Mapping the Parlay API to
OMG-IDL and JAIN Java

Specification Design

Draft 0a

Author: Gary Bruce, Sun Microsystems

Date: November 20th, 2000

Table Of Contents

41
Objectives and Scope

2
Introduction
4
3
Specification Design Categories
5
4
Parlay basic data types
8
4.1
Discussion
8
4.2
Resolution
8
4.3
Example
8
5
Parlay string data types
9
5.1
Discussion
9
5.2
Resolution
9
6
Parlay constructed data types
10
6.1
Discussion
10
6.2
Resolution
10
7
Parlay array data types
11
7.1
Discussion
11
7.2
Resolution
11
7.3
Example
11
8
Parlay typedef declarations
12
8.1
Discussion
12
8.2
Resolution
12
9
Parlay Ref and RefRef suffixes
13
9.1
Discussion
13
9.2
Resolution
13
10
Exceptions and Results
14
10.1
Discussion
14
10.2
Resolution
14
10.3
Example
14
11
Return parameter and out parameter
16
11.1
Discussion
16
11.2
Resolution
16
11.3
Example
16
12
Session IDs
17
12.1
Discussion
17
12.2
Resolution
17
12.3
Example
17
13
Event listeners and callbacks
18
13.1
Discussion
18
13.2
Resolution
19
13.3
Example
19
14
Call legs and connections
20
14.1
Discussion
20
14.2
Resolution
20
15
Convenience functions
21
15.1
Discussion
21
15.2
Resolution
21
15.3
Example
21
16
Abbreviations
22
17
History
22

1 Objectives and Scope

The Parlay API specification has been developed in such a way so as to be independent of its eventual underlying implementation technologies. As such, the specification often does not take into account many of the useful, easy-to-use and performance enhancing features offered by some of the available implementation technologies. This document and potential sister documents show how the abstract Parlay API specification is mapped onto target implementation technologies. Key candidates for target implementation technologies include Microsoft’s DCOM, the OMG’s CORBA and JAIN’s Java, however, this should not rule out emerging technologies or, indeed, proprietary solutions. Because there is a great overlap of desirable features offered by CORBA and Java, this single document describes how best to support the Parlay API specification on both CORBA and Java technologies. Where differences exist, these will be noted as will a recommendation of how to maintain interoperability between CORBA and Java. It is expected that a sister document, showing how the Parlay API specification is supported on DCOM, will also be produced. It should be noted that interoperability between DCOM and CORBA/Java is a potential issue and that this issue is beyond the scope of this document and the DCOM sister document.

2 Introduction

This specification design document will enable implementation technology developers to create OMG-IDL and JAIN Java from the Parlay API specification in such a way that the API is both desirable to the development community and that the CORBA and Java flavours of the API interoperate fully.

This document is organised in a category-by-category basis, a table of which is given in section 3.

3 Specification Design Categories

The following table gives a summary of the design decisions and indicates any Java to OMG-IDL interoperability issues that may occur.

	Number
	Issue
	Outcome
	CORBA and Java Interoperability

	1.
	Parlay basic data types
	The Parlay basic data types shall be translated to OMG-IDL and Java equivalents.
	Yes, as there are standard mappings between OMG-IDL and Java equivalents.

	2.
	Parlay string data types
	The Java String object and the OMG-IDL string type shall replace the Parlay TpString and TpLongstring types.
	Yes, as there are standard mappings between the Java String and the OMG-IDL string.

	3.
	Parlay constructed data types
	The Parlay constructed data types shall be used in the OMG-IDL and the standard OMG-IDL-to-Java mapping shall be used to generate Java equivalents.
	Yes, as there are standard mappings between the OMG-IDL types and the equivalent Java objects.

	4.
	Parlay array data types
	The Java array and the OMG-IDL sequence shall replace the Parlay array structure data type.
	Yes, as there are standard mappings between the Java array and the OMG-IDL sequence.

	5.
	Parlay typedef declarations
	The Parlay typedef declaration shall be used in the OMG-IDL and in Java, the synonym shall be unwound to the base type.
	Yes, as the unwound base types are always mappable.

	6.
	Parlay Ref and RefRef suffixes
	In Parlay, use the Ref and RefRef interface name suffixes. In OMG-IDL and Java, remove the Ref and RefRef suffixes.
	Yes, same resolution for both OMG-IDL and Java.

	
	Exceptions and results
	In place of TpResult used in Parlay, OMG-IDL and Java methods shall throw only the error possibilities applicable to the method call in question. The method’s return value will be left void unless required for another purpose (see issue number 8).
	Yes, same resolution for both OMG-IDL and Java.

	7.
	Return parameter and out parameter
	In place of the single out parameter used in Parlay to pass results back, OMG-IDL and Java shall use the return parameter for this purpose. Where no results are returned, a void shall be used.
	Yes, same resolution for both OMG-IDL and Java.

	8.
	Session IDs
	The session ID in Parlay shall not be supported in Java and is in OMG-IDL
	If the session ID is not used in OMG-IDL then yes, same resolution for both OMG-IDL and Java.

If the session ID is used in OMG-IDL then yes, but a mapping table is required to support interoperability.

	9.
	Event listeners and callbacks
	Where callbacks exist in Parlay, a case-by-case decision shall be made for both OMG-IDL and Java technologies whether the callback is maintained or replaced by an event listener.
	Yes, same resolution for both OMG-IDL and Java.

	10.
	Call legs and connections
	In Parlay and OMG-IDL use the call leg terminology. In Java use the connection terminology.
	Yes, but a name mapping is required to support interoperability.

	11.
	Convenience functions
	In Parlay, convenience functions are used, which shall be supported by OMG-IDL. Java shall not support these convenience functions.
	Yes, as convenience functions can be constructed from a sequence of single function method invocations.

4 Parlay basic data types

4.1 Discussion

Parlay uses basic data types, which are boolean, 32-bit unsigned integers and single precision floats.

4.2 Resolution

Basic data types are supported in OMG-IDL and Java. Parlay basic data types can have the typedef constructor applied for OMG-IDL. Since primitive Java types may not be subclassed, the Parlay basic data types are unwound to their primitive Java type equivalents.

4.3 Example

	Parlay
	OMG-IDL
	Java

	TpBoolean
	typedef boolean TpBoolean
	boolean

	TpInt32
	typedef long TpInt32
	int

	TpFloat
	typedef float TpFloat
	float

5 Parlay string data types

5.1 Discussion

Parlay has created its own TpString structure data type to represent a string.

5.2 Resolution

Java and OMG-IDL each provide their own standard string types that should be used instead of the Parlay TpString data type. The additional benefit is that there are standard mappings between OMG-IDL string types and the Java String object.

6 Parlay constructed data types

6.1 Discussion

Parlay uses constructed data types, which are structures, enumerations and unions.

6.2 Resolution

Constructed data types are supported in OMG-IDL, however, they are not supported in Java. Although constructed data types do make the API a little more complex, there is still a strong requirement to keep these data types. Since a standard mapping exists between OMG-IDL constructed data types and Java, OMG-IDL shall use constructed data types and the standard OMG-IDL-to-Java mapping shall be used to generate the equivalent data types in Java.

7 Parlay array data types

7.1 Discussion

Parlay has also created a common array structure data type to represent one-dimensional arrays.

7.2 Resolution

Java and OMG-IDL each provide their own mechanisms to handle one-dimensional arrays that should be used instead of the Parlay array structure data type. Java shall use standard arrays, while OMG-IDL shall use standard sequences.

7.3 Example

In Parlay, the TpAddressArr should be represented…

…in OMG-IDL as…

typedef short number;

typedef sequence<TpAddress,number> TpAddressArr;

…and in Java as…

public TpAddress[] value;
// TpAddressArr

8 Parlay typedef declarations

8.1 Discussion

In Parlay, typedef declarations are used to define meaningful names to basic types.
8.2 Resolution

OMG-IDL supports typedefs, however, Java does not, so the synonym must be unwound to the base type.

9 Parlay Ref and RefRef suffixes

9.1 Discussion

In Parlay, interfaces are given the suffix Ref when passed as an in parameter and RefRef when passed as an out parameter, indicating they are passed by reference.

9.2 Resolution

In Java, interfaces are always passed by reference, negating the requirement for the Ref suffix. In OMG-IDL, the compiler adds the necessary suffix or prefix to change the name, also negating the requirement for the Ref suffix.

10 Exceptions and Results

10.1 Discussion

Parlay uses the data type, TpResult, to indicate if a method call succeeds or fails (an error code indicates why the method failed). This form of reporting is typically done by exception handling in CORBA and Java.

10.2 Resolution

The single data type, TpResult, contains non-zero codes for all Parlay framework and service error possibilities (distribution errors are not in the scope of the specification). Rather than having a throwing a single structure containing elements that bear no relationship to the throwing method call, OMG-IDL and Java methods shall throw only the error possibilities applicable to the method call in question. The method’s return value will be left void unless it is required for another purpose (see section 11).

10.3 Example

In Parlay’s IpAccess interface, the selectService method returns TpResult. In OMG-IDL and Java, the selectService method should only be allowed to throw the following exceptions: ServiceAccessDeniedException, InvalidServiceIDException, InvalidPropertyException and InvalidServiceTokenException. Of course, any implementation specific errors such as distribution errors may also be thrown.

The following Parlay method:

selectService(serviceID: in TpServiceID, serviceProperties: in TpServicePropertyList, serviceToken: out TpServiceTokenRef): TpResult

…would be translated into a Java method throwing exceptions (shown in bold)…

public String selectService(

 String serviceID,

 ServiceProperty[] serviceProperties

)

 throws ServiceAccessDeniedException,

 InvalidServiceIDException,

 InvalidPropertyException,

 InvalidServiceTokenException;

…plus one class per exception:

public class ServiceAccessDeniedException extends JainException {

 public ServiceAccessDeniedException(String message)

 {

 super(message);

 }

 public ServiceAccessDeniedException()

 {

 super();

 }

}

11 Return parameter and out parameter

11.1 Discussion

Parlay methods use a single out parameter to return any method results as the return parameter, TpResult, is used to indicate if a method call succeeds or fails.

11.2 Resolution

Since the return parameter will no longer be used in CORBA and Java for TpResult (see section 10) and it is more convenient for software developers to work with method results using the return parameter, then where Parlay methods do return a result via the out parameter, this result should be handled by the return parameter in CORBA and Java.

11.3 Example

In Parlay’s IpAuthentication interface, the selectAuthMethod method contains the out parameter prescribedMethod. In OMG-IDL and Java, the selectAuthMethod should use the return parameter to return prescribedMethod.

The following Parlay method:

selectAuthMethod (authCapability: in TpAuthCapabiltyList, prescribedMethod: out TpAuthCapabilityRef) : TpResult

…would be translated into a Java method returning a result (shown in bold).:

public String selectAuthMethod(

 String authCaps

)

throws NoAcceptableAuthCapabilityException;

12 Session IDs

12.1 Discussion

Parlay uses session IDs to identify and allow multiple real-life objects (e.g., actual calls) to be handled by a single composite object (e.g., call object). This was done to reduce the number of object instantiations running on systems deploying these objects.

12.2 Resolution

Composite objects cut across the grain in object-oriented systems and are typically not supported in Java and CORBA. Any scalability issues are usually dealt with by other means such as resource pooling. However, it is feasible that some CORBA-based systems, without sophisticated resource mechanisms, may benefit from the use of composite objects, so session IDs are carried forward in CORBA systems to be used as an optional parameter.

12.3 Example

In Parlay’s IpCall interface, the release method is passed the call session ID, which had been previously attained using a method like createCall. In Java, session IDs are not used, so the createCall method would supply the call object handle, and the release method would apply to that particular call object. In CORBA, if session IDs are not used (i.e., set to null), then the interoperability with Java is straightforward. However, if session IDs are used then a mapping table is required to map between the real-life Java object references and the composite CORBA object reference and session ID combination. For example, the Java object ‘34348309’ may map to CORBA object and session ID ‘74303861’ and ‘20’, while the Java object ‘34348310’ map to the same CORBA object but to the session ID ‘21’.

13 Event listeners and callbacks

13.1 Discussion

Parlay solely uses callbacks to deal with the asynchronous delivery of events. Object-oriented technologies such as CORBA and Java provide the support for callbacks and event listeners, as there are certain situations in which callbacks would be used in preference to event listeners, and vice versa.

The event listener pattern is appropriate where we have an entity (or source) that acts comparatively autonomously and informs other entities about its behaviour. This entity does not care how the events are processed. The processing of events by another entity (or sink) might be done asynchronously to the event firing.

The callback pattern is appropriate where the calling entity (or callback) is interested in the result and processing needs to be done synchronously, so that the results can be passed on.

The following table gives a summary of situations where one pattern may be preferred over the other.

	Event Listeners
	Callbacks

	One or more entities interested in events.
	Only one entity interested in events.

	Source acts autonomously from sink (event listener).
	Source dependent on sink (callback object).

	Sink (event listener) processes events asynchronously.
	Sink (callback object) processes events synchronously.

	No protocol behaviour occurs between source and sink objects - loose coupling.
	Protocol behaviour occurs between source and sink objects - tight coupling.

	Inter or intra process mechanism.
	Inter or intra process mechanism.

	Technology independent.
	Technology independent.

	Source passes an event back to the sink (event listener) and doesn't expect anything back. See figures below.
	Source "calls" back sink (callback object) and expects a callback result. See figures below.

Callback pattern

Event listener pattern

13.2 Resolution

The use of callbacks or event listeners for object-oriented technologies will be decided on a case-by-case basis. Once the decision is made, it shall be reflected for both CORBA and Java technology implementations. The Parlay 2.1 APIs were studied and the conclusions were that the framework asynchronous methods are best-suited using callbacks, while the service asynchronous methods are best-suited using event listeners.

13.3 Example

Parlay’s IpAuthentication interface provides an example where callbacks are needed. In IpAuthentication and IpAppAuthentication, the "method-pair" (a method-pair is two complimentary methods, one in the server side and one in the client side) authenticate provides a response that is needed only by the method's caller. The source (in this case, IpAuthentication) is dependent on the callback object to synchronously process the event and provide a result to it. A callback pattern and the tight coupling protocol behaviour are observed.

Parlay’s IpCall interface provides an example where event listeners are needed. In IpCall the routeReq method could provide a response that is needed by the method’s caller and/or multiple listeners. The source (in this case, IpCall) acts autonomously from the event listener(s), which can process events asynchronously before invoking subsequent methods. An event listener pattern and the loose coupling non-protocol behaviour are observed. It should be noted though that providing the possibility for multiple event listeners also allows the possibility of multiple points of control. It is left up to the software developers to organise the controlling object(s).

14 Call legs and connections

14.1 Discussion

Parlay uses the call leg terminology to indicate the relationship between call and address, whereas JAIN uses connection for the same purpose.

14.2 Resolution

There is no strong push to align the call leg and connection terminologies, so a name mapping will have to be done.

15 Convenience functions

15.1 Discussion

Parlay uses convenience functions to string together a number of atomic method calls into a single method call to reduce network traffic.
15.2 Resolution

As OMG-IDL is used for a distribution API, convenience functions are supported by OMG-IDL. Java, in this case, is a local API, not requiring convenience functions.

15.3 Example

The mapping from the Java methods to the OMG-IDL convenience function will have to be done by reading sequences of Java method calls and converting them, if necessary, to OMG-IDL convenience functions.
16 Abbreviations

API

Application Programming Interface

CORBA
Common Object Request Broker Architecture

DCOM
Distribution Common Object Model

ID

IDentifier

IDL

Interface Definition Language

JAIN

Java APIs for Integrated Networks

OMG

Object Management Group

17 History

	Date
	Issue
	Author
	Comments

	11/20/00
	Draft A
	Gary Bruce
	Initial version for internal review

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

event

addListener

call

call result

setCallback

call

callback

callback result

4

Page 19 of 22

