1
3GPP TS 29.198 version 3.1.0 (2000-09)

	3GPP Meeting CN5 #6
	Document
	N5-000298

	Sophia Antipolis, France, 7-8 November 2000
	
	e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

	
	
	

	

	CHANGE REQUEST
	Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

	

	
	29.198
	CR
	033 R1
	Current Version:
	3.1.0
	

	
	
	
	
	

	GSM (AA.BB) or 3G (AA.BBB) specification number (
	
	(CR number as allocated by MCC support team

	

	For submission to:
	CN#10
	for approval
	x
	
	strategic
	
	(for SMG

	list expected approval meeting # here (
	for information
	
	
	non-strategic
	
	use only)

	
	
	

	Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

	

	Proposed change affects:
	(U)SIM
	
	ME
	
	UTRAN / Radio
	
	Core Network
	X

	(at least one should be marked with an X)

	

	Source:
	Lucent Technologies
	Date:
	6 November 2000

	

	Subject:
	Missing syntax and semantics description for a number of security parameters, currently only defined as strings.

	

	Work item:
	OSA

	

	Category:
	F
Correction
	X
	Release:
	Phase 2
	

	
	A
Corresponds to a correction in an earlier release
	
	
	Release 96
	

	(only one category
	B
Addition of feature
	
	
	Release 97
	

	shall be marked
	C
Functional modification of feature
	
	
	Release 98
	

	with an X)
	D
Editorial modification
	
	
	Release 99
	X

	
	
	
	
	Release 00
	

	

	Reason for
change:

	There is no description of the syntax and semantics of some of the security parameters in section 8 “Data Definitions” of 3G TS 29.198. These parameters are securityContext, securityDomain, group, and serviceAccessType. The descriptive text is the same as in the IDL package org.threegpp.osa.fw.trust_and_security.

	

	Clauses affected:
	6.2.3.4, 8.1.4.x, 9.2.3

	

	Other specs
	Other 3G core specifications
	
	(List of CRs:
	

	affected:
	Other GSM core specifications
	
	(List of CRs:
	

	
	MS test specifications
	
	(List of CRs:
	

	
	BSS test specifications
	
	(List of CRs:
	

	
	O&M specifications
	
	(List of CRs:
	

	

	Other
comments:
	

[image: image1.wmf]help.doc

 <--------- double-click here for help and instructions on how to create a CR.

6.2.3.4
IpAccess

	<<Interface>>

IpAccess

	

	obtainInterface(interfaceName: in TpInterfaceName, fwInterface: out IpOsaRefRef): TpResult

obtainInterfaceWithCallback(interfaceName: in TpInterfaceName, appInterface: in IpOsaRef, fwInterface: out IpOsaRefRef): TpResult

accessCheck(serviceToken: in TpServiceToken,securityContext: in TpSecurityContext, securityDomain: in TpSecurityDomain, group : in TpSecurityGroup, serviceAccessTypes: in TpServiceAccessType, serviceAccessControl: out TpServiceAccessControlRef): TpResult

selectService(serviceID: in TpServiceID, serviceProperties: in TpServicePropertyList, serviceToken: out TpServiceTokenRef): TpResult

signServiceAgreement(serviceToken: in TpServiceToken, agreementText: in TpString, signingAlgorithm: in TpSigningAlgorithm, signatureAndServiceMgr: out TpSignatureAndServiceMgrRef): TpResult

terminateServiceAgreement(serviceToken: in TpServiceToken, terminationText: in TpString, digitalSignature: in TpString): TpResult

endAccess(endAccessProperties: in TpEndAccessProperties) : TpResult

8.1.4.W
TpSecurityContext

This data type is identical to a TpString and contains a group of security relevant attributes.
8.1.4.X
TpSecurityDomain

This data type is identical to a TpString and contains the security domain in which the client application is operating.

8.1.4.Y
TpSecurityGroup

This data type is identical to a TpString and contains a definition of the access rights associated with all clients that belong to that group.

8.1.4.Z
TpServiceAccessType

This data type is identical to a TpString and contains a definition of the specific security model in use.
9.2.3
Trust and Security Management IDL

#include <fw.idl>

module org{

module threegpp{

module osa{

module fw{

module trust_and_security{

/***/

// Data definitions //

/***/

typedef TpString

TpAccessType;

// The type of access interface requested by the client

// application. For OSA release 99 the following values

// have been defined: NULL (indicates the default access

// type) and P_ACCESS.

typedef TpString

TpAuthType;

// The type of authentication mechanism requested by the

// client. For OSA release 99 the following values have

// been defined: NULL (indicates OSA authentication),

// P_AUTHENTICATION (indicates use of the OSA

// authentication interfaces.

typedef TpString
TpAuthCapability;

// The authentication capabilities that could be supported

// by the OSA. For OSA release 99 the following values

// have been defined: NULL (indicates no client

// capabilities, P_DES_56, P_DES_128, P_RSA_512 and P_RSA_1024).

typedef TpString

TpAuthCapabilityList;
// A string of multiple TpAuthCapability

// concatenated using a commas.

struct TpAuthDomain

{

TpDomainID DomainID;

 IpOSA AuthInterface;

};

typedef TpPropertyList TpEndAccessProperties;

typedef TpString

TpInterfaceName;
// Identifies the names of the framework SCFs that are be

// supported by the OSA API. For release 99 these are NULL,

// P_DISCOVERY, P_OAM

// P_LOAD_MANAGER,

// P_FAULT_MANAGER,

// P_HEARTBEAT_MANAGEMENT,

// P_REGISTRATION
typedef TpString TpSecurityContext;

// contains a group of security relevant attributes
typedef TpString TpSecurityDomain;

// contains the security domain in which the client

// application is operating
typedef TpString TpSecurityGroup;

// contains a definition of the access rights associated

// with all clients that belong to that group
typedef TpString TpServiceAccessType;
// contains a definition of the specific security model in

// use

struct TpServiceAccessControl {

TpString

Policy;

// Access control policy information controlling access to the

// service feature.

TpString

TrustLevel;

// The level of trust that the network operator has assigned to the

// client application.

};

typedef TpString

TpServiceToken;
// Uniquely identifies a SCF.

struct TpSignatureAndServiceMgrRef {

TpString

DigitalSignature;

// The digital signature of the Framework for the service

// agreement.

IpOsa

ServiceMgrInterface;

};

typedef TpString

TpSigningAlgorithm;

// Identifies the signing algorithm that must be

// used. For OSA release 99 the follwing values have

// been defined: NULL (indicates no signing algorithm

// is required), P_MD5_RSA_512 and P_MD5_RSA_1024.

typedef TpString

TpFwID;

struct TpFwAuth {

TpFwID
FwID;

IpOsa
FwAuthInterface;

};

/***/

// Interface definitions //

/***/

/* The Initial Framework interface is used by the client application to initiate the mutual

authentication with the Framework and, when this is finished successfully, to request access

to it. */

interface IpInitial : IpOsa {

/* This method is invoked by the client application to start the process of mutual

authentication with the framework, and request the use of a specific authentication method.

*/

void initiateAuthentication (

in TpAuthDomain appDomain,
// Identifies the client to the framework.

in TpAuthType authType,
// Allows the client application to request a

// specific type of authentication mechanism.

out TpAuthDomain fwDomain // Provides a framework identifier, and a reference

// to framework authentication interface.

) raises (TpGeneralException);

/* This method is invoked by the client application, once mutual authentication is

achieved, to request access to the framework and specify the type of access desired. */

void requestAccess (

in TpAccessType accessType,
// Identifies the type of access interface requested by

// the client application.

in IpOsa appAccessInterface,
// Provides a reference to the access interface of the

// client application.

out IpOsa fwAccessInterface

 // Provides a reference to call the access interface of

 // the framework.

) raises (TpGeneralException);

};

/* The Access Framework interface is used by the client application to perform the mechanisms

necessary for it to obtain access to SCFs. */

interface IpAccess : IpOsa {

/* This method is invoked by the client application to obtain interface references to other

framework interfaces. */

void obtainInterface (

in TpInterfaceName interfaceName,
// The name of the framework interface to which a

// reference to the interface is requested.

out IpOsa fwInterface

// The requested interface reference.

) raises (TpGeneralException);

/* This method is invoked by the client application to obtain interface references to other

framework interfaces, when it is required to supply a callback interface to the framework. */

void obtainInterfaceWithCallback (

in TpInterfaceName interfaceName,
// The name of the framework interface to which

// a reference to the interface is requested.

in IpOsa appInterface,

// This is the reference to the client application

// interface which is used for callbacks.

out IpOsa fwInterface

// The requested interface reference.

) raises (TpGeneralException);

/* This method may be invoked by the client application to check whether it has been

granted permission to access the specified SCF and, if granted, the level of trust that

will be applied. */

void accessCheck (

in TpServiceToken serviceToken,

in TpSecurityContext securityContext,
// A group of security relevant

// attributes.

in TpSecurityDomain securityDomain,
// The security domain in which

// the client application is

// operating.

in TpSecurityGroup group,
// Used to define the access

// rights associated with all

// clients that belong to that

// group.

in TpServiceAccessType serviceAccessTypes,
// Defined by the specific

// security model in use.

out TpServiceAccessControl serviceAccessControl

// The access control policy

// information controlling

// access to the service

// capability feature, and the

// trustLevel that the network

// operator has assigned to the client

// application.

) raises (TpGeneralException);

/* This method is invoked by the client application to identify the SCF that it wishes

to use. */

void selectService (

in TpServiceID serviceID,
// Identifies the SCF.

in TpServicePropertyList serviceProperties,
// List the properties that the SCF

// should support.

out TpServiceToken serviceToken

// A free format text token returned by

// the framework, which can be signed as

// part of a service agreement.

) raises (TpGeneralException);

/* This method is invoked by the client application to request that the framework sign an

agreement on the SCF, which allows the client application to use the SCF. */

void signServiceAgreement (

in TpServiceToken serviceToken,
// Used to identify the SCF

// instance requested by the

// client application.

in TpString agreementText,
// The agreement text to be

// signed by the framework.

in TpSigningAlgorithm signingAlgorithm,
// The algorithm used to compute

// the digital signature.

out TpSignatureAndServiceMgrRef signatureAndServiceMgr
// A reference to a structure

// that contains the digital

// signature of the framework

// for the service agreement,

// and a reference to the

// SCF manager interface of

// the SCF.

) raises (TpGeneralException);

/* This method is invoked by the client application to terminate an agreement for the

specified SCF. */

void terminateServiceAgreement (

in TpServiceToken serviceToken,
// Identifies the service agreement to be terminated.

in TpString terminationText,
// Describes the reason for the termination of the

// service agreement.

in TpString digitalSignature
// Used by the framework to check that the

// terminationText has been signed by the client.

) raises (TpGeneralException);

/* This method is invoked by the client application to end the access session

with the Framework. */

void endAccess () raises (TpGeneralException);

};

/* The Access client application interface is used by the Framework to perform the steps that

are necessary in order to allow it to SCF access. */

interface IpAppAccess : IpOsa {

/* This method is invoked by the Framework to request that client application sign an

agreement on a specified SCF. */

void signServiceAgreement (

in TpServiceToken serviceToken,
// Identifies the SCF instance to which

 // this service agreement corresponds.

in TpString agreementText,
// Agreement text that has to be signed by the

 // client application.

in TpSigningAlgorithm signingAlgorithm,

// Algorithm used to compute the digital

 // signature.

out TpString digitalSignature

// Signed version of a hash of the service

// token and agreement text given by the

// framework.

) raises (TpGeneralException);

/* This method is invoked by the Framework to terminate an agreement for a specified

SCF. */

void terminateServiceAgreement (

in TpServiceToken serviceToken,

// Identifies the SCF agreement to be terminated.

in TpString terminationText, // Describes the reason for the termination.

in TpString digitalSignature
// Used by the Framework to confirm its identity to the

// client.

) raises (TpGeneralException);

/* This method is invoked by the Framework to end the client application's access session

with the framework. */

void terminateAccess (

in TpString terminationText,
// Describes the reason for the termination of

 // the access session.

in TpSigningAlgorithm signingAlgorithm,

// The algorithm used to compute the digital

// signature.

in TpString digitalSignature

// Used by the Framework to confirm its

// identity to the client.

) raises (TpGeneralException);

};

/* The Authentication Framework interface is used by client application to perform its part of

the mutual authentication process with the Framework necessary to be allowed to use any of the

other interfaces supported by the Framework. */

interface IpAuthentication : IpOsa {

/* This method is invoked by the client application to start the authentication process,

informed the Framework of the authentication mechanisms it supports, and be informed by its

of its preferred choice. */

void selectAuthMethod (

in TpAuthCapabilityList auths,
// Informs the Framework of the authentication

// mechanisms supported by the client

// application.

out TpAuthCapability prescribedMethod

// Indicates the mechanism preferred by the

// framework.

) raises (TpGeneralException);

/* This method is invoked by the client application to authenticate the framework using the

mechanism indicated in the parameter prescribedMethod. */

void authenticate (

in TpAuthCapability prescribedMethod,

// Specifies the method accepted by that the

// framework for authentication.

in TpString challenge, // The challenge presented by the client

// application to be responded to by the

// framework.

out TpString response
// The response of the framework to the

// challenge of the client application.

) raises (TpGeneralException);

/* This method is invoked by the client application to to abort the authentication

process.*/

void abortAuthentication() raises (TpGeneralException);

};

/* The Authentication client application interface is used by the Framework to authenticate

the client application. */

interface IpAppAuthentication : IpOsa {

/* This method is invoked by the Framework to authenticate the client application using the

mechanism indicated in prescribedMethod. */

void authenticate (

in TpAuthCapability prescribedMethod,

// The agreed authentication method.

in TpString challenge,

// The challenge presented by the Framework.

out TpString response

) raises (TpGeneralException);

/* This method is invoked by the Framework to abort the authentication process. */

void abortAuthentication() raises (TpGeneralException);

};

};};};};};

3GPP

_997805625.doc
How to create a CR
Michael Sanders, 3GPP support team, (last updated 2/09/99)

1)
Open the CR cover sheet with MS Word 97. The lastest version of the CR coversheet can be found at:

ftp://ftp.3gpp.org/information/3gCRF-??.DOC

2)
Fill out all areas that are relevant on the CR cover sheet - only the areas that have yellow shading shall be filled out. See Annex A of these instructions for further detail.

3)
Open the specification to which you wish to make a change. It is very IMPORTANT to ensure that you are using the latest version of the specification to make the change. The latest versions of all approved 3G specifications is located at:

for the 3GPP: ftp://ftp.3gpp.org/specifications/ for SMG: http://docbox.etsi.org/tech-org/document/smg/specs

Do a "save as" using a file name related to the tdoc number (e.g. T3-99123.DOC).

4)
If the formatting looks incorrect (most easily noticed by the fact that there is no space between paragraphs), it may be because you do not have the correct document sheet in your MS Word style directory. All 3GPP specification use the style sheet 3GPP_70.DOT. This can be downloaded from:

ftp://ftp.3gpp.org/information/3gpp_70.dot

5)
Go to the beginning of the heading of the first subclause which you want to change. Press <CTRL><SHIFT><HOME> to select everything before that point and delete it.

6)
Switch to the window in MS word that contains your CR cover sheet and do a <CTRL>A <CTRL>C to select and copy the entire sheet (including the section break at the end). Switch back to the other window with the specification to be changed and paste it in.

7)
Between group of changed pages in the CR, insert a section break (insert / break / next page/)

8)
When all the changes have been made (using the "tools / track changes" feature of MS Word 97), the headers and page number need to be corrected other the headers will contain an error message like "error, reference not found". You can fix this by changing to page layout mode (view / page layout) to see the headers. Then, go to the menu item "view / header and footer", select the frame that contains the error message(s) ini the header and delete them (there are normally 2). Do not delete the page number in the middle. On the left side, write the spec name and current version number For example, "3G TS 21.111 version 3.0.0 (1999-04)". Go back to normal view.

9)
For each group of changes, insert the correct starting page number. The number should be that which is a clean unmodified specification. It is only a guide to the reader only and so they can be +/- 1 page number wrong. Insert the page number using the following method. Go to the line following the first section break in your CR. Choose the menu item insert / page number / format / start at and insert the correct starting page number for that group of changes. click "OK" and then "CLOSE" (don't press "OK" at this last step). Repeat this step for each section break.

10)
When you have finished making all changes, go to "tools / track changes / highlight changes" and uncheck the "track changes while editing" box, otherwise the page numbers in the headers will be difficult to read. Make sure that the two other options in this box (highlight changes on screen" and "highlight changes in printed document" are both maked "X".

Examples of expressions of prevision in 3GPP specifications

To ensure that everybody else understands your proposed chnaged the same way that you do, it is very important to keep to the following rules:

SHALL: To be used to indicate a requirement. e.g. "The ME shall reset the USIM" is correct Do not use "The ME resets the USIM" or "the ME must reset the USIM"

SHOULD: To be used to indicate recommendation. i.e. if, among several possibilities one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action is deprecated but not prohibited.

MAY: To be used to indicate permission. To be used instead of phrases such as "is permitted", "is allowed" or is permissible". The opposite of "may" is "need not".

CAN: To be used to indicate possibility and capability. To be used instead of phrases such as "be able to", "there is a possibility of" or "it is possible to".

A more detailed guide to the 3GPP drafting rules can be found on the 3GPP server at:

ftp://ftp.3gpp.org/information/drafting-rules.pdf

ANNEX A
The CR cover sheet

This annex provides further information on how to fill out the cover sheet of a CR.

The header:

a)
The header, including the TSG or Working Group, the tdoc number (normally obtinaed from the 3GPP support team) and the meeting location and date.

The title box:

b)
The change request number. This is a 3 digit number and is allocated by the 3GPP support team project manager of the relevant WG. For GSM specifications, it is prefixed with an "A"

c)
The 3G or GSM specification number (e.g. 21.111 for 3G or 12.05 for GSM).

d)
The TSG or SMG plenary meeting to which this CR will be submitted to if it gets agreed at the WG meeting.

e)
for approval/for information: one box only shall be marked with an "X"

Proposed change affects:

f)
At least one box shall be marked with an "X"

Source:

g)
The company name of the author of the CR. If the CR has already been agreed at a Working groups or sub working group, meeting, the subgroup name (and Tdoc number) should be used instead.

Subject:

h)
One line (only) of concise text that describes the subject of the CR. Details should be put under "reason for change"

good examples:
"Clarification to FETCH command"

"Alignment of operation and parameter names"

recently used

bad examples:
"correction"

"editorial correction"

"correction to TS xxx.yy"

"various improvements"

Work item:

h)
The name of the 3G work item for which the CR is relevant.

Category and release:

i)
Choose one category only

Reason:

j)
This should be 1 to 10 lines of text that describes in further detail the reasons why the change is necessary and how the change is done.

Clauses Affected:

m)
Each subclause that is affected by the change should be listed here. New subclause number can be followed by " (new) ".

Other specs affected:

n)
Other 3G core specifications: to be used if the CR is linked to a CR for another 3G specification.
Other 2G core specifications: to be used if a CR is also needed for a GSM or other 2G specification.

MS test specifications: to be used if a change is needed to the MS test specifications.

BSS test specifications: to be used if a change is needed to the base station test specifications.

O&M specifications: to be used if a change is needed to O&M specifications.

When listing other CRs in part n) use, for example, the form "21.111-CR001" or "12.05-A123"

How to create a CR for 3G or SMG specifications.

File location: http://ftp.3gpp.org/information/3gCRF-??.doc

