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6.2.3.4
IpAccess

	<<Interface>>

IpAccess

	

	obtainInterface( interfaceName: in TpInterfaceName, fwInterface: out IpOsaRefRef): TpResult

obtainInterfaceWithCallback( interfaceName: in TpInterfaceName, appInterface: in IpOsaRef, fwInterface: out IpOsaRefRef): TpResult

accessCheck(serviceToken: in TpServiceToken,securityContext: in TpSecurityContext,  securityDomain: in TpSecurityDomain, group : in TpSecurityGroup, serviceAccessTypes: in TpServiceAccessType, serviceAccessControl: out TpServiceAccessControlRef): TpResult

selectService( serviceID: in TpServiceID, serviceProperties: in TpServicePropertyList, serviceToken: out TpServiceTokenRef): TpResult

signServiceAgreement( serviceToken: in TpServiceToken, agreementText: in TpString, signingAlgorithm: in TpSigningAlgorithm, signatureAndServiceMgr: out TpSignatureAndServiceMgrRef ): TpResult

terminateServiceAgreement( serviceToken: in TpServiceToken, terminationText: in TpString, digitalSignature: in TpString): TpResult 

endAccess(endAccessProperties: in TpEndAccessProperties) : TpResult




8.1.4.W
TpSecurityContext

This data type is identical to a TpString and contains a group of security relevant attributes.
8.1.4.X
TpSecurityDomain

This data type is identical to a TpString and contains the security domain in which the client application is operating.

8.1.4.Y
TpSecurityGroup

This data type is identical to a TpString and contains a definition of the access rights associated with all clients that belong to that group.

8.1.4.Z
TpServiceAccessType

This data type is identical to a TpString and contains a definition of the specific security model in use.
9.2.3
Trust and Security Management IDL

#include <fw.idl>

module org{

module threegpp{

module osa{

module fw{

module trust_and_security{

/***************************************************************************************/

//                                 Data definitions                                    //

/***************************************************************************************/


typedef TpString

TpAccessType;

// The type of access interface requested by the client 

// application. For OSA release 99 the following values 

// have been defined: NULL (indicates the default access 

// type) and P_ACCESS.


typedef TpString

TpAuthType;


// The type of authentication mechanism requested by the 

// client. For OSA release 99 the following values have 

// been defined: NULL (indicates OSA authentication), 

// P_AUTHENTICATION (indicates use of the OSA 

// authentication interfaces.


typedef TpString
TpAuthCapability;

// The authentication capabilities that could be supported 

// by the OSA. For OSA release 99 the following values 

// have been defined: NULL (indicates no client 

// capabilities, P_DES_56, P_DES_128, P_RSA_512 and P_RSA_1024).


typedef TpString

TpAuthCapabilityList;
// A string of multiple TpAuthCapability 

// concatenated using a commas.


struct TpAuthDomain 




{





TpDomainID DomainID;

       IpOSA AuthInterface;




};

typedef TpPropertyList TpEndAccessProperties;


typedef TpString

TpInterfaceName;
// Identifies the names of the framework SCFs that are be 

// supported by the OSA API. For release 99 these are NULL, 

// P_DISCOVERY, P_OAM

// P_LOAD_MANAGER,

// P_FAULT_MANAGER,

// P_HEARTBEAT_MANAGEMENT,

// P_REGISTRATION
typedef TpString TpSecurityContext;

// contains a group of security relevant attributes
typedef TpString TpSecurityDomain;


// contains the security domain in which the client












// application is operating
typedef TpString TpSecurityGroup;

// contains a definition of the access rights associated











// with all clients that belong to that group
typedef TpString TpServiceAccessType;
// contains a definition of the specific security model in











// use

struct TpServiceAccessControl {



TpString

Policy;


// Access control policy information controlling access to the 

// service feature.



TpString

TrustLevel;

// The level of trust that the network operator has assigned to the 

// client application.


};


typedef TpString

TpServiceToken;
// Uniquely identifies a SCF.


struct TpSignatureAndServiceMgrRef {





TpString

DigitalSignature;

// The digital signature of the Framework for the service 

// agreement.



IpOsa

ServiceMgrInterface;


};


typedef TpString

TpSigningAlgorithm;

// Identifies the signing algorithm that must be 

// used. For OSA release 99 the follwing values have 

// been defined: NULL (indicates no signing algorithm 

// is required), P_MD5_RSA_512 and P_MD5_RSA_1024.


typedef TpString

TpFwID;


struct TpFwAuth {



TpFwID
FwID;



IpOsa
FwAuthInterface;


};

/***************************************************************************************/

//                                   Interface definitions                             //

/***************************************************************************************/

/* The Initial Framework interface is used by the client application to initiate the mutual 

authentication with the Framework and, when this is finished successfully, to request access 

to it. */

interface IpInitial : IpOsa {

/* This method is invoked by the client application to start the process of mutual 

authentication with the framework, and request the use of a specific authentication method. 

*/

void initiateAuthentication (

in TpAuthDomain appDomain,        
// Identifies the client to the framework.

in TpAuthType authType,              
// Allows the client application to request a 

// specific type of authentication mechanism.

out TpAuthDomain fwDomain          // Provides a framework identifier, and a reference 

// to framework authentication interface.

) raises (TpGeneralException);

/* This method is invoked by the client application, once mutual authentication is 

achieved, to request access to the framework and specify the type of access desired. */

void requestAccess (

in TpAccessType accessType,        
// Identifies the type of access interface requested by 

// the client application.

in IpOsa appAccessInterface,      
// Provides a reference to the access interface of the 

// client application.

out IpOsa fwAccessInterface    

 // Provides a reference to call the access interface of 

 // the framework.

) raises (TpGeneralException);

};

/* The Access Framework interface is used by the client application to perform the mechanisms 

necessary for it to obtain access to SCFs. */

interface IpAccess : IpOsa {

/* This method is invoked by the client application to obtain interface references to other 

framework interfaces. */

void obtainInterface (

in TpInterfaceName interfaceName,
// The name of the framework interface to which a 

// reference to the interface is requested.

out IpOsa fwInterface   
 


// The requested interface reference.

) raises (TpGeneralException);

/* This method is invoked by the client application to obtain interface references to other 

framework interfaces, when it is required to supply a callback interface to the framework. */

void obtainInterfaceWithCallback (

in TpInterfaceName interfaceName,       
// The name of the framework interface to which 

// a reference to the interface is requested.

in IpOsa appInterface,       
   


// This is the reference to the client application 

// interface which is used for callbacks.

out IpOsa fwInterface        




// The requested interface reference.

) raises (TpGeneralException);

/* This method may be invoked by the client application to check whether it has been 

granted permission to access the specified SCF and, if granted, the level of trust that 

will be applied. */

void accessCheck (

in TpServiceToken serviceToken,

in TpSecurityContext securityContext,                        
// A group of security relevant 

// attributes.

in TpSecurityDomain securityDomain,                         
// The security domain in which 

// the client application is 

// operating.

in TpSecurityGroup group,                                  
// Used to define the access 

// rights associated with all 

// clients that belong to that 

// group.

in TpServiceAccessType serviceAccessTypes,                     
// Defined by the specific 

// security model in use.

out TpServiceAccessControl serviceAccessControl 
 
// The access control policy 

// information controlling 

// access to the service

// capability feature, and the 

// trustLevel that the network 

// operator has assigned to the client 

// application.

) raises (TpGeneralException);

/* This method is invoked by the client application to identify the SCF that it wishes 

to use. */

void selectService (

in TpServiceID serviceID,                     
// Identifies the SCF.

in TpServicePropertyList serviceProperties,   
// List the properties that the SCF 

// should support.

out TpServiceToken serviceToken          
  
// A free format text token returned by 

// the framework, which can be signed as 

// part of a service agreement.

) raises (TpGeneralException);

/* This method is invoked by the client application to request that the framework sign an  

agreement on the SCF, which allows the client application to use the SCF. */

void signServiceAgreement (

in TpServiceToken serviceToken,                          
// Used to identify the SCF 

// instance requested by the 

// client application.

in TpString agreementText,                               
// The agreement text to be 

// signed by the framework.

in TpSigningAlgorithm signingAlgorithm,                  
// The algorithm used to compute 

// the digital signature.

out TpSignatureAndServiceMgrRef signatureAndServiceMgr   
// A reference to a structure 

// that contains the digital 

// signature of the framework 

// for the service agreement, 

// and a reference to the

// SCF manager interface of 

// the SCF.

) raises (TpGeneralException);

/* This method is invoked by the client application to terminate an agreement for the 

specified SCF. */

void terminateServiceAgreement (

in TpServiceToken serviceToken,   
// Identifies the service agreement to be terminated.

in TpString terminationText,      
// Describes the reason for the termination of the 

// service agreement.

in TpString digitalSignature      
// Used by the framework to check that the 

// terminationText has been signed by the client.

) raises (TpGeneralException);

/* This method is invoked by the client application to end the access session

with the Framework. */

void endAccess () raises (TpGeneralException);

};

/* The Access client application interface is used by the Framework to perform the steps that 

are necessary in order to allow it to SCF access. */

interface IpAppAccess : IpOsa {

/* This method is invoked by the Framework to request that client application sign an 

agreement on a specified SCF. */

void signServiceAgreement (

in TpServiceToken serviceToken,           
// Identifies the SCF instance to which 

 // this service agreement corresponds.

in TpString agreementText,                
// Agreement text that has to be signed by the 

 // client application.

in TpSigningAlgorithm signingAlgorithm,

// Algorithm used to compute the digital 

 // signature.

out TpString digitalSignature          

// Signed version of a hash of the service 

// token and agreement text given by the 

// framework.

) raises (TpGeneralException);

/* This method is invoked by the Framework to terminate an agreement for a specified 

SCF. */

void terminateServiceAgreement (

in TpServiceToken serviceToken, 

// Identifies the SCF agreement to be terminated.

in TpString terminationText,       // Describes the reason for the termination.

in TpString digitalSignature       
// Used by the Framework to confirm its identity to the 

// client.

) raises (TpGeneralException);

/* This method is invoked by the Framework to end the client application's access session 

with the framework. */

void terminateAccess (

in TpString terminationText,              
// Describes the reason for the termination of 

 // the access session.

in TpSigningAlgorithm signingAlgorithm,

// The algorithm used to compute the digital 

// signature.

in TpString digitalSignature           

// Used by the Framework to confirm its 

// identity to the client.

) raises (TpGeneralException);

};

/* The Authentication Framework interface is used by client application to perform its part of 

the mutual authentication process with the Framework necessary to be allowed to use any of the 

other interfaces supported by the Framework. */

interface IpAuthentication : IpOsa {

/* This method is invoked by the client application to start the authentication process, 

informed the Framework of the authentication mechanisms it supports, and be informed by its 

of its preferred choice. */

void selectAuthMethod (

in TpAuthCapabilityList auths,     
// Informs the Framework of the authentication 

// mechanisms supported by the client

// application.

out TpAuthCapability prescribedMethod   

// Indicates the mechanism preferred by the 

// framework.

) raises (TpGeneralException);

/* This method is invoked by the client application to authenticate the framework using the 

mechanism indicated in the parameter prescribedMethod. */

void authenticate (

in TpAuthCapability prescribedMethod, 

// Specifies the method accepted by that the 

// framework for authentication.

in TpString challenge,                   // The challenge presented by the client 

// application to be responded to by the 

// framework.

out TpString response                   
// The response of the framework to the 

// challenge of the client application. 

) raises (TpGeneralException);

/* This method is invoked by the client application to to abort the authentication 

process.*/

void abortAuthentication() raises (TpGeneralException);

};

/* The Authentication client application interface is used by the Framework to authenticate 

the client application. */

interface IpAppAuthentication : IpOsa {

/* This method is invoked by the Framework to authenticate the client application using the 

mechanism indicated in prescribedMethod. */

void authenticate (

in TpAuthCapability prescribedMethod, 

// The agreed authentication method.

in TpString challenge, 






// The challenge presented by the Framework.

out TpString response   




) raises (TpGeneralException);

/* This method is invoked by the Framework to abort the authentication process. */

void abortAuthentication() raises (TpGeneralException);

};

};};};};};
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