3GPP TSG_CN WG5#8

Tdoc N5-000xxx

Scottsdale, Arizona, USA

18th – 20th December, 2000

Source:
Lucent Technologies

Title:
Kick-off Discussion Paper for OSA Charging API 

Agenda item:
 

Document for:
DISCUSSION
Introduction

This paper is intended as a kick-off for the technical work on the OSA Charging API, targeted for Release 4. As such, the content of the paper is proposed to serve as an indicative starting point for the technical discussion that could lead to a first draft version of the actual API specification. First, the OSA Charging requirements are quoted, taken from the OSA stage 1 specification 3G TS 22.127 and from the OSA Work Item Description (WID). Most, but not all requirements will be addressed within this contribution. Following the requirements, a simple charging model will be introduced, based on which a Charging API specification is proposed. The detailed Charging API proposal consists of method descriptions, class diagrams, state transition diagrams, message sequence diagrams, data definitions, and finally the IDL specification. Lucent Technologies would like to kindly request the CN5 meeting to discuss the technical work presented in this paper.

The TSG-S1 Requirements

S1 has provided the requirements for the OSA Charging API in 3G TS 22.127. This paper is based on version 1.1.1 of TS 22.127, as received in S1O-00044. The following high level requirements are taken from this TS. For each requirement, it is stated whether this paper will address the requirement. It is not the intention of this paper to tag all requirements, but rather to provide a feel for the completeness of the proposal in terms of the requirements that it covers.

· The responsibility for the subscriber accounts can be assigned to either the home network or elsewhere.

This requirement is marked in the stage 1 specification as “for further study”. Ideally, the responsibility of the subscriber accounts should be transparent to the OSA Charging API. This paper does not address this requirement in particular.

· OSA shall allow charging when the accounts are handled by the home network.

This requirement is implicitly addressed in by proposals in this paper by specifying the Charging service as a Network SCF.

· The application provider defines how much is charged to the subscriber for the usage of the application.

This requirement is addressed by proposals in this paper.

· The charges for the call are split between the involved parties (subscriber and application provider)

This paper considers this requirement to be for further study.

· The revenue for the call is split between the network operator and the application provider.

This paper considers this requirement to be for further study.

· Allow applications to add information to network based charging records

Refer to the discussion on the OSA WID Requirements.

· Enable the operator himself to add charges to a subscriber’s account for applications providing any (non-telecommunication) related service
This requirement is addressed by proposals in this paper
· Enable the operator to provide charging/billing as a service to 3rd parties, typically application providers. In this case, the operator will charge subscribers for application usage on behalf of the application provider. The charged amounts are shared between to the application provider and the network operator.
This requirement is implicitly addressed in by proposals in this paper by specifying the Charging service as a Network SCF.
· Query the current account balance

The account balance query functionality is addressed by proposals in this paper.

· Monitor account access (send notifications if charges or recharges are applied to a subscriber’s account).

The account access monitoring functionality is addressed by proposal in this paper.

The OSA WID Requirements

According to the OSA Work Item Description, the OSA API shall offer sufficient charging options to

· Supervise user activities for online charging features

The Release 99 OSA API incorporates functionality to supervise two forms of user activities for online charging, i.e. calls, by means of superviseCallReq(), and data sessions, by means of superviseDataSessionReq().

Supervision functionality for non call-related or non data-session-related user activities are not part of the current Release 99 OSA API. This paper identifies two possible solutions to add this functionality:

1. Add general supervision methods to the Charging interface and leave the specialized call and data session supervision methods as they are specified at present. From an object-oriented modeling perspective this is not a very elegant solution. From the perspective of backward compatibility with OSA Release 99 and Parlay version 2.1 however, this may be the least impacting solution.

2. Remove the call-related and data-session-related supervision methods from the IpCall and IpDataSession interfaces respectively, and introduce more general supervision methods to an interface from which all other interfaces can inherit. An example of one such interface could be IpService, which would allow every Network SCF to inherit basic supervision functionality. With respect to OO modeling considerations, this is a clean solution. However, there are severe impacts on existing interface specifications.

· Allow applications to access the account. This could be done by e.g. accessing an online account or impact the postprocessing. 

Ideally, whether a user is being charged post-paid or pre-paid should be transparent to the application by means of a generic Charging API. This paper contains charging proposals that are more targeted towards pre-paid charging.

· Allow applications to add charging information to network based charging records

As is the case with supervision, the Release 99 OSA API incorporates functionality to add charging information to network generated CDRs for call related and data session related user activities. The same issues apply here.

· Inform applications on network based charging event

This paper contains proposals that address this requirement, more specifically the chargingEventNotify() method.

A Proposal for a Charging Model

This paper proposes to extend the OSA API with a Charging Interface. The OSA Gateway will map the Charging API methods onto a network proprietary interface to the PrePaid server, similar to the 3GPP recommended, though still proprietary mappings onto the CAP and MAP protocols. A high-level overview of the network view of this model is depicted below.


[image: image10.wmf]Application is requesting to query the balance, but 

there is at least one error in the parameters that is 

detected by the IpCharging service

 : 

IpAppCharging

 : IpCharging

queryBalanceReq(in TpAddressSet, in TpPrimaryCurrency, out TpSessionID)

queryBalanceRes(in TpSessionID, in TpBalanceSet)

Application is requesting to query 

the balance

queryBalanceReq(in TpAddressSet, in TpPrimaryCurrency, out TpSessionID)

queryBalanceReq(in TpAddressSet, in TpPrimaryCurrency, out TpSessionID)

Application is requesting to query the 

balance, but a network error occurs

queryBalanceErr(in TpSessionID, in TpBalanceQueryError)


The reference model is specified in the following diagram.


[image: image2.wmf]USER

CHARGING

SERVER

APPLICATION

Payload, 

carried over e.g.

HTTP, WSP, 

or OSA 

Call

Control API 

mapped 

to

CAP/MAP

Charging 

information,

carried over OSA

Charging API


General Assumptions for the Charging Model

The Charging server performs specific database-like functionality such as for instance rollback/commit. This functionality is transparent to the OSA Application, which implies that the functionality is not provided over the OSA Charging API. In the initial proposal described in this paper identification of an end user charging account is based on the address of the user, provided over the OSA API. Whether this method of uniquely identifying and keying a charging account (i.e. based on type TpAddress) is sufficient or particularly useful remains for further study and discussion on this topic is encouraged.

The topic of authorization and authentication is for further study. For the time being, it is assumed that the general authentication and authorization mechanisms provided by the OSA Framework will suffice for the initial proposal. Discussion is encouraged on the requirements for additional mechanisms, as charging information is highly privacy sensitive and might be targeted by fraudulent activities.

No protocol mapping recommendations will be provided in this paper, as there is no accepted standard network-level protocol for a prepaid server interface.

The Charging interface in this paper does not make assumptions on the kind of charging, i.e. it is transparent to the API whether the user has a pre-paid or a post-paid account.

The Charging interface in this paper assumes that the interface is applicable to micro charges, i.e. charges in the order of magnitude of typically between $0.50 - $3.00.

A Possible First Draft of the OSA Charging API

This section contains a fully worked out example of a possible first draft of the OSA Charging API.

Method Descriptions

Charging

enableChargingNotification

disableChargingNotification

chargingEventNotify

deleteChargingAccountNotification

queryBalanceReq

queryBalanceRes

queryBalanceErr

updateBalanceReq

updateBalanceRes

updateBalanceErr

Table 1: Overview of Charging interfaces and their methods

Charging Interface

Method
enableChargingNotification()
This method is used by the application to enable charging event notifications to be sent to the application.

Direction
Application to network

Parameters
appInterface

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.

chargingEventCriteria

Specifies the event specific criteria used by the application to define the charging event required. Individual addresses or address ranges may be specified for subscriber accounts. Examples of events are "charging”, and “recharging”.

Returns
assignmentId 

Specifies the ID assigned by the charging manager object for this newly-enabled event notification.

Errors
UNKNOWN_SUBSCRIBER

Charging event notifications are requested for unknown user accounts.

UNAUTHORIZED_APPLICATION

The application is not authorized to receive charging notifications.

Method
disableChargingNotification()
This method is used by the application to disable charging notifications.

Direction
Application to Network

Parameters
assignmentId

Specifies the assignment ID given by the charging manager object when the previous enableChargingNotification() was called.

Returns
-

Errors
INVALID_ASSIGNMENTID 

Returned if the assignment ID does not correspond to one of the valid assignment IDs.

Method
chargingEventNotify()
This method is used to notify the application of the arrival of a charging related event.

Direction
Network to application

Parameters
chargingReference

Specifies reference to the charging object to which the notification relates.

chargingEventInfo

Specifies data associated with this charging event. These data include the charging event being notified, the current value of the balance after the notified event occurred, and the time at which the charging event occurred.

assignmentId

Specifies the assignment ID which was returned by the enableChargingNotification() method. The application can use assignment ID to associate events with event-specific criteria and to act accordingly.



Returns
appInterface 

Specifies a reference to the application object, which implements the callback interface for the new charging session.

Errors
-

Method
chargingAccountDeletedNotification()
This method is used to notify the application that the user account for which the application requested notifications, has been closed of removed.

Direction
Network to application

Parameters
user

Specifies the user for which the user account has either been closed or removed.



Returns
-

Errors
UNKNOWN_SUBSCRIBER

Returned if the user is unknown to the application.

Charging Interface

Method
queryBalanceReq()
This method is used by the application to query the balance of an account for one or several users.

Direction
Application to network

Parameters
users

Specifies the user(s) for which the balance is queried.



Returns
queryId 

Specifies the ID of the query-balance request.

Errors
INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

UNAUTHORIZED_APPLICATION

The application is not authorized to perform the request.

USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user's privacy setting

Method
queryBalanceRes()
Delivery of a balance query result. The result is containing charging-related information for one or several users.

Direction
Network to application

Parameters
queryId

Specifies the ID of the balance query request

balances

Specifies the balance for one or more user accounts.



Returns
-

Errors
INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

INVALID_ASSIGNMENT_ID

The query ID does not correspond to one of a valid query.

Method
queryBalanceErr()
This method indicates that the balance query request has failed.

Direction
Network to application

Parameters
queryId

Specifies the ID of the balance query request

cause

Specifies the error that led to the failure.

Returns
-

Errors
-

Method
updateBalanceReq()
This method is used by the application to update the balance of an account for one or several users.

Direction
Application to network

Parameters
user

Specifies the user for which the user account is requested to be updated.

updateOperation

Specifies the specific update operation that is to be performed. Examples for operations are “increment” and “decrement”.

updateRequest

Specifies the specific amount for the update operation is requested. The amount consists of a value and a currency.

Returns
updateId

Specifies the ID of the update-balance request.

Method
updateBalanceRes()
Delivery of a balance query result. The result is containing of the new balance as a result of the update.

Direction
Network to application

Parameters
updateId

Specifies the ID of the balance update request.

updateResult

Specifies the result of the balance update request, consisting of balance information and a status code.

Returns
-

Errors
INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

INVALID_ASSIGNMENT_ID

The query ID does not correspond to one of a valid query.

Method
updateBalanceErr()
This method indicates that the balance update request has failed.

Direction
Network to application

Parameters
updateId

Specifies the ID of the balance update request.

cause

Specifies the error that led to the failure.



Returns
-

Errors
-

Class Diagrams

This section contains the Charging API Class Diagrams. The class diagrams are specified in UML: interface classes are shown as interface names within shaded rectangular boxes; relationships and generalizations as lines connecting pairs of interface classes.

The top level view of the Charging Service consists of the following two packages:


[image: image3.wmf]Pappcs

Pcs


[image: image1.wmf]Pre-Paid/Post-Paid

Customer

Charging

Server

Application

Application Server

OSA Gateway

HLR

MSC

/SSP

CAP

MAP

OSA API (including Charging API)

“Proprietary” network-level Charging

interface



<<Interface>>

IpCharging



enableChargingNotification( appInterface : in IpAppChargingManager, chargingEventCriteria : in TpChargingEventCriteria, assignmentId : out TpAssignmentID) : TpResult

disableChargingNotification( assignmentId : in TpAssignmentId) : TpResult

queryBalanceReq( users : in TpAddressSet, primaryQueried : in TpPrimaryCurrency, queryId, out TpSessionID) : TpResult

updateBalanceReq( user : in TpAddress, updateOperation : in TpBalanceOperation, updateRequest : in TpBalanceUpdateRequest, updateId : out TpSessionID) : TpResult

<<Interface>>

IpAppCharging



chargingEventNotify( chargingReference : in IpCharging, chargingEventInfo : in TpChargingEventInfo, assignmentId : in TpAssignmentID, appInterface : out IpAppChargingRefRef) : TpResult

chargingAccountDeletedNotification( user : in TpAddress) : TpResult

queryBalanceRes( queryId : in TpSessionID, balances : in TpBalanceSet) : TpResult

queryBalanceErr( queryId : in TpSessionID, cause : in TpBalanceQueryError) : TpResult

updateBalanceRes( updateId : in TpSessionID, updateResult : in TpbalanceUpdateResult) : TpResult

updateBalanceErr( updateId : in TpSessionID, cause : in TpBalanceUpdateError) : TpResult

State Transition Diagrams

This section contains the State Transition Diagrams for the objects that implement the Charging Manager and Charging interfaces on the gateway side. The State Transition Diagrams show the behavior of these objects. For each state the methods that can be invoked by the application are shown.

Charging

[image: image4.wmf]IpOsa

<<Interface>>

IpService

setCallback()

(

from 

osa)

<<Interface>>

IpOsa

<<Interface>>

IpCharging

enableChargingNotification(

)

disableChargingNotification(

)

queryBalanceReq()

updateBalanceReq()

(

from 

cs)

<<Interface>>

IpAppCharging

chargingEventNotify(

)

chargingAccountDeletedNotification(

)

queryBalanceRes()

queryBalanceErr()

updateBalanceRes()

updateBalanceErr()

(

from 

cs)

<<Interface>>


Active state

In this state a relation between the Application and the Charging Service Capability Feature has been established, i.e. the Service Factory has created an IpCharging interface. The state allows applications to request balance queries and balance updates.

Notifications Enabled state

In this state the application can received charging event notifications, e.g. when the end user recharges her account, or when the account is being charged by another application.

Message Sequence Diagrams

The following diagram displays the basic behavior of the Charging interface. Three basic scenarios are depicted, showing the basic successful scenario, erroneous invocation scenario, and a network error scenario. The scenarios for updateBalanceReq are similar and therefore not shown.

[image: image5.wmf]Active

queryBalanceReq

updateBalanceReq

Creation of IpCharging

by Service Factory

Notifications 

Enabled

IpAccess.TerminateServiceAgreement

enableChargingNotification

disableChargingNotification

IpAccess.TerminateServiceAgreement

queryBalanceReq

updateBalanceReq



The following sequence diagram shows a scenario for a simple call-related prepaid charging application. The application enables charging notifications in the network. When a call origination is detected, by means of a callEventNotify, a Charging object is created by invoking createCharging. The application first queries the end user’s balance, before deciding to proceed with the application. In case of sufficient balance on the user account, the application requests supervision for this particular call and subsequently requests to route the call to the required destination. A routeRes is received for the “answer” event and for the “disconnect” event. When the call is finished, i.e. disconnected, the superviseCallRes is invoked at the application. The application can then calculate the [image: image6.wmf]IpOsa

<<Interface>>

IpService

setCallback()

(

from 

osa)

<<Interface>>

IpOsa

<<Interface>>

IpCharging

enableChargingNotification(

)

disableChargingNotification(

)

queryBalanceReq()

updateBalanceReq()

(

from 

cs)

<<Interface>>

IpAppCharging

chargingEventNotify(

)

chargingAccountDeletedNotification(

)

queryBalanceRes()

queryBalanceErr()

updateBalanceRes()

updateBalanceErr()

(

from 

cs)

<<Interface>>

charge for this call and request to update the balance of the user accordingly.

The following message sequence diagram shows a scenario for a simple application-based prepaid charging service. The network operator in this case is responsible for charging the end user for the connection, whereas the application only charges the end user for usage of the application. The scenario is similar to the previous call-related charging scenario, except that no supervision is involved and the application is only interested whether the user was connected or not. The charged amount is typically a micro charge in the order of $0.50 to $3.00 just for the usage of the application. An example of such an application could include a weather service where you dial 1-800-SUNSHINE and you will be connected with a weather server where you can download a weather report update. The network operator will charge [image: image7.wmf] : Client

 : 

IpAppCallControlManager

 : IpAppCharging

 : IpAppCall

 : 

IpCallControlManager

 : IpCharging

 : IpCall

new()

enableCallNotification(in IpAppCallControlManager, in TpCallEventCriteria, out TpAssignmentID)

callEventNotify(in TpCallIdentifier, in TpCallEventInfo, in TpAssignmentID, out IpAppCall)

forward()

new()

new()

queryBalanceReq(in TpAddressSet, in TpPrimaryCurrency, out TpSessionID)

queryBalanceRes(in TpSessionID, in TpBalanceSet)

forward()

superviseCallReq(in TpSessionID, in TpDuration, in TpCallSuperviseTreatment)

routeReq(in TpSessionID, in TpCallReportRequestSet, in TpAddress, in TpAddress, in TpAddress, in TpAddress, in TpCallAppInfoSet, out TpSessionID)

routeRes(in TpSessionID, in TpCallReport, in TpSessionID)

forward()

routeRes(in TpSessionID, in TpCallReport, in TpSessionID)

forward()

superviseCallRes(in TpSessionID, in TpCallSuperviseReport, in TpDuration)

forward()

updateBalanceReq(in TpAddress, in TpBalanceOperation, in TpBalanceUpdateRequest, out TpSessionID)

updateBalanceRes(in TpSessionID, in TpBalanceUpdateResult)

forward()

Query whether 

balance is 

sufficient at start 

of session

Start supervision to allow for 

cost calculation after session

Update account according to 

supervision data

new()

enableChargingNotification(in IpAppCharging, in TpChargingEventCriteria, out TpAssignmentID)

you for the costs of the connection, while the application will charge you for the weather report.

Finally, the following message sequence chart show the scenario of an application that charges the end user for very specific activities on behalf of the end user. The particular scenario shown could be for a traffic jam service. The application requested for triggered location reports. Each incoming location update of the end user will be processed [image: image8.wmf]Application charges one-time flat fee for 

use of application. Not interested in  

session duration or traffic volume.

 : Client

 : 

IpAppDataSessionControlManager

 : IpAppCharging

 : IpAppDataSession

 : 

IpDataSessionControlManager

 : IpCharging

 : IpDataSession

enableDataSessionNotification(in IpAppDataSessionControlManager, in TpDataSessionEventCriteria, out TpAssignmentID)

dataSessionEventNotify(in TpDataSessionIdentifier, in TpDataSessionEventInfo, in TpAssignmentID, out IpAppDataSession)

new()

forward()

queryBalanceReq(in TpAddressSet, in TpPrimaryCurrency, out TpSessionID)

queryBalanceRes(in TpSessionID, in TpBalanceSet)

forward()

connectReq(in TpSessionID, in TpDataSessionReportRequestSet, in TpAddress, in TpAddress, out TpAssignmentID)

connectRes(in TpSessionID, in TpDataSessionReport, in TpAssignmentID)

forward()

updateBalanceReq(in TpAddress, in TpBalanceOperation, in TpBalanceUpdateRequest, out TpSessionID)

updateBalanceRes(in TpSessionID, in TpBalanceUpdateResult)

forward()

User connected

by the application, When the end user moves into an area with dense traffic and known traffic jams, the application engages in a user interaction with the end user, e.g. an announcement listing all traffic jams in the vicinity. For each traffic announcement the end user will be charged by the application for a small amount, say $0.50.

Data Definitions

This section provides the Charging specific data definitions necessary to support the OSA interface specification.

This document is written using Hypertext link, to aid navigation through the data structures. Underlined text represents Hypertext links.

The general format of a data definition specification is the following:


Data type, that shows the name of the data type.


Description, that describes the data type.


Tabular specification, that specifies the data types and values of the data type.


Example, if relevant, shown to illustrate the data type.

TpBalanceQueryError

Defines an error that is reported by the Charging service capability feature as a result of a balance query request. 

Name
Value
Description

P_BALANCE_QUERY_OK
0
No error occurred while processing the request

P_BALANCE_QUERY_ERROR_UNDEFINED
1
General error, unspecified

P_BALANCE_QUERY_UNKNOWN_SUBSCRIBER
2
Subscriber for which balance is queried is unknown

P_BALANCE_QUERY_UNAUTHORIZED_APPLICATION
3
Application is not authorized to query balance

P_BALANCE_QUERY_SYSTEM_FAILURE
4
System failure. The request could not be handled

TpBalanceUpdateError

Defines an error that is reported by the Charging service capability feature as a result of a balance update query.

Name
Value
Description

P_BALANCE_UPDATE_OK
0
No error occurred while processing the update

P_BALANCE_UPDATE_ERROR_UNDEFINED
1
General error, unspecified

P_BALANCE_UPDATE_UNKNOWN_SUBSCRIBER
2
Subscriber for which balance is updated is unknown

P_BALANCE_UPDATE_UNAUTHORIZED_APPLICATION
3
Application is not authorized to update balance

P_BALANCE_UPDATE_INSUFFICIENT_BALANCE
4
Insufficient balance to perform the update

P_BALANCE_UPDATE_INVALID_CURRENCY
5
Currency for balance update not valid

P_BALANCE_UPDATE_INVALID_AMOUNT
6
Amount for balance update not valid

P_BALANCE_UPDATE_SYSTEM_FAILURE
7
System failure. The update could not be performed

TpChargingEventName

Defines the charging event for which notifications can be requested by the application.

Name
Value
Description

P_CS_CHARGING
0
End user's account has been charged by an application

P_CS_RECHARGING
1
End user has recharged the account

TpBalanceInfo

Defines the structure of data elements that specifies detailed balance info.

Structured Member Name
Structured Member Type

Currency
TpString

Balance
TpPrice

AdditionalInfo
TpString

TpChargingEventInfo

Defines the structure of data elements that specifies charging event information.

Structured Member Name
Structured Member Type

chargingEventName
TpChargingEventName

currentBalanceInfo
TpBalanceInfo

chargingEventTime
TpTime

TpChargingEventCriteria

Defines the structure of data elements that specifies charging event criteria.

Structured Member Name
Structured Member Type

users
TpAddressSet

chargingEventName
TpChargingEventName

TpBalance

Defines the structure of data elements that specifies a balance.

Structured Member Name
Structured Member Type

UserID
TpAddress

StatusCode
TpBalanceQueryError

BalanceInfo
TpBalanceInfo

TpBalanceSet

Defines a collection of TpBalance elements.

TpBalanceOperation

Defines the possible operations for a balance update request.

Name
Value
Description

P_CS_OPERATION_INCREMENT
0
Increment the charging balance

P_CS_OPERATION_DECREMENT
1
Decrement the charging balance

TpBalanceUpdateRequest

Defines the structure of data elements that specifies the actual balance for which the update is requested to be performed.

Structured Member Name
Structured Member Type

Currency
TpString

UpdateAmount
TpPrice

TpBalanceUpdateResult

Defines the structure of data elements that specifies the result of the balance update request.

Structured Member Name
Structured Member Type

Result
TpBalanceInfo

StatusCode
TpBalanceUpdateError

TpResultInfo

Defines further information relating to the result of the method, such as error codes.

Name
Value
Description

……
…
……

……
…
……

P_CS_UNKNOWN_SUBSCRIBER
0500h
Unknown subscriber specified

P_CS_UNAUTHORIZED_APPLICATION
0501h
Application is not authorized to perform charging operations

P_CS_INVALID_AMOUNT
0502h
Invalid balance amount specified

P_CS_INVALID_CURRENCY
0503h
Invalid currency issues with the update balance request

IDL Interface Definitions

// Proposal OSA Charging Service

// MAGNUM OSA Charging Service

#ifndef __OSA_CHARG_DEFINED

#define __OSA_CHARG_DEFINED

#include "OSA.idl"

module org 

{

  module threegpp 

  {

    module osa 

    {

      // charging service

      module cs 

      {


interface IpCharging;           // forward definition


interface IpAppCharging;        // forward definition


enum TpBalanceQueryError


{


  P_BALANCE_QUERY_OK,                        // No error occurred while processing the

// request


  P_BALANCE_QUERY_ERROR_UNDEFINED,           // General error, unspecified.


  P_BALANCE_QUERY_UNKNOWN_SUBSCRIBER,        // Subscriber for which balance is queried is

// unknown


  P_BALANCE_QUERY_UNAUTHORIZED_APPLICATION,  // Application is not authorized to query

// balance


  P_BALANCE_QUERY_SYSTEM_FAILUE              // System failure. The request could not be

// handled.


};


enum TpBalanceUpdateError


{


  P_BALANCE_UPDATE_OK,                       // No error occured while processing the update


  P_BALANCE_UPDATE_ERROR_UNDEFINED,          // General error, unspecified


  P_BALANCE_UPDATE_UNKNOWN_SUBSCRIBER,       // Subscriber for which balance is updated is

// unknown


  P_BALANCE_UPDATE_UNAUTHORIZED_APPLICATION, // Application is not authorized to update

// balance


  P_BALANCE_UPDATE_INSUFFICIENT_BALANCE,     // Insufficient balance to perform the update


  P_BALANCE_UPDATE_INVALID_CURRENCY,         // Currency for balance update not valid


  P_BALANCE_UPDATE_INVALID_AMOUNT,           // Amount for balance update not valid


  P_BALANCE_UPDATE_SYSTEM_FAILURE            // System failure. The update could not be

// performed


};


enum TpChargingEventName{


  P_CS_CHARGING,             // End user's account has been charged by an application


  P_CS_RECHARGING            // End user has recharged the account


};


/* Defines the structure of data elements that specifies detailed balance info */


struct TpBalanceInfo {


  TpString Currency;


  TpPrice Balance;


  TpString AdditionalInfo;


};


/* Defines the structure of data elements that specifies. */


struct TpChargingEventInfo {


  TpChargingEventName chargingEventName;


  TpBalanceInfo currentBalanceInfo;


  TpTime chargingEventTime;


};


struct TpChargingEventCriteria {


  TpAddressSet users;


  TpChargingEventName chargingEventName;


};


/* Defines the structure of data elements that specifies a balance */


struct TpBalance {


  TpAddress UserID;


  TpBalanceQueryError StatusCode;


  TpBalanceInfo BalanceInfo;


};


/* Defines a collection of TpBalance elements */


typedef sequence < TpBalance > TpBalanceSet;


/* Defines a flag that indicates whether the primary or the secondary


 * currency is requested.


 */


typedef TpBoolean TpPrimaryCurrency;


/* Defines the possible operations for a balance update request */


enum TpBalanceOperation {


  P_CS_OPERATION_INCREMENT,  // Increment the charging balance


  P_CS_OPERATION_DECREMENT   // Decrement the charging balance


};


/* Defines the structure of data elements that specifies the actual balance


 * for which the update is requested to be performed.


 */


struct TpBalanceUpdateRequest {


  TpString Currency;


  TpPrice UpdateAmount;


};


/* Defines the structure of data elements that specifies the result of


 * the balance update request.


 */


struct TpBalanceUpdateResult {


  TpBalanceInfo Result;


  TpBalanceUpdateError StatusCode;


};


/* Define the possible exception values. */


const TpInt32 P_CS_UNKNOWN_SUBSCRIBER = 2050;


const TpInt32 P_CS_UNAUTHORIZED_APPLICATION = 2051;


const TpInt32 P_CS_INVALID_AMOUNT = 2052;


const TpInt32 P_CS_INVALID_CURRENCY = 2053;


exception TpCSException


{


  TpInt32 exceptionType;


};


////////////////////////////////////////////////////////////////////////////


// The Interface Definitions ///////////////////////////////////////////////


////////////////////////////////////////////////////////////////////////////


/*


 * This interface provides the means to perform charging a subscriber for usage of


 * an application.


 */


interface IpCharging : IpService {


  /* This method is used to enable charging notifications. */


  void enableChargingNotification (






   in IpAppCharging appInterface,






   in TpChargingEventCriteria chargingEventCriteria,






   out TpAssignmentID assignmentId)


    raises (TpCSException, TpGeneralException);


  /* This method is used to disable charging notifications. */


  void disableChargingNotification (






    in TpAssignmentID assignmentId)


    raises (TpCSException, TpGeneralException);


  /* This method is used to query the charging balance for a set of subscribers. */


  void queryBalanceReq (





in TpAddressSet users,





out TpSessionID queryId)


    raises (TpCSException, TpGeneralException);


  /* This method is used to perform updates to a specific charging account, i.e.


   * increment or decrement.


   */


  void updateBalanceReq (





 in TpAddress user,





 in TpBalanceOperation updateOperation,





 in TpBalanceUpdateRequest updateRequest,





 out TpSessionID updateId)


    raises (TpCSException, TpGeneralException);


}; // IpCharging


/* The application side of the charging interface is used to handle charging request


 * responses.


 */


interface IpAppCharging : IpOsa {


  /* This method is used to notify the application of a charging event. */


  void chargingEventNotify (





    in IpCharging chargingReference,





    in TpChargingEventInfo chargingEventInfo,





    in TpAssignmentID assignmentId,





    out IpAppCharging appInterface)


    raises (TpCSException, TpGeneralException);


  /* This method is used to notify the application that a charging balance account


   * has been deleted by the charging system.


   */


  void chargingAccountDeletedNotification (







  in TpAddress user)


    raises (TpCSException, TpGeneralException);


  /* This method indicates that the request to query the balance was successful and


   * reports the requested balance.


   */


  void queryBalanceRes (





in TpSessionID queryId,





in TpBalanceSet balances)


    raises (TpCSException, TpGeneralException);


  /* This method indicates that the request to query the balance failed and reports


   * the cause of failure.


   */


  void queryBalanceErr (





in TpSessionID queryId,





in TpBalanceQueryError cause)


    raises (TpCSException, TpGeneralException);


  /* This method indicates that the request to update the balance was successful and


   * reports the result of the update.


   */


  void updateBalanceRes (





 in TpSessionID updateId,





 in TpBalanceUpdateResult updateResult)


    raises (TpCSException, TpGeneralException);


  /* This method indicates that the request to update the balance failed and reports


   * the cause of the failure.


   */


  void updateBalanceErr (





 in TpSessionID updateId,





 in TpBalanceUpdateError cause)


    raises (TpCSException, TpGeneralException);


}; // IpAppCharging

      }; // end module cs

      ///////////////////////////////////////////////////////////////////////////////

      ///////////////////////////////////////////////////////////////////////////////

    }; // osa

  }; // threegpp

};

#endif

� EMBED Word.Picture.8  ���





� Musa Unmehopa, � HYPERLINK mailto:unmehopa@lucent.com ��unmehopa@lucent.com�




Page 2

[image: image9.wmf]triggeredLocationReport(in TpSessionID, in TpUserLocationCamel, in TpLocationTriggerCamel)

 : Client

 : IpAppCharging

 : IpAppUserLocationCamel

 : IpCharging

 : 

IpUserLocationCamel

 : IpUI

 : IpAppUI

triggeredLocationReportingStartReq(in IpAppUserLocationCamel, in TpAddressSet, in TpLocationTriggerCamel, out TpSessionID)

triggeredLocationReport(in TpSessionID, in TpUserLocationCamel, in TpLocationTriggerCamel)

forward()

triggeredLocationReport(in TpSessionID, in TpUserLocationCamel, in TpLocationTriggerCamel)

forward()

sendInfoReq(in TpSessionID, in TpUIInfo, in TpUIVariableInfoSet, in TpInt32, in TpUIResponseRequest, out TpAssignmentID)

sendInfoRes(in TpSessionID, in TpAssignmentID, in TpUIReport)

forward()

updateBalanceReq(in TpAddress, in TpBalanceOperation, in TpBalanceUpdateRequest, out TpSessionID)

updateBalanceRes(in TpSessionID, in TpBalanceUpdateResult)

forward()

_1038033693.ppt












Pre-Paid/Post-Paid

Customer

Charging

Server

Application

Application Server

OSA Gateway

HLR

MSC/SSP

CAP

MAP

OSA API (including Charging API)

“Proprietary” network-level Charging interface




















_1038034103.doc


Pappcs





Pcs









_1037167790.doc





USER








APPLICATION





CHARGING SERVER





Payload, carried over e.g. HTTP, WSP, or OSA Call Control API mapped to CAP/MAP





Charging information, carried over OSA Charging API









_1038032630.doc
[image: image1.emf][image: image2.emf]

IpOsa





<<Interface>>





IpService





setCallback()





(from osa)





<<Interface>>





IpOsa





<<Interface>>





IpCharging





enableChargingNotification()





disableChargingNotification()





queryBalanceReq()





updateBalanceReq()





(from cs)





<<Interface>>





IpAppCharging





chargingEventNotify()





chargingAccountDeletedNotification()





queryBalanceRes()





queryBalanceErr()





updateBalanceRes()





updateBalanceErr()





(from cs)





<<Interface>>









