, /* The call event is detected by the call control SCF but not intercepted. The application is notified of the event and call processing continues */

P_CALL_MONITOR_MODE_DO_NOT_MONITOR /* Do not monitor for the event */

};

/* Defines the type of call overload that has been detected (and possibly acted upon) by the network. */

enum TpCallOverloadType

{

P_CALL_OVERLOAD_TYPE_UNDEFINED, /* Infinite interval (do not admit any calls) */

P_CALL_OVERLOAD_TYPE_NEW_CALLS, /* New calls to the application are causing overload (i.e. inbound overload) */

P_CALL_OVERLOAD_TYPE_ROUTED_CALLS /* Calls being routed to destination or origination addresses by the application are causing overload (i.e. outbound overload) */

};

/* Defines a specific call event report type. */

enum TpCallReportType

{

P_CALL_REPORT_UNDEFINED, /* Undefined */

P_CALL_REPORT_PROGRESS, /* Call routing progress event */

P_CALL_REPORT_ALERTING, /* Call alerting at address */

P_CALL_REPORT_ANSWER, /* Call answered at address */

P_CALL_REPORT_BUSY, /* Called address refused call due to busy */

P_CALL_REPORT_NO_ANSWER, /* No answer at called address */

P_CALL_REPORT_DISCONNECT, /* Call disconnect requested by address */

P_CALL_REPORT_REDIRECTED,

P_CALL_REPORT_SERVICE_CODE,

P_CALL_REPORT_ROUTING_FAILURE

};

/* Defines the Tagged Choice of Data Elements that specify additional call report information. */

union TpCallAdditionalReportInfo switch(TpCallReportType)

{

case P_CALL_REPORT_BUSY: TpCallReleaseCause Busy;

case P_CALL_REPORT_DISCONNECT: TpCallReleaseCause CallDisconnect;

case P_CALL_REPORT_REDIRECTED: TpAddress ForwardAddress;

case P_CALL_REPORT_SERVICE_CODE: TpCallReleaseCause ServiceCode;

case P_CALL_REPORT_ROUTING_FAILURE: TpCallReleaseCause RoutingFailure;

default: short Dummy; // allows initialization of the union in the default case

};

struct TpCallReport

{

TpCallMonitorMode MonitorMode;

TpDateAndTime CallEventTime;

TpCallReportType CallReportType;

TpCallAdditionalReportInfo AdditionalReportInfo;

};

/* Defines the different types of service codes that can be received during the call.*/

enum TpCallServiceCodeType

{

P_CALL_SERVICE_CODE_UNDEFINED,
/* The type of service code is unknown. The corresponding string is operator specific.*/

P_CALL_SERVICE_CODE_DIGITS, /* The user entered a digit sequence during the call. The corresponding string is an ascii representation of the received digits. */

P_CALL_SERVICE_CODE_FACILITY, /* A facility information element is received. The corresponding string contains the facility information element as defined in ITU Q.932*/

P_CALL_SERVICE_CODE_U2U, /* A user-to-user message was received. The associated string contains the content of the user-to-user information element. */

P_CALL_SERVICE_CODE_HOOKFLASH,
/* The user performed a hookflash, optionally followed by some digits. The corresponding string is an ascii representation of the entered digits. */

P_CALL_SERVICE_CODE_RECALL /* The user pressed the register recall button, optionally followed by some digits. The corresponding string is an ascii representation of the entered digits. */

};

/* Defines the Sequence of Data Elements that specify the service code and type of service code received during a call. The service code type defines how the value string should be interpreted. Defines the service code received during a call. For example, this may be a digit sequence, user-user information, recall, flash-hook or ISDN Facility Information Element. This data type is identical to a TpString. The coding of this data type is operator specific. */

struct TpCallServiceCode

{

TpCallServiceCodeType CallServiceCodeType;

TpString ServiceCodeValue;

};

/* Defines the Tagged Choice of Data Elements that specify specific criteria. */

union TpCallAdditionalReportCriteria switch(TpCallReportType)

{

case P_CALL_REPORT_NO_ANSWER: TpDuration NoAnswerDuration;

case P_CALL_REPORT_SERVICE_CODE: TpCallServiceCode ServiceCode;

default: short Dummy; // allows initialization of the union in the default case

};

/* Defines the Sequence of Data Elements that specify the criteria relating to call report requests. */

struct TpCallReportRequest

{

TpCallMonitorMode MonitorMode;

TpCallReportType CallReportType;

TpCallAdditionalReportCriteria AdditionalReportCriteria;

};

/* Defines a Numbered Set of Data Elements of TpCallReportRequest. */

typedef sequence <TpCallReportRequest> TpCallReportRequestSet;

const TpInt32 P_CALL_SUPERVISE_TIMEOUT = 1; /* The call supervision timer has expired. */

const TpInt32 P_CALL_SUPERVISE_CALL_ENDED = 2; /* The call has ended, either due to timer expiry or calling or called party release. In case the called party disconnects but a follow-on call can still be made also this indication is used.*/

const TpInt32 P_CALL_SUPERVISE_TONE_APPLIED = 4; /* A warning tone has been applied. */

const TpInt32 P_CALL_SUPERVISE_UI_FINISHED = 8; /* The user interaction has finished */

/* Defines the responses from the call control SCF for calls that are supervised:*/

typedef TpInt32 TpCallSuperviseReport;

const TpInt32 P_CALL_SUPERVISE_RELEASE = 1; /* Release the call when the call supervision timer expires. */

const TpInt32 P_CALL_SUPERVISE_RESPOND = 2; /* Notify the application when the call supervision timer expires. */

const TpInt32 P_CALL_SUPERVISE_APPLY_TONE = 4; /* Send a warning tone to the controlling party when the call supervision timer expires. If call release is requested, then the call will be released following the tone after an administered time period */

/* Defines the following treatment of the call by the call control SCF when the call supervision timer expires.*/

typedef TpInt32 TpCallSuperviseTreatment;

/* Define the possible Exceptions. */

const TpInt32 P_GCCS_SERVICE_INFORMATION_MISSING = 256;

const TpInt32 P_GCCS_SERVICE_FAULT_ENCOUNTERED = 257;

const TpInt32 P_GCCS_UNEXPECTED_SEQUENCE = 258;

const TpInt32 P_GCCS_INVALID_ADDDRESS = 259;

const TpInt32 P_GCCS_INVALID_CRITERIA = 260;

const TpInt32 P_GCCS_INVALID_NETWORK_STATE = 261;

exception TpGCCSException

{

TpInt32 exceptionType;

};

 /* The next data type is not used for an SCF implementation based

 on this specification: */

 typedef TpInt32 TpCallLoadControlIntervalRate;

 /* The next data type is not used for an SCF implementation based

 on this specification: */

const TpInt32 P_CALL_LOAD_CONTROL_ADMIT_NO_CALLS = 0;

 /* The next data type is not used for an SCF implementation based

 on this specification: */

enum TpCallLoadControlMechanismType {

 P_CALL_LOAD_CONTROL_PER_INTERVAL

};

 /* The next data type is not used for an SCF implementation based

 on this specification: */

union TpCallLoadControlMechanism switch(TpCallLoadControlMechanismType) {

 case P_CALL_LOAD_CONTROL_PER_INTERVAL:

 TpCallLoadControlIntervalRate CallLoadControlPerInterval;

};

 /* The next data type is not used for an SCF implementation based

 on this specification: */

enum TpCallTreatmentType {

 P_CALL_TREATMENT_DEFAULT,

 P_CALL_TREATMENT_RELEASE,

 P_CALL_TREATMENT_SIAR

};

 /* The next data type is not used for an SCF implementation based

 on this specification: */

union TpCallAdditionalTreatmentInfo switch(TpCallTreatmentType) {

 case P_CALL_TREATMENT_SIAR: ui::TpUIInfo InformationToSend;

 default: short Dummy;

};

 /* The next data type is not used for an SCF implementation based

 on this specification: */

struct TpCallTreatment {

 TpCallTreatmentType CallTreatmentType;

 TpCallReleaseCause ReleaseCause;

 TpCallAdditionalTreatmentInfo AdditionalTreatmentInfo;

};

}; // end module cc

}; // end module osa

}; // end module threegpp

}; // end module org

#endif

// END file CC.idl

�SEITE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�SEITE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�SEITE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�SEITE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�SEITE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�SEITE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�SEITE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�SEITE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�SEITE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�SEITE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�SEITE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�SEITE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�SEITE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�SEITE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�SEITE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�SEITE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�SEITE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�SEITE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�SEITE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�SEITE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

