Parlay And SIP

	3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #9, Helsinki, FINLAND, 6 – 8 February 2001
	Tdoc N5-010016

Source:
Richard STRETCH (BT) richard.stretch@bt.com
Agenda Item:

	

	

	Parlay and SIP

	Issue 1

Nick Edwards

CEG1

BT Adastral Park.

Tel: 01473 649155

20th November, 2000

Approved:

Master if stored at correct location in project file.
Unless you are reading from the electronic master of this document, this copy is uncontrolled, and you should check with the document's distributor to ensure that this issue has not been superseded or withdrawn.
 Contents
41
Introduction

1.1
Overview of Parlay
5
1.1.1
Parlay’s Strengths
6
1.1.2
Parlay’s Weaknesses
6
1.2
Overview of SIP
6
1.2.1
SIP’s Strengths
6
1.2.2
SIP’s Weaknesses
7
1.3
Feature Comparison
7
2
Functionality in SIP and Parlay
7
3
SIP Messages
9
4
Registration and EnableCallNotification
12
5
SessionIDs
13
5.1
Call SessionIDs
13
5.2
Call-Leg SessionIDs
13
6
Forking Calls
14
6.1
Call Forking in SIP
14
6.2
Call Forking in Parlay
15
6.3
Forking in SIP and Parlay
15
6.3.1
Upstream Fork
15
6.3.2
Fork at the Application Server
15
6.3.3
Downstream Fork
16
7
Call Setup Sequence Diagrams
16
7.1
Third Party Call Set-up
17
7.2
Call Routing
21
7.3
Caller Hangs Up
22
7.4
Application Terminates Call
23
7.5
Redirection Controlled by Parlay application
23
7.6
Redirection Monitored by Parlay application
24
8
Issues
26
8.1
Improved SIP Support in Parlay
26
8.1.1
Parlay Address needs to handle SIP addresses
26
8.1.2
Auto Attach/Detach of Call-Legs
26
8.1.3
Call Queuing
26
8.1.4
Call Reports and Errors
27
8.1.5
Decline
27
8.1.6
Call Redirection
27
8.1.7
OPTIONS
27
8.1.8
Downstream Forking in MultiParty Calls
27
8.1.9
Status Indication for Incoming Calls
27
8.2
Improved Parlay Support in SIP
28
8.2.1
Reliability of Informational Messages
28
8.2.2
Off hook
28
8.3
Session Lifetime
28
8.4
SIP Addresses
29
9
Example Output from Test Application
29
9.1
Application sends EnableCallNotification
29
9.2
Parlay Application Creates a Call
30
9.2.1
The first party terminates
33
9.2.2
The second party terminates
34
9.2.3
The application terminates the call
35
9.3
The Application Routes An Incoming Call
36
9.3.1
First party terminates the call
38
9.4
Second party terminates the call
40
9.4.1
The Application Terminates the Call
41
10
Conclusion
42
11
Abbreviations
43

1 Introduction

It is widely believed that applications will be the key to the success of future communications networks and that providing an infrastructure where applications can be easily created is extremely important. The telecommunications industry has addressed this through the formation of consortia such as Parlay
 and JAIN
 whose goal has been to design Application Programming Interfaces (APIs) for communications. For example, the Parlay Call Control specification has been created with the goal of defining a technology independent call model allowing call routing and management. At the same time, Internet experts have designed the Session Initiation Protocol (SIP)
, which can also enable applications with call control on a communications network. SIP has been created as an application-layer protocol for creating and terminating calls.

Much debate has now arisen about the relationship between SIP and network APIs such as Parlay. Advocates of network APIs see SIP as a protocol which sits beneath a generic network-independent API layer, as shown in Figure 1.

[image: image1.wmf]SIP

INAP

MAP

ISUP

Network API

Application

Figure 1. Using Network APIs for Network-Independent Applications

However, supporters of SIP see SIP along with scripts and servlets as a technology which releases real-time communications from the constraints of legacy networks
, as shown in Figure 2.

[image: image2.wmf]Gateway to

Other Networks

IP network

SIP

Application

Servlet

/CGI/CPL Script

Figure 2. A new Network Architecture based on SIP

SIP has been chosen by the 3GPP as the protocol of choice for 3G networks, and gateways to legacy networks could readily be SIP-enabled to provide enhanced facilities for service creation.

A number of important questions thus arise:

1) Which of these two models is correct, or are there opportunities for both approaches to co-exist?

2) How well can a generic network API sit on top of SIP? For example, would it severely limit a developer?

3) Which aspects of network functionality will actually be useful in practice to developers?

4) Network APIs are being created which are extremely flexible and complex, but it is likely that a few ‘killer’ pieces of functionality will actually prove to be particularly valuable, and the most successful solutions are likely to be those which expose this functionality.

In this document, Parlay and SIP are first described and then compared. A mapping of SIP to Parlay is then given. The architecture assumed here is that a Parlay Application runs on a Parlay gateway controlling a SIP layer. This layer acts as both a SIP User Agent and proxy together, and constitutes a SIP application server. It can communicate with a local SIP proxy and other SIP proxies and clients, as shown in Figure 3.

[image: image3.wmf]Other SIP Proxies/Clients

Local SIP Proxy

SIP User Agent/Proxy

Parlay Gateway

Parlay Application

SIP Application Server

Figure 3. Architecture used in this document.

This architecture has been implemented in an experimental test bed developed to allow the practical investigation of the relationship between SIP and Parlay.

1.1 Overview of Parlay

The Parlay consortium has created a set of APIs for communications applications. One of the interfaces, Generic Call Control provides an abstract network-independent model for managing calls. The model contains a call control manager, call and call leg interfaces, available with various levels of complexity from simple two-party calls through to multi-media conference calls.

Call control allows the detection of network events, call creation and routing, and facilities for conferencing and multimedia. An application may retain control of a call throughout its lifetime. Each application has its own view of a call, and will not be aware of other applications. The key principle behind Parlay Call Control is the IN call model, with calls being composed of two or more legs connected to a central switching point.

Parlay is specified in Unified Modelling Language and is therefore independent of particular languages or middleware technologies. In practice, the main focus on implementing Parlay has been in CORBA, DCOM and Java, with the majority of vendors creating CORBA implementations. It has specifically been designed for use in a synchronous environment.

1.1.1 Parlay’s Strengths

· Designed to be technology independent, and to be implementable in many environments

· Call Control provides abstract call models that can be used for many network types

· Provides a number of levels of sophistication and complexity for different applications

· Provides a number of services which can work along with call control, e.g. User Interaction (for interactive voice response services), mobility services (using geographic position), and Connectivity Management which allows control of Quality of Service in packet networks.
· Call control is designed to allow interaction between application and call throughout a call’s lifetime

· Telecommunications equipment vendors are very committed to Parlay

1.1.2 Parlay’s Weaknesses

· Technology independence means that it is not optimised for a particular computing environment.

· Uses highly complex data types, which can cause complications in certain computing languages

· Synchronous function calls make complex threads of execution between application and gateway

· Much more emphasis has been put on specification than implementation so that further testing and refinement will be required. For example, there have been no reference implementations created yet, or bake-outs for compatibility testing of products from different vendors.

1.2 Overview of SIP

SIP is an open Internet protocol for call control, following the model of HTTP. It is transport independent and text-based, and aims to deal with the signalling associated with establishing calls between parties. Once a call is established then many different types of media stream may be used, e.g. H.323.

1.2.1 SIP’s Strengths

· Can be implemented on any datagram or stream protocol

· Text based data transfer makes the system extremely robust, lightweight, flexible and extensible

· Based on highly successful and efficient WWW design models

· Real implementations are already tested and available

· Enables www-like scripts for simple services such as number translation

· Separates signalling from media channels, allowing efficient use of network resources

· Designed to be easily scaled up with distributed processing in clients and proxies.

1.2.2 SIP’s Weaknesses

· Extensions exploiting text based data transfer may lead to incompatibilities between implementations from different vendors

· Focusses on session initiation – calls can be established without central network control

· It is possible for the network to lose control of calls (e.g. with a misbehaving User Agent)
1.3 Feature Comparison

	Feature
	Parlay
	SIP

	Distributed Environment
	Technology independent but most implementations using CORBA
	Used with any stream protocol TCP/UDP, ATM

	Data format
	Data defined in parameters and usually passed in binary form
	Messages sent as text (although they may include binary data in message bodies)

	Messaging
	Synchronous calls assumed
	Completely asynchronous

	Call Model
	Uses IN call model with call legs and a central switch
	Point-to-point media transport

2 Functionality in SIP and Parlay

The table below lists some examples of functionality which is available in the SIP and Parlay call control environments.

	Service Function
	Parlay Method
	SIP Method

	Re-routing of calls, e.g. Personal numbering, Freefone services, Call diversion
	Application requests notification on basis of terminating address and re-routes calls
	Terminating user agent server can redirect calls with a redirect. Any proxy receiving an Invite message can re-route a call with a CPL, CGI or servlet

	Third party call set-up between two or more users
	Application creates a call and then routes it
	Invites get sent to two or more parties from application (a ‘robot’ user agent)

	Hotline service
	Application detects off-hook and then routes call
	Implemented through third party call setup as above (no support for ‘offhook’ concept – i.e. User Agent based)

	Called address busy detection
	Application requests notification of network event and then processes call
	Script on proxy fires on busy message, i.e. CPL script

	No answer
	Clients may specify a no answer duration, after which alerting will stop. A call can then be subsequently processed
	The expires field in an invitation allows an alerting terminal to be automatically cancelled, so this is implementable in a CPL, CGI, or user agent.

	Call forking (Note that call forking is currently illegal on the PSTN)
	An application may create multiple outgoing call legs, and connect the first one to answer. Only one call leg can be connected at a time unless a conference call is used.
	Call forking can be carried out both at a user agent or at a proxy. If more than one call leg answers, then the calling party may be connected to all the connected call legs separately.

	Multimedia call setup

	Multimedia call allows multiple media channels set byterminals. No terminal capabilites available, so application must use address type to deduce media capabilities
	Media capabilities negotiated with invite

	Chair control and video control for video/data conferencing
	Parlay Conference Call supports chair control

	Re-invites can be sent to put parties on hold, etc

	End a call at any time
	ReleaseCall can be used to terminate a call
	Calls can only be ended if explicitly routed through a proxy or application server. If the proxy controls a media gateway, for example, then the media channel can be easily terminated.

	Reserve resources for a multi-party conference call
	reserveResources may be used to set aside resources for a conference
	Not directly supported within SIP

	Request event and information reports
	getCallInfoReq and Event reports may be requested for events throughout the duration of a call
	User agent and proxy may monitor messages

	An event occurs for a caller, e.g. receives busy (trigger on originating address
	Use enableNotification to request trigger on originating address
	SIP proxy can trigger script on originating address, but call must be routed through that proxy

	Application interacts with real time media server such as IVR system, video source, etc
	Call control can be coupled to User Interaction
	Packet intelligent peripheral gets invited to call. Call state must be maintained by controlling application

It is interesting to note that much of the basic functionality can be implemented straightforwardly in SIP using either the user agent itself, or a CPL/CGI script on a server. It is really only the most complex applications that require control over a call throughout its lifetime which seem to benefit particularly from the Parlay approach.

3 SIP Messages

The relationship between Parlay and SIP messages is complex because Parlay methods are inherently synchronous (they return a result code when the function call is complete). This may cause a response to be sent immediately. However, some requests have asynchronous responses, e.g. enableCallNotification, Route, etc, and these may generate later responses. The rule of mapping is that if an error code is generated as a result of a synchronous response, then no further responses will be expected.

Another complexity is the fact that many SIP messages may contain message bodies with additional media or routing information, and these cannot easily be mapped into Parlay messages.

The following table gives a mapping of methods received by a SIP application server and translated into Parlay messages

	Methods received by Application server

	INVITE
	If the application has carried out an EnableCallNotification for the SIP address then a CallEventNotify is sent

	CANCEL
	P_CALL_REPORT_ENDED

	BYE
	P_CALL_REPORT_ENDED

	ACK
	The application is not made aware when an ACK is received on an incoming call leg. This means that the incoming leg is now ready to be attached, and the application server is therefore able to forward this message to the appropriate outgoing call leg to attach the legs together.

	REGISTER
	Incoming REGISTER messages do not affect the Parlay application, but may be processed if the application server also functions as a proxy server

	OPTIONS
	An OPTIONS message is similar to an INVITE message except that the user agent which receives the message does not alert the user, but indicates how it would reply to an INVITE. The information in the returned message includes media information and may indicate if the user is busy or unavailable. Parlay does not support anything which is conceptually like the OPTIONS message, but the message can be treated similar to an INVITE and sent to the application as a new call. If the call is routed to another destination, then the outgoing call legs can be routed with OPTIONS messages too. Once the calling user agent has received the responses and sent an ACK to the application server, the call can be destroyed by the application server.

The following table gives a mapping of messages received by a SIP Proxy and translated into Parlay messages

	1xx Information messages

	100 Trying
	P_CALL_REPORT_PROGRESS. Could also be sent on successful completion of a Route request

	180 Ringing
	P_CALL_REPORT_ALERTING

	181 Call is being forwarded
	P_CALL_REPORT_REDIRECTED

	182 Queued
	NOT SUPPORTED

Mapping of the 200 OK message is more complex, as its translation into a parlay message depends on its context.

	2xx OK
	

	After sending INVITE message,
	RouteRes, with P_CALL_REPORT_ANSWER

	After sending CANCEL message
	Successful result (S_OK) after a release.

	After sending BYE message
	Successful result (S_OK) after a release.

	After sending OPTIONS message
	No response. This is simply used to acquire information internally by the SIP server.

	After sending REGISTER message
	Successful (S_OK) after an enableCallNotification or a disableCallNotification

The redirection messages within SIP indicate that a message must be re-routed. A client must acknowledge the message and then reroute the messages to the addresses provided. In contrast, the Parlay ‘P_CALL_REPORT_REDIRECTED’ simply notifies the application of the changed address. The SIP application server should therefore take the required actions and then notify the application.

	3xx Redirection

	300 Multiple choices
	NOT SUPPORTED

	301 Moved permanently
	P_CALL_REPORT_REDIRECTED. If the gateway sends this message, then it is assumed that the application will route the call, and this message will not be sent upstream.

	302 Moved temporarily
	P_CALL_REPORT_REDIRECTED If the gateway sends this message, then it is assumed that the application will route the call, and this message will not be sent upstream.

	303 See other
	There is no information in the SIP specification RFC 2543 on the meaning of this message

	305 Use proxy
	The 305 message does not have a direct analogue in Parlay. It is issued by a UAS to force a client to use the proxy listed in the Contact field.

	380 Alternative service
	An unsuccessful call, but alternatives are possible. Details of the usage of this message are not yet defined

	4xx Messages

	400 Bad request
	P_CALL_REPORT_ROUTING_FAILURE

	401 Unauthorized
	P_CALL_REPORT_ROUTING_FAILURE/ Internally dealt with at SIP level

	402 Payment required
	P_CALL_REPORT_ROUTING_FAILURE/ Internally dealt with at SIP level

	403 Forbidden
	P_CALL_REPORT_ROUTING_FAILURE/ Internally dealt with at SIP level

	404 Not found
	P_CALL_REPORT_ROUTING_FAILURE

	405 Method not allowed
	P_CALL_ERROR_INVALID_STATE

	406 Not acceptable
	P_CALL_REPORT_ROUTING_FAILURE

	407 Proxy authentication required
	

	408 Request timeout
	P_CALL_REPORT_NO_ANSWER. Note that this might also be generated by the Parlay gateway, and a SIP cancel message sent.

	409 Conflict
	Only used after SIP register command

	410 Gone
	P_CALL_REPORT_ROUTING_FAILURE

	411 Length required
	Not applicable – Content Length should be supplied by Proxy and message resent

	411 request entity too large
	P_CALL_REPORT_ROUTING_FAILURE

	414 Request URI too large
	P_CALL_REPORT_ROUTING_FAILURE

	415 Unsupported media type
	P_CALL_REPORT_ROUTING_FAILURE/ /Internally dealt with at SIP level

	420 Bad extension
	P_CALL_REPORT_ROUTING_FAILURE

	480 Temporarily not available
	P_CALL_REPORT_ROUTING_FAILURE

	481 Call leg/transaction does not exist
	P_GCCS_INVALID_SESSIONID

	482 Loop detected
	P_CALL_REPORT_ROUTING_FAILURE

	483 Too many hops
	P_CALL_REPORT_ROUTING_FAILURE

	484 Address Incomplete
	If returned asynchronously in RouteRes function, will be P_CALL_REPORT_ROUTING_FAILURE . If detected by the Parlay gateway, then this SIP message can be sent back to the client, and P_GCCS_INVALID_ADDRESS returned synchronously

	485 Ambiguous
	P_CALL_ERROR_INVALID_ADDRESS

	486 Busy here

	P_CALL_REPORT_REFUSED_BUSY

	5xx Messages

	500 Internal server error
	P_CALL_REPORT_ROUTING_FAILURE/ Internally dealt with at SIP level

	501 Not implemented
	P_CALL_REPORT_ROUTING_FAILURE/ Internally dealt with at SIP level

	502 Bad Gateway
	P_CALL_REPORT_ROUTING_FAILURE

	503 Service Unavailable
	through call overload encountered?/framework service status

	504 Gateway timeout
	P_CALL_REPORT_ROUTING_FAILURE

	505 SIP version not supported
	P_CALL_REPORT_ROUTING_FAILURE/Internally dealt with at SIP level

	6xx Global Failures

	600 Busy Everywhere
	P_CALL_REPORT_BUSY

	603 Decline
	Parlay doesn’t properly support this, so best alternative is P_CALL_REPORT_NO_ANSWER. If an application receives this before the No-answer time-out, then the call must have been declined.

	604 Does not Exist Anywhere
	P_CALL_REPORT_ROUTING_FAILURE

	606 Not Acceptable
	Not supported in Parlay – user wishes to communicate, but media options are incompatible. P_CALL_REPORT_ROUTING_FAILURE should be returned

4 Registration and EnableCallNotification

SIP users each have a unique SIP address (URL). When a SIP user agent is activated, it registers itself at the proxy server for the address. Once registered, any incoming calls to the address will be sent from the proxy to the user agent. The registration lasts for a limited period (typically two hours). During this time, a SIP user agent may unregister, or may refresh the registration to extend its lifetime.

In Parlay, an application calls the EnableCallNotification method of the CallControl manager with address for which it would like to be notified for incoming calls. The registration lasts whilst the application is running, or until the application calls disableCallNotification.

Enable/Disable call notification is thus mapped to the SIP REGISTER command as follows.

An application sends EnableCallNotification for a SIP URL. If the IP address in the SIP URL is that of the SIP application server itself, then the CallControl manager simply keeps a local record of the request and forwards incoming calls to that URL to the application (callEventNotify) until the application calls DisableCallNotification or terminates.

Otherwise, if the IP address in the SIP URL is not that of the SIP application server, then the CallControl manager must use the SIP REGISTER command to request notifications of incoming calls from the server as appropriate. As the SIP registrations expire after a time limit, the call control manager has to renew the registrations on behalf of the application as required, as shown in Figure 4.

[image: image4.wmf]7200s elapse

Parlay App

Parlay Gateway

SIP Proxy

EnableCallNotification

(1)

S_OK(1)

REGISTER 7200

DisableCallNotification

(2)

S_OK(2)

200 OK

REGISTER 0

200 OK

REGISTER 7200

200 OK

Termination

Figure 4. EnableCallNotification and Registration Sequence.

5 SessionIDs

5.1 Call SessionIDs

In Parlay, each call and has a numeric session ID which is unique within the scope of the application and instance of the gateway. However, within SIP, any client or server may generate its own Call-ID. This is a string containing a local-id which must be unique within the host, (recommended to be cryptographically random) and a host name which is a globally routable IP address. There is a one-to-one mapping between Parlay Call SessionID and SIP Call-ID, and thus calls may be mapped in a Parlay Gateway simply by keeping a list of current SIP Call-Ids alongside unique numeric Parlay call session Ids.

5.2 Call-Leg SessionIDs

In Parlay, each connected party in a call is also assigned a unique call-leg session ID. The identification of individual call-legs is more complex because SIP does not define an explicity call-leg session ID.

As described above, the call-ID parameter allows an incoming SIP message to be associated with a particular call, but identification of the call-leg must be carried out as described below.

If the application server creates a call by sending out two or more SIP INVITE messages, then the mapping is relatively straightforward as each To field in the SIP messages will uniquely identify a given call leg. If the user agent initiates a new SIP message, then the To and From fields will be interchanged. Note that when a user agent client replies, it will add a Tag parameter to the To field which should then be used in all subsequent transactions. This Tag will be transferred to the From field if the To and From fields are interchanged.
When an incoming call is invite is received, this will define a new call leg. However, if this call is subsequently routed to one or more destinations, then the To and From fields used for the outgoing call legs will be the same as for the incoming call leg. To allow the legs to be distinguished, a branch parameter is used. The first leg within a call with a given To and From field is given a branch number of 0, and the branch number is incremented for each subsequent leg with the same parameters. (The branch parameter is added to the top Via field of outgoing messages). When a response to the outgoing message is received, the top Via field will contain the branch parameter, and the To field will contain a unique tag parameter, which should be used on subsequent messages. Note that the branch parameter is added even for calls with only two parties.

The application server also adds a Record-route parameter to routed calls to ensure that subsequent messages such as re-invites, ACK and BYE messages are sent via the application server. If the user agent initiates a new message, then the To and From fields will be reversed. The routing will be different, so that the branch information will not be present. In this case, the tag information in the From field combined with the fact that it is not the incoming call leg will be sufficient to identify the correct call leg.

6 Forking Calls

6.1 Call Forking in SIP

One of the most important concepts in SIP is that of call forking. A SIP proxy may have multiple registrations for a single user at different terminals. When an invite is received at the proxy, then multiple invite messages are forward to the addresses registered.

SIP call forking is extremely flexible because user agents upstream of a fork have awareness of the fork and have control of to the individual call legs. The two legs have separate media streams, and thus a forked call can be viewed as two or more simultaneous calls from the originating party, as shown in Figure 5. B and C are not in communication with one another, but are both individually in communication with A.

[image: image5.wmf]A

C

B

Proxy

Figure 5. Call Forking in SIP

6.2 Call Forking in Parlay

Parlay supports the concept of forking, either with multi-party calls or conference calls.

Each call leg is either attached or detached from the call or conference, and each party only has one logical connection to the call or conference, as shown in Figure 6.

In this case, the application controls which legs are attached to the conference, and the end points of the call legs have no control of the call or conference (except to disconnect).

[image: image6.wmf]A

C

B

Server

Figure 6. Call Forking in Parlay.

6.3 Forking in SIP and Parlay

With a Parlay/SIP application server, there are three forking scenarios to consider

6.3.1 Upstream Fork

An upstream fork occurs before the SIP message has reached the Parlay application server. A scenario where this might occur is:

Application 1 requests notification of incoming calls to nick.edwards@bt.com. Application 2 then requests notification of calls to parlay@bt.com, and any incoming calls to parlay@bt.com get forked by the application to maurice.gifford@bt.com and nick.edwards@bt.com. Then if an incoming call comes to parlay@bt.com, it will be forked upstream of Application 1.
With an upstream fork, the application server has no awareness that the call has been forked, and processes the call as usual. This is shown in Figure 7, where the Application server (App) has no awareness that the call has been forked, and party A has control of the fork.

[image: image7.wmf]A

C

B

Proxy

App

Figure 7. A Fork Occurs Upstream of the Application Server.

6.3.2 Fork at the Application Server

The application server may fork the call itself if the Parlay application routes the call to more than one destination. In this case, the Parlay multi-party or conference call objects are used, and the application has awareness and independent control of each party in the call.

[image: image8.wmf]App

A

C

B

Figure 8. A Fork Occurs at the Application Server

There are a number of interesting features in this situation.

SIP allows party A to have independent control of the connections to B and C. For example, A could choose to release the connection to C. In this case, the application would receive an indication that the call leg to C had been released.

SIP allows A to have simultaneous media connections to B and C without B and C being connected. Thus sophisticated conferencing equipment may be required to provide this functionality.

6.3.3 Downstream Fork

The third scenario to consider is that the call is forked downstream of the application server. In this case, the application routes a call leg which is then forked to two parties, as shown in Figure 9.

[image: image9.wmf]App

A

C

B

Proxy

Figure 9. A Fork Occurs Downstream of the Application Server.

If the Parlay call is not a conference call, then the application can be given no awareness of the fork, but the fork can still occur at the SIP level. In this case, the fork is controlled by party A, and the application is only aware of one outgoing call leg, and is provided with messages corresponding to the superposition of the two SIP call legs, e.g. it receives a CALL_REPORT_ANSWER when the first of the legs answers, and a callEnded message when the last of the two legs is released.

If the Parlay call is a conference call, and the application has specified that it allows parties to join (joinAllowed is true), then the gateway can give the application an awareness of the fork by sending a partyJoined message, and the fork can then be treated as if it occurred at the application server itself.

7 Call Setup Sequence Diagrams

A number of sequence diagrams are shown here describing third party call setup, call routing and call tear-down.

Each of these assumes a Parlay Application, a Parlay Gateway using SIP and one or more SIP clients.

Note that for synchronous method calls between Parlay Application and gateway, these are numbered in the sequence diagrams, and the return result of the method call is given. For example a successful route(1) will result in an OK result, S_OK(1).

7.1 Third Party Call Set-up

A scheme for third Party call set-up has been proposed
 by Rosenberg, as shown in Figure 10. The figure shows a call being set up between parties A and B. When B hangs up, the call is then routed to party C. The sequence is attractive from the SIP perspective because it is efficient in the number of messages, and exploits the flexibility of SIP to supply SDP information in ACK messages.

The disadvantage of this approach is that SIP user agents may not correctly handle receiving INVITE messages with null SDP information, and ACK messages containing SDP information.

[image: image10.wmf]Parlay App

Parlay Gateway

Client B

Client A

CreateCall

(1)

Route A(2)

Invite no SDP

200 SDPA

Invite SDPA

Res

 (ANSWER)(3)

Route B(5)

200 SDPB

Res

 (ANSWER)(6)

ACK

ACK SDP B

BYE

Attach A(4)

Attach B(7)

Client C

Invite SDPA

200 SDPC

200 OK

Invite SDPC

200 SDPA

ACK

ACK

Response(END)(8)

Route C(9)

S_OK(2)

S_OK(4)

S_OK(5)

S_OK(7)

S_OK(3)

S_OK(6)

S_OK(1)

S_OK(9)

Figure 10. Third party call set-up(1)

A second sequence for third party call set-up is shown in Figure 11. The scheme exploits the OPTIONS message to find out B’s SDP information before inviting A. The advantage of this approach is that the ACK messages are always sent immediately in response to 200 OK messages. However, the disadvantage is that B’s address must be known before the call is routed to A.

[image: image11.wmf]Parlay App

Parlay Gateway

Client B

Client A

CreateCall

(1)

Route A(2)

Options no SDP

200 SDPA

Invite SDPA

Res

 (ANSWER)(3)

Route B(5)

200 SDPB

Res

 (ANSWER)(6)

ACK

Attach A(4)

Attach B(7)

S_OK(2)

S_OK(4)

S_OK(5)

S_OK(7)

S_OK(3)

S_OK(8)

200 SDPB

ACK

Invite SDPB

ACK

S_OK(1)

Figure 11. Third party call set-up(2)

A third scheme for third party call set-up exploits the ability of SIP to re-invite parties to existing calls, as shown in Figure 12. In this case, party A is invited without SDP, thus putting A on-hold. If party B accepts the call, then A is re-invited to the call.

[image: image13.wmf]Parlay App

Parlay Gateway

Client B

Client A

CreateCall

(1)

Route A(2)

Invite no SDP

200 SDPA

Invite SDPA

Res

 (ANSWER)(3)

Route B(5)

200 SDPB

Res

 (ANSWER)(4)

ACK

Attach A(4)

Attach B(5)

S_OK(2)

S_OK(4)

S_OK(5)

S_OK(5)

S_OK(3)

S_OK(4)

200 SDPA

ACK

Invite SDPB

ACK

S_OK(1)

Figure 12. Third party call set-up(3)

7.2 Call Routing

When party A issues an invitation to party B, a Parlay application may route the call, as shown in Figure 13.

[image: image14.wmf]Parlay App

Parlay Gateway

Client B

Client A

callEventNotify

(1)

Invite from A to B

RouteReq

(2)

Invite B

Response(PROGRESS)(3)

180 Ringing

Response(ALERTING)(4)

200 OK

Response(ANSWER)(5)

S_OK(2)

S_OK(3)

100 Trying

S_OK(4)

S_OK(5)

200 OK

ACK

ACK

S_OK(1)

Figure 13. Call Routing

When the SIP server receives the invitation, it should set the record-route header to ensure that subsequent messages for the call are all sent through the server.

7.3 Caller Hangs Up

Once a call has been created between two parties by any of the above methods, if one of the callers terminates the call, then the sequence of events is shown in Figure 14.

[image: image15.wmf]Parlay App

Parlay Gateway

Client B

Client A

callEnded

 (1)

Bye

releaseCallLeg

(2)

Bye

200 OK

S_OK(2)

S_OK(1)

200 OK

Figure 14. Caller Hangs Up

7.4 Application Terminates Call

If a call created by one of the above methods is to be terminated by the application, then a sequence of events is shown in Figure 15.

[image: image16.wmf]Parlay App

Parlay Gateway

Client B

Client A

release (1)

Bye

S_OK(1)

200 OK

release (2)

Bye

S_OK(2)

200 OK

Figure 15. Application Terminates Call.

7.5 Redirection Controlled by Parlay application

The Parlay application wants to be in control of redirections, so it requests notifications of REDIRECTIONS in interrupt mode. Client A invites client B and receives a redirection response, as shown in Figure 16. This response is not forwarded to client A, but sent to the application. The forwarding address in the Contact field of the header is sent to the application. The application reroutes the call to the new address as requested.

Note that if the 302 Moved message is routed back to client A, then the call must be released because the client may not re-route the call via the Parlay gateway. If the call is re-routed, then this should be treated as a new incoming call. [image: image17.wmf]Parlay App

Parlay Gateway

Client B

Client A

callEventNotify

(1)

Invite from A to B

RouteReq

 B(2)

Invite B

Res

 (PROGRESS)(3)

302 Moved

Res

 (REDIRECTED)(4)

S_OK(1)

S_OK(3)

100 Trying

S_OK(4)

ACK

S_OK(2)

RouteReq

 C(5)

Invite C

S_OK(5)

Client C

Res

 (PROGRESS)(6)

200 OK

Res

 (ANSWER)(7)

S_OK(6)

100 Trying

S_OK(7)

ACK

200 OK

ACK

Figure 16. Redirection controlled by Parlay Application

7.6 Redirection Monitored by Parlay application

The Parlay application wants to monitor redirections, so it requests notifications of REDIRECTIONS in notify mode. If client A invites client B and receives a redirection response, as shown in Figure 17. This response is forwarded to client A, and sent to the application. The application does not reroute the call, but the call is automatically forwarded to the address contained in the Contact field of the 302 message.

[image: image18.wmf]Parlay App

Parlay Gateway

Client B

Client A

callEventNotify

(1)

Invite from A to B

RouteReq

(2)

Invite C

Res

 (PROGRESS)(5)

302 Moved

Res

 (REDIRECTED)(4)

S_OK(2)

S_OK(5)

100 Trying

S_OK(4)

ACK

ACK

Client C

Res

 (PROGRESS)(3)

S_OK(3)

100 Trying

200 OK

S_OK(1)

Res

 (ANSWER)(6)

S_OK(6)

200 OK

ACK

Invite B

Figure 17. Redirection monitored by Parlay Application

8 Issues

A number of issues are identified here for improved SIP support in Parlay, and improved Parlay support in SIP

8.1 Improved SIP Support in Parlay

8.1.1 Parlay Address needs to handle SIP addresses

It is currently unclear how SIP addresses should be handled in Parlay. Clearly some SIP addresses which represent other address types, e.g. E164 are already supported, but an address such as sip:nick.edwards@bt.com has no obvious Parlay analogue.
A suggestion is that an address plan P_ADDRESS_PLAN_SIP should to be added to the TpAddressPlan enumeration. In this case, the AddrString parameter should contain the entire text of the SIP address including the ‘sip:’. If a display-name is provided, then this could be inserted into the Name field of the Parlay Address. The SubAddressString should be left blank, and the presentation should be left as undefined unless the display-name is set to ‘Anonymous’.

Where the address corresponds to a telephone number, it is possible also to map the address to an E164 plan. In this case, the global-phone-number is mapped to the AddrString without the SIP: and with all visual separators removed. The isub parameter in the SIP address is mapped to the SubAddressString, and the display-name if provided is mapped to the Name field. Note that Parlay does not state whether pauses or wait for dial-tone, *, #, A, B, C, D digits are allowed in the AddrString, and this might potentially cause further incompatibilities. Note also that Parlay does not support parameters such as user or password inside an address. These would be stripped out if present.

8.1.2 Auto Attach/Detach of Call-Legs

In the Parlay Call model, call legs are automatically created on-hold, and attach method should then connect the media streams. For PSTN platforms this is a natural choice. In SIP this leads to inefficiencies because the default behaviour after an Invite has been accepted is for the media streams to be automatically set up. The only way to avoid this is to send a null SDP in the outgoing invites so that the user agents are put on hold, and to re-invite them when the attach occurs. Another possibility is to delay sending the final ACK to a user agent until attachmedia is received called on the call leg.

One possibility is to have a Boolean parameter in the Route command: attachOnConnect, which if set, would automatically attach the call leg, and if unset, would leave the call leg unattached. This would allow better optimisation, and also improve alignment with JCC/JTAPI.

8.1.3 Call Queuing

Parlay does not support any message back stating that a call has been queued. P_CALL_REPORT_QUEUED should also be added. A string ‘Info’ in the call report could also be mapped to the text associated with the queuing statement.

8.1.4 Call Reports and Errors

Parlay categorises responses from Routing requests into reports and errors. A report indicates success or that re-routing is possible. An error indicates a failed call i.e. the call or call leg cannot be re-routed. With a Parlay gateway on a SIP network, all calls/call legs may be re-routed because SIP supports re-Invite. Thus it is not clear whether there is any role for P_CALL_ERROR... A number of errors may be corrected at the SIP level, for example, a SIP proxy could re-route an invite, re-write an invite to change media, etc. Thus many error codes may be in some circumstances be corrected at the SIP level, transparently to the Parlay application. An example is the 400 Bad Request message which should be sent when an invalid address is received. However, the obvious Parlay message P_CALL_ERROR_INVALID_ADDRESS cannot be used because the call is re-routable.

8.1.5 Decline

Parlay cannot tell an application that a user has chosen to decline a call other than to send back P_CALL_REPORT_NO_ANSWER. Although on the PSTN there is no distinction, on many other networks, e.g. GSM, etc, a user may choose to decline a call while alerting. An application which receives this message before the no-answer time has elapsed may be able to deduce that the user has declined the call. A P_CALL_REPORT_DECLINE would allow this information to be explicitly passed back to the application.

8.1.6 Call Redirection

There is some lack of clarity in the Parlay specification about how redirection messages should be used. For example, if a number has been changed permanently or temporarily, then no distinction is made. Thus if an application receives a P_CALL_REPORT_REDIRECTED message with a Forwarding address, it is not clear what an application is meant to do with it.

8.1.7 OPTIONS

There is no equivalent in Parlay for the SIP OPTIONS message. Support for an incoming and outgoing OPTIONS messages could be readily realised by adding a boolean parameter to TpCallAppInfo (P_CALL_APP_OPTIONS, TpBoolean,CallAppOptions) which indicates than an incoming INVITE (mapped to CallEventNotify) is an OPTIONS message or an outgoing Route should be an OPTIONS message..
8.1.8 Downstream Forking in MultiParty Calls

The partyJoined method of IpAppConfCall should be moved into IpAppMultiParty call, and documentation should be changed to allow the network to offer an additional party to join the call. The application should be allowed to accept or reject the new party.
8.1.9 Status Indication for Incoming Calls

When an application receives notification of a new incoming call through the CallEventNotify method on IpAppCallControlManager, it is not possible for an application to request that the call should not be answered, but that an alternative network message to be returned to the calling party, e.g. busy, etc. This could be realised by having an additional [out] TpCallReport parameter in the CallEventNotify method which allows an application to send ANSWER, BUSY, ROUTING_FAILURE, etc to terminate the call immediately with an appropriate network signal. (This limitation is not specific to SIP, but is more apparent in SIP because the application cannot simulate a network signal using the UserInteraction service (i.e. by playing a file which sounds like a network signal).
8.2 Improved Parlay Support in SIP

8.2.1 Reliability of Informational Messages

In SIP, informational messages do not require an ACK, and therefore may not be transmitted reliably in certain networks. A Parlay application on a SIP network will therefore only be guaranteed to function correctly if the signalling is sent over a reliable protocol, e.g. TCP rather than UDP. This seems unsatisfactory, and a suggested change to SIP would be that informational messages should require an ACK. Providing indications such as Ringback is impossible if informational messages such as Ringing may not be transmitted.

Furthermore, the proposed third party call set up scheme (v) appears to cause problems with informational messages. The application server sends an invite to the first party A, and when the first party answers, calls a second party B. Whilst the call leg to B is being set up, A will expect to hear informational messages, e.g. ring tone. These can only be sent as a response, which means that the Gateway has to send responses to its own messages. It is unclear if this is allowed in the SIP specification.

This problem has already been identified, and a solution proposed
. The solution suggests having a PRACK message which acknowledges provisional responses together with header fields Rseq and Rack to allow sequencing and identification of messages.

Another solution to this has been proposed
 which creates a new SIP method INFO. This allows mid-call information to be sent, and requires a final response, e.g. 200 OK to be returned by the party which receives the message. Because it is a message rather than a response, it can therefore be sent by either called or calling party, and would thus allow informational messages to be sent by either party in the call. This does appear to be a good, flexible solution to this problem.

The message body of the INFO message may, of course, contain any text. However, standards must be defined for the messages to be sent to ensure good compatibility with different user agents. If the INFO method is adopted, then the status of the informational messages should also be reviewed.

8.2.2 Off hook

SIP currently has no support for the concept of ‘off-hook’. Thus at the moment this would have to be dealt with entirely at a PSTN/IP gateway. One possible way of supporting off-hook in SIP would be to trigger automatically when a phone goes off hook, and for the UAC at the PIG to send an Invite to a dialling resource (a packet intelligent peripheral). This could provide conventional dial-tone or some other form of service and then do a re-invite to re-route the call to the required destination. In this case, an off-hook event would get generated whenever a client is invited to the dialling resource.

8.3 Session Lifetime

The separation of media streams from signalling in SIP means that proxy or application servers which retain state on calls may be unaware that a call has terminated. The use of Record-Route headers as described in this document should ensure that termination messages are routed through proxies which require this information, but this is dependent on the user agent. Inevitably there may be circumstances where the termination messages are not sent, e.g. if a session terminates because equipment is switched off.

One proposal for overcoming this problem is to use a ‘session timer’ to make sessions expire automatically, and require renewal with a reinvite (mirroring the scheme used for registration)
. This would be beneficial for application servers as described in this document.

8.4 SIP Addresses

The SIP address allows great flexibility in the formatting of addresses. For example, there have been a number of proposals for displaying E164 addresses

sip:+441473649155@gateway.com;user=phone

Another scheme, by a group called ENUM
 defines a domain named called e164.int, and then reverses the telephone number, e.g. 441473649155 becomes

5.5.1.9.4.6.3.7.4.1.4.4.e164.int

This allows conventional DNS techniques to be used to route numbers

The PSTN Internet Interfaces group (PINT) has also carried out work on defining E164 addresses, with its proposal
, defining the ‘tel:’ scheme, e.g.

tel:+44-1473-649155

Whichever of these solutions is adopted. it is clear is that a single good standard must be defined.

9 Example Output from Test Application

In this section, SIP message flows are given, showing a number of scenarios. These SIP messages are given from the perspective of the Parlay Gateway. The parlay Gateway is on a machine called parlay at 132.146.115.24:5060

9.1 Application sends EnableCallNotification

The application sends an EnableCallNotification message for address sip:nick.edwards@bt.com. The Gateway recognises that this address is associated with a SIP server at 132.146.115.73:5060. It therefore sends the following SIP message to 132.146.115.73:5060:
REGISTER sip:nick.edwards@bt.com SIP/2.0

Via: SIP/2.0/TCP 132.146.115.24:5060

From: sip:Parlay@132.146.115.24:5060

To: sip:nick.edwards@bt.com

Call-ID: 65362135@bt.com
Cseq: 1 REGISTER

Contact: Parlay <sip:Parlay@132.146.115.24:5060;transport=TCP>

Expires: 7200

The SIP server responds, and so the following message is received from 132.146.115.73:5060:

SIP/2.0 200 OK

Via: SIP/2.0/TCP 132.146.115.24:5060

From: sip:Parlay@132.146.115.24:5060

To: sip:nick.edwards@bt.com

Call-ID: 65362135@bt.com
Cseq: 1 REGISTER

Contact: <sip:Parlay@132.146.115.24:3060>;expires=THU, 14 SEP 2000 18:29:00 GMT
The Parlay Gateway retains a record of the registrations and will send the following message once two hours are elapsed to 132.146.115.73:5060:

REGISTER sip:nick.edwards@bt.com SIP/2.0

Via: SIP/2.0/TCP 132.146.115.24:5060

From: sip:Parlay@132.146.115.24:5060

To: sip:nick.edwards@bt.com

Call-ID: 65362135@bt.com
Cseq: 2 REGISTER

Contact: Parlay <sip:Parlay@132.146.115.24:5060;transport=TCP>

Expires: 7200
If the application sends a disableCallNotification, or shuts down, then the Gateway must unregister, sending the following message

REGISTER sip:nick.edwards@bt.com SIP/2.0

Via: SIP/2.0/TCP 132.146.115.24:5060

From: sip:Parlay@132.146.115.24:5060

To: sip:nick.edwards@bt.com

Call-ID: 65362135@bt.com
Cseq: 3 REGISTER

Contact: *

Expires: 0
9.2 Parlay Application Creates a Call

In this example, the Parlay application creates a call between two SIP clients. The clients are Dynamicsoft User Agents using UDP. The first party on sip:client@parlay:4000 and the second on sip:client@parlay:7000.

The application sends a RouteReq, which creates a new call leg number 50331650. An INVITE message is then sent to 132.146.115.24:4000

INVITE sip:client@parlay:4000 SIP/2.0

Via: SIP/2.0/UDP 132.146.115.24:5060

From: sip:Parlay@132.146.115.24:5060

To: sip:client@parlay:4000

Call-ID: 121840930@bt.com
Cseq: 1 INVITE

Content-Type: application/sdp

Content-Length: 11

c=0.0.0.0

The user agent answers the call, so the following response is received from 132.146.115.24:4684

SIP/2.0 200 Ok

Via: SIP/2.0/UDP 132.146.115.24:5060

From: sip:Parlay@132.146.115.24:5060

To: <sip:client@parlay:4000>;tag=ds-599-3500

Call-ID: 121840930@bt.com
Cseq: 1 INVITE

Content-Type: application/sdp

Content-Length: 11

c=0.0.0.0

The To field of the response contains a tag parameter for the useragent.

A CallLegEventReportRes (ANSWER) is sent to the application, which then responds by sending a RouteReq to the second call party, sip:client@parlay:7000.

Note that this response is actually incorrect because the user agent should supply application/sdp information in the message body when it receives sdp 0 in an invitation.

The message causes a new call leg, number 50331651 to be created, and the following invite to be sent to 132.146.115.24:7000:

INVITE sip:client@parlay:7000 SIP/2.0

Via: SIP/2.0/UDP 132.146.115.24:5060 ;branch=1

From: sip:Parlay@132.146.115.24:5060

To: sip:client@parlay:7000

Call-ID: 121840930@bt.com
Cseq: 1 INVITE

Record-Route: sip:Parlay@132.146.115.24:5060

Content-Type: application/sdp

Content-Length: 11

c=0.0.0.0

The gateway receives the following response:

SIP/2.0 200 Ok

Via: SIP/2.0/UDP 132.146.115.24:5060

From: sip:Parlay@132.146.115.24:5060

To: <sip:client@parlay:4000>;tag=ds-599-3500

Call-ID: 121840930@bt.com
Cseq: 1 INVITE

Content-Type: application/sdp

Content-Length: 11

c=0.0.0.0

At first sight, this message appears to be an answer from the second user agent at 7000, but it does not contain the branch=1 tag, so the gateway correctly identifies this as belonging to the first call leg. It is a repeated message because the first user agent has not yet received an ACK. The message is therefore ignored. Further copies of this message may subsequently be received.

The second user agent answers the call, and so the following response is received from 132.146.115.24:4686
SIP/2.0 200 Ok

Via: SIP/2.0/UDP 132.146.115.24:5060;branch=1

From: sip:Parlay@132.146.115.24:5060

To: <sip:client@parlay:7000>;tag=ds-575-3503

Call-ID: 121840930@bt.com
Cseq: 1 INVITE

Record-Route: sip:Parlay@132.146.115.24:5060

Content-Type: application/sdp

Content-Length: 11

c=0.0.0.0

This time, the branch information allows the gateway to identify this response as belonging to the second user agent, and the To fields in the messages are now tagged differently.

As before, this response is incorrect, because the user agent does not supply its own application/sdp information.

The gateway sends the application a CallLegEventReportRes of ANSWER, and the application responds by requesting the call legs 50331651 and 50331650 to be attached.

The gateway then sends out ACK messages, first to 132.146.115.24:7000

ACK sip:client@parlay:7000 SIP/2.0

Via: SIP/2.0/UDP 132.146.115.24:5060;branch=1

From: sip:Parlay@132.146.115.24:5060

To: <sip:client@parlay:7000>;tag=ds-575-3503

Call-ID: 121840930@bt.com
Cseq: 1 ACK

Content-Type: application/sdp

Content-Length: 11

c=0.0.0.0

and then to 132.146.115.24:4000

ACK sip:client@parlay:4000 SIP/2.0

Via: SIP/2.0/UDP 132.146.115.24:5060

From: sip:Parlay@132.146.115.24:5060

To: <sip:client@parlay:4000>;tag=ds-599-3500

Call-ID: 121840930@bt.com
Cseq: 1 ACK

Content-Type: application/sdp

Content-Length: 11

c=0.0.0.0

The call is now set up. When the call is terminated, it may be terminated in one of three ways

9.2.1 The first party terminates

The gateway receives the message from 132.146.115.24:4684

BYE sip:Parlay@132.146.115.24:5060 SIP/2.0

Via: SIP/2.0/UDP 132.146.115.24:4000

From: <sip:client@parlay:4000>;tag=ds-599-3500

To: sip:Parlay@132.146.115.24:5060

Call-ID: 121840930@bt.com
Cseq: 1 BYE

User-Agent: dynamicsoft user agent version 4.1

Content-Length: 0

The tag information identifies this is the call leg 50331650, and an acknowledgement is sent to 132.146.115.24:4000

SIP/2.0 200 OK

Via: SIP/2.0/UDP 132.146.115.24:4000

From: <sip:client@parlay:4000>;tag=ds-599-3500

To: sip:Parlay@132.146.115.24:5060

Call-ID: 121840930@bt.com
Cseq: 1 ACK

Content-Type: application/sdp

Content-Length: 11

c=0.0.0.0

A call ended message is sent to the application. The Parlay gateway checks the state of the call, and identifies that the second call leg 50331651 must be terminated, thus sending a message to 132.146.115.24:7000

BYE sip:client@parlay:7000 SIP/2.0

Via: SIP/2.0/UDP 132.146.115.24:5060;branch=1

From: sip:Parlay@132.146.115.24:5060

To: <sip:client@parlay:7000>;tag=ds-575-3503

Call-ID: 121840930@bt.com
Cseq: 2 BYE

Content-Length: 0

The second user agent responds to the message, and so a message is received from 132.146.115.24:4686

SIP/2.0 200 Ok

Via: SIP/2.0/UDP 132.146.115.24:5060;branch=1

From: sip:Parlay@132.146.115.24:5060

To: <sip:client@parlay:7000>;tag=ds-575-3503

Call-ID: 121840930@bt.com
Cseq: 2 BYE

Content-Length: 0

The call is now completely finished, so the final call reports are sent, and the call leg and call objects are deleted.

9.2.2 The second party terminates

The following message is received from 132.146.115.24:4686

BYE sip:Parlay@132.146.115.24:5060 SIP/2.0

Via: SIP/2.0/UDP 132.146.115.24:7000

From: <sip:client@parlay:7000>;tag=ds-575-3503

To: sip:Parlay@132.146.115.24:5060

Call-ID: 121840930@bt.com
Cseq: 1 BYE

User-Agent: dynamicsoft user agent version 4.1

Content-Length: 0

The From and To fields are reversed, and this therefore identified as the second party.
The gateway responds by acknowledging the message, sending to 132.146.115.24:7000

SIP/2.0 200 OK

Via: SIP/2.0/UDP 132.146.115.24:7000

From: <sip:client@parlay:7000>;tag=ds-575-3503

To: sip:Parlay@132.146.115.24:5060

Call-ID: 121840930@bt.com
Cseq: 1 ACK

Content-Type: application/sdp

Content-Length: 11

c=0.0.0.0

A call leg ended report is sent to the application, and the gateway detects that the first call leg 50331650 must now be deleted. It sends the following message to 132.146.115.24:4000

BYE sip:client@parlay:4000 SIP/2.0

Via: SIP/2.0/UDP 132.146.115.24:5060

From: sip:Parlay@132.146.115.24:5060

To: <sip:client@parlay:4000>;tag=ds-599-3500

Call-ID: 121840930@bt.com
Cseq: 2 BYE

Content-Length: 0

An acknowledgement is received from 132.146.115.24:4684

SIP/2.0 200 Ok

Via: SIP/2.0/UDP 132.146.115.24:5060

From: sip:Parlay@132.146.115.24:5060

To: <sip:client@parlay:4000>;tag=ds-599-3500

Call-ID: 121840930@bt.com
Cseq: 2 BYE

Content-Length: 0

The call is now completely finished, so the final call reports are sent, and the call leg and call objects are deleted.

9.2.3 The application terminates the call

In this case, the application sends a release message to the call. The gateway sends the following message to the first party at 132.146.115.24:4000

BYE sip:client@parlay:4000 SIP/2.0

Via: SIP/2.0/UDP 132.146.115.24:5060

From: sip:Parlay@132.146.115.24:5060

To: <sip:client@parlay:4000>;tag=ds-599-3500

Call-ID: 121840930@bt.com
Cseq: 2 BYE

Content-Length: 0

A BYE message is also sent to the second party at 132.146.115.24:7000

BYE sip:client@parlay:7000 SIP/2.0

Via: SIP/2.0/UDP 132.146.115.24:5060;branch=1

From: sip:Parlay@132.146.115.24:5060

To: <sip:client@parlay:7000>;tag=ds-575-3503

Call-ID: 121840930@bt.com
Cseq: 2 BYE

Content-Length: 0

The first party sends an acknowledgement so a message is received from 132.146.115.24:4684

SIP/2.0 200 Ok

Via: SIP/2.0/UDP 132.146.115.24:5060

From: sip:Parlay@132.146.115.24:5060

To: <sip:client@parlay:4000>;tag=ds-599-3500

Call-ID: 121840930@bt.com
Cseq: 2 BYE

Content-Length: 0

The second party sends an acknowledgement so a message is received from 132.146.115.24:4686

SIP/2.0 200 Ok

Via: SIP/2.0/UDP 132.146.115.24:5060;branch=1

From: sip:Parlay@132.146.115.24:5060

To: <sip:client@parlay:7000>;tag=ds-575-3503

Call-ID: 121840930@bt.com
Cseq: 2 BYE

Content-Length: 0

The call is now completely finished, so the final call reports are sent, and the call leg and call objects are deleted.

9.3 The Application Routes An Incoming Call

In this section, the scenario is considered where the application has sent an enableCallNotification message for the address sip:client@parlay:5060. As this address belongs to the Parlay gateway it does not have to send any REGISTER messages.
The calling client is at address parlay:4000, and sends an invitation to sip:client@parlay:5060. The following message is therefore received from 132.146.115.24:4684

INVITE sip:client@parlay:5060 SIP/2.0

Via: SIP/2.0/UDP 132.146.115.24:4000

From: sip:client@parlay:4000

To: sip:client@parlay:5060

Call-ID: 968948626203@parlay.futures.bt.co.uk
Cseq: 1 INVITE

Contact: sip:client@parlay:4000

User-Agent: dynamicsoft user agent version 4.1

Content-Type: application/sdp

Content-Length: 158

v=0

o=bell 678594043 678594046 IN IP4 128.3.4.5

s=Remon, come here later.

c=IN IP4 kton.bell-tel.com

e=shappell@dynamicsoft.com
m=video 3456 RTP/AVP 17

The gateway creates a new call and call leg number 50331656. It immediately responds to the invite with a 100 Trying message so that the invite is not sent repeatedly whilst the application processes the message. The message is sent to 132.146.115.24:4000

SIP/2.0 100 Trying

Via: SIP/2.0/UDP 132.146.115.24:4000

From: sip:client@parlay:4000

To: sip:client@parlay:5060

Call-ID: 968948626203@parlay.futures.bt.co.uk
Cseq: 1 INVITE

The gateway then sends a callEventNotify message to the application, and receives a RouteReq to send the call to sip:client@parlay:7000. The gateway creates a second call leg 50331657, and sends the following message to 132.146.115.24:7000

INVITE sip:client@parlay:7000 SIP/2.0

Via: SIP/2.0/UDP 132.146.115.24:5060 ;branch=1

Via: SIP/2.0/UDP 132.146.115.24:4000

From: sip:client@parlay:4000

To: sip:client@parlay:5060

Call-ID: 968948626203@parlay.futures.bt.co.uk
Cseq: 1 INVITE

Record-Route: sip:Parlay@132.146.115.24:5060

Content-Type: application/sdp

Content-Length: 158

v=0

o=bell 678594043 678594046 IN IP4 128.3.4.5

s=Remon, come here later.

c=IN IP4 kton.bell-tel.com

e=shappell@dynamicsoft.com
m=video 3456 RTP/AVP 17

Note that the gateway has added in the header Record-Route, to ensure that it will receive any reinvite and bye messages. If it does not send this header, then it will not know when the call has ended.

The second client receives the message and answers the call, so the response is received from 132.146.115.24:4686
SIP/2.0 200 Ok

Via: SIP/2.0/UDP 132.146.115.24:5060;branch=1,

 SIP/2.0/UDP 132.146.115.24:4000

From: sip:client@parlay:4000

To: <sip:client@parlay:5060>;tag=ds-4867-355d

Call-ID: 968948626203@parlay.futures.bt.co.uk
Cseq: 1 INVITE

Record-Route: sip:Parlay@132.146.115.24:5060

Content-Type: application/sdp

Content-Length: 158

v=0

o=bell 678594043 678594046 IN IP4 128.3.4.5

s=Remon, come here later.

c=IN IP4 kton.bell-tel.com

e=shappell@dynamicsoft.com
m=video 3456 RTP/AVP 17

The branch information identifies this has the second call leg. The gateway sends a call report to the application indicating ANSWER, and acknowledges the first client, sending a response to 132.146.115.24:4000

SIP/2.0 200 OK

Via: SIP/2.0/UDP 132.146.115.24:4000

From: sip:client@parlay:4000

To: <sip:client@parlay:5060>;tag=ds-4867-355d

Call-ID: 968948626203@parlay.futures.bt.co.uk
Cseq: 1 INVITE

Content-Type: application/sdp

Content-Length: 158

v=0

o=bell 678594043 678594046 IN IP4 128.3.4.5

s=Remon, come here later.

c=IN IP4 kton.bell-tel.com

e=shappell@dynamicsoft.com
m=video 3456 RTP/AVP 17

The gateway then attaches call legs 50331657 and 50331656. This results in an ACK message being sent to 132.146.115.24:7000

ACK sip:client@parlay:7000 SIP/2.0

Via: SIP/2.0/UDP 132.146.115.24:5060;branch=1,

 SIP/2.0/UDP 132.146.115.24:4000

From: sip:client@parlay:4000

To: <sip:client@parlay:5060>;tag=ds-4867-355d

Call-ID: 968948626203@parlay.futures.bt.co.uk
Cseq: 1 ACK

Content-Type: application/sdp

Content-Length: 158

v=0

o=bell 678594043 678594046 IN IP4 128.3.4.5

s=Remon, come here later.

c=IN IP4 kton.bell-tel.com

e=shappell@dynamicsoft.com
m=video 3456 RTP/AVP 17

The first client also sends an ACK message, so the message is received from 132.146.115.24:4684

ACK sip:client@parlay:5060 SIP/2.0

Via: SIP/2.0/UDP 132.146.115.24:4000

From: sip:client@parlay:4000

To: <sip:client@parlay:5060>;tag=ds-4867-355d

Call-ID: 968948626203@parlay.futures.bt.co.uk
Cseq: 1 ACK

Content-Length: 0

The call is now setup. There are again 3 scenarios for call termination.

9.3.1 First party terminates the call

The following message is received from 132.146.115.24:4684

BYE sip:client@parlay:5060 SIP/2.0

Via: SIP/2.0/UDP 132.146.115.24:4000

From: sip:client@parlay:4000

To: <sip:client@parlay:5060>;tag=ds-4867-355d

Call-ID: 968948626203@parlay.futures.bt.co.uk
Cseq: 2 BYE

User-Agent: dynamicsoft user agent version 4.1

Content-Length: 0

This is identified as belonging to call leg 50331656, and so the gateway acknowledges the message, sending to 132.146.115.24:4000
SIP/2.0 200 OK

Via: SIP/2.0/UDP 132.146.115.24:4000

From: sip:client@parlay:4000

To: <sip:client@parlay:5060>;tag=ds-4867-355d

Call-ID: 968948626203@parlay.futures.bt.co.uk
Cseq: 2 BYE

Content-Type: application/sdp

Content-Length: 158

v=0

o=bell 678594043 678594046 IN IP4 128.3.4.5

s=Remon, come here later.

c=IN IP4 kton.bell-tel.com

e=shappell@dynamicsoft.com
m=video 3456 RTP/AVP 17

The gateway sends a callEnded message to the application and sends a BYE message to the second call leg at 132.146.115.24:7000

BYE sip:client@parlay:7000 SIP/2.0

Via: SIP/2.0/UDP 132.146.115.24:5060;branch=1,

 SIP/2.0/UDP 132.146.115.24:4000

From: sip:client@parlay:4000

To: <sip:client@parlay:5060>;tag=ds-4867-355d

Call-ID: 968948626203@parlay.futures.bt.co.uk
Cseq: 2 BYE

Content-Type: application/sdp

Content-Length: 158

v=0

o=bell 678594043 678594046 IN IP4 128.3.4.5

s=Remon, come here later.

c=IN IP4 kton.bell-tel.com

e=shappell@dynamicsoft.com
m=video 3456 RTP/AVP 17

The second client responds, so a message is received from 132.146.115.24:4686

SIP/2.0 200 Ok

Via: SIP/2.0/UDP 132.146.115.24:5060;branch=1,

 SIP/2.0/UDP 132.146.115.24:4000

From: sip:client@parlay:4000

To: <sip:client@parlay:5060>;tag=ds-4867-355d

Call-ID: 968948626203@parlay.futures.bt.co.uk
Cseq: 2 BYE

Content-Length: 0

The call is now finished, so a call ended report is sent to the application, and the call and call leg objects are deleted.
9.4 Second party terminates the call

The following message is received from 132.146.115.24:4686

BYE sip:Parlay@132.146.115.24:5060 SIP/2.0

Via: SIP/2.0/UDP 132.146.115.24:7000

From: <sip:client@parlay:5060>;tag=ds-4867-355d

To: sip:client@parlay:4000

Call-ID: 968948626203@parlay.futures.bt.co.uk
Cseq: 1 BYE

User-Agent: dynamicsoft user agent version 4.1

Content-Length: 0

This is identified as belonging to the second call leg, so the following response is sent to 132.146.115.24:7000

SIP/2.0 200 OK

Via: SIP/2.0/UDP 132.146.115.24:7000

From: <sip:client@parlay:5060>;tag=ds-4867-355d

To: sip:client@parlay:4000

Call-ID: 968948626203@parlay.futures.bt.co.uk
Cseq: 2 BYE

Content-Type: application/sdp

Content-Length: 158

v=0

o=bell 678594043 678594046 IN IP4 128.3.4.5

s=Remon, come here later.

c=IN IP4 kton.bell-tel.com

e=shappell@dynamicsoft.com
m=video 3456 RTP/AVP 17

The gateway identifies that the first call leg must be terminated, so sends to 132.146.115.24:4000

BYE sip:client@parlay:4000 SIP/2.0

Via: SIP/2.0/UDP 132.146.115.24:4000

From: <sip:client@parlay:5060>;tag=ds-4867-355d

To: sip:client@parlay:4000

Call-ID: 968948626203@parlay.futures.bt.co.uk
Cseq: 4 BYE

Content-Type: application/sdp

Content-Length: 158

v=0

o=bell 678594043 678594046 IN IP4 128.3.4.5

s=Remon, come here later.

c=IN IP4 kton.bell-tel.com

e=shappell@dynamicsoft.com
m=video 3456 RTP/AVP 17

A call ended report is sent to the application, and the call and call leg objects are deleted.

9.4.1 The Application Terminates the Call

In this case, a BYE message is sent to the first call leg at 132.146.115.24:4000
BYE sip:client@parlay:4000 SIP/2.0

Via: SIP/2.0/UDP 132.146.115.24:4000

From: <sip:client@parlay:5060>;tag=ds-4867-355d

To: sip:client@parlay:4000

Call-ID: 968948626203@parlay.futures.bt.co.uk
Cseq: 2 BYE

Content-Type: application/sdp

Content-Length: 158

v=0

o=bell 678594043 678594046 IN IP4 128.3.4.5

s=Remon, come here later.

c=IN IP4 kton.bell-tel.com

e=shappell@dynamicsoft.com
m=video 3456 RTP/AVP 17

A BYE message is also sent to the second call leg at 132.146.115.24:7000

BYE sip:client@parlay:7000 SIP/2.0

Via: SIP/2.0/UDP 132.146.115.24:5060;branch=1,

 SIP/2.0/UDP 132.146.115.24:4000

From: sip:client@parlay:4000

To: <sip:client@parlay:5060>;tag=ds-4867-355d

Call-ID: 968948626203@parlay.futures.bt.co.uk
Cseq: 2 BYE

Content-Type: application/sdp

Content-Length: 158

v=0

o=bell 678594043 678594046 IN IP4 128.3.4.5

s=Remon, come here later.

c=IN IP4 kton.bell-tel.com

e=shappell@dynamicsoft.com
m=video 3456 RTP/AVP 17

The second client acknowledges the message, so the following response is received from 132.146.115.24:4686

SIP/2.0 200 Ok

Via: SIP/2.0/UDP 132.146.115.24:5060;branch=1,

 SIP/2.0/UDP 132.146.115.24:4000

From: sip:client@parlay:4000

To: <sip:client@parlay:5060>;tag=ds-4867-355d

Call-ID: 968948626203@parlay.futures.bt.co.uk
Cseq: 2 BYE

Content-Length: 0

The call is now ended, so a callEnded report is sent to the application, and the call and call leg objects are deleted.

10 Conclusion

Parlay and SIP both offer an environment in which applications can be created. Parlay has gained widespread support from network operators and equipment providers, but working implementations are still under development. SIP also has growing acceptance as an Internet based communications standard. Although there are still clearly problems with SIP, these appear to be well understood, and a number of proposals have been made to address these.

This work has shown that it is possible to use a Parlay application gateway and server with SIP transport. The primary advantage of using such a scheme is that it allows applications written using a network independent API to exploit resources which use SIP for control. A number of open issues, particularly in Parlay have been identified, and will be fed back to the Parlay teams.

Using a network API does impose some limitations with SIP functionality which is not supported, but on the whole, the mapping is good, and these areas are unlikely to be significant. Perhaps the more important issue to determine is how Parlay as an application development environment compares to CPL, CGI and any other native SIP environments.

Possible areas of further work include:

1) Comparing JAIN to Parlay and SIP in terms of its features, strengths, and weaknesses

2) Designing modular reusable SIP components for application servers and resources

3) Exploring the use of CPL and CGI scripts for creating services with SIP.

4) Investigating the use of SIP for controlling PSTN resources and gateways.

5) Identifying key functionality which would be of value to developers, through contact with possible end users of application development environments.

6) Comparison of the likely business models of Parlay and SIP for service provision

11 Abbreviations

3G
3rd Generation
3GPP
3rd Generation Partnership Programme
API
Application Programming Interface

CPL
Call Processing Language

JAIN
Java APIs for Integrated Networks

PIG
PSTN-IP Gateway

PSTN
Public Switched Telephone Network

SIP
Session Initiation Protocol

UAC
User Agent Client

History

	Status
	Date
	Author
	Details Of Change

	Draft A
	26/07/00
	Nick Edwards
	Draft A

	Draft B
	06/09/00
	Nick Edwards
	Draft B. Further details of registration added.

	Draft C
	9/10/00
	Nick Edwards
	Draft C. Message sequences, forking diagrams, conclusions added.

	Issue 1
	20/11/00
	Nick Edwards
	Incorporation of comments by M. Jones, M. Walkden and M. Gifford

END OF DOCUMENT

�PAGE \# "'Page: '#'�'" �� The Tdoc number for the CN5 plenary meeting will be allocated by the CN5 Secretary: Adrian ZOICAS (ETSI MCC), � HYPERLINK "mailto:Adrian.Zoicas@etsi.fr" ��Adrian.Zoicas@etsi.fr�

� See � HYPERLINK "http://www.parlay.org/" ��http://www.parlay.org�

� See �HYPERLINK "http://java.sun.com/products/jain"��http://java.sun.com/products/jain�

� For a detailed overview, see �HYPERLINK "http://www.ietf.org/internet-drafts/draft-ietf-sip-rfc2543bis-01.txt"��http://www.ietf.org/internet-drafts/draft-ietf-sip-rfc2543bis-01.txt� For a brief introduction, see � HYPERLINK "http://www.dynamicsoft.com/source/SIP_white_paper.PDF" ��http://www.dynamicsoft.com/source/SIP_white_paper.PDF�

� For example, see � HYPERLINK http://www.cs.columbia.edu/~hgs/sip/articles/SIP_tutorial_CT_Magazine_June2000.pdf ��http://www.cs.columbia.edu/~hgs/sip/articles/SIP_tutorial_CT_Magazine_June2000.pdf�

� See http://www.cs.columbia.edu/~hgs/sip/drafts/draft-rosenberg-sip-3pcc-00.txt

� See � HYPERLINK http://www.ietf.org/internet-drafts/draft-ietf-sip-100rel-02.txt ��http://www.ietf.org/internet-drafts/draft-ietf-sip-100rel-02.txt�

� For information on the proposed INFO method, see � HYPERLINK http://www.ietf.org/internet-drafts/draft-ietf-sip-info-method-05.txt ��http://www.ietf.org/internet-drafts/draft-ietf-sip-info-method-05.txt�

� See the SIP Session Timer Proposal, � HYPERLINK http://www.ietf.org/internet-drafts/draft-ietf-sip-session-timer-02.txt ��http://www.ietf.org/internet-drafts/draft-ietf-sip-session-timer-02.txt�

� � HYPERLINK http://search.ietf.org/internet-drafts/draft-faltstrom-e164-05.txt ��http://search.ietf.org/internet-drafts/draft-faltstrom-e164-05.txt�

� � HYPERLINK http://www.bell-labs.com/mailing-lists/pint/draft-antti-telephony-url-09.txt ��http://www.bell-labs.com/mailing-lists/pint/draft-antti-telephony-url-09.txt�

PAGE
Draft A
 British Telecommunications plc (2000)
5 of 41

