SOURCE:
JAIN
TITLE:

Resolutions to align JAIN and Parlay Call Control APIs

LIAISON STATEMENT RESPONSE
TO:

JOINT ETSI/3GPP
APPROVAL:

FOR:

Action

DEADLINE:

18/12/2000
1
Aim for alignment

To reduce the proliferation of call control APIs on the market and increase the cost benefits to the industry by having a single call control API.

To take the 'best of breed' elements from Parlay call control and JAIN call control, producing a single 'world class' call control API.

To develop a single, easy to use, yet powerful, call control API that software developers can build their applications to.

2
Options for the alignment

The following table explores the possible advantages and disadvantages of aligning the Parlay/ETSI and JAIN Call Control APIs. According to PARLAY/ETSI/3GPP and JAIN, the following possible scenarios for alignment:

	
	Initiative
	Possible effect

	1.
	Align GCCS and MPCCS with JCC (significant changes in GCCS/MPCCS)
	A new OSA Release ’99 specification

Changes in Parlay/ETSI/JAIN specifications

	2.
	Align GCCS and MPCCS with JCC (significant changes in JCC)
	A new JAIN JCC 1.0 specification

Changes in Parlay/ETSI specifications

	3.
	JCC introduced as an alternative solution into ETSI/3GPP
	Two call control APIs in OSA Release ‘99

Options 3 are bad for business and are not desirable options.

Options 1 and 2 introduce knock-on effects that will have to be dealt with. Either way, this will result in changes to the Parlay/ETSI/JAIN specifications. If option 1 is the outcome of this meeting, we will have no choice other than to re-issue the OSA Release '99 specification. If option 2 is the outcome of this meeting, we will have to re-issue the JAIN JCC 1.0 specification.

Note: It is accepted that GCCS/MPCCS and JCC will never be perfectly aligned as GCCS/MPCCS is a 'semi-lowest common denominator' technology independent API while JCC is a technology dependent API. Where genuine technical solutions for aligning the APIs exist, then these shall be chosen in preference to providing a mapping function between these two APIs. However, in the case that moving from a technology independent API to a technology dependent API causes a difference between these APIs, then a mapping function is regarded as acceptable.

3
Scope and Time scales for the alignment

· The alignment process should not cause changes that will add functionality to Release '99

· Changes based upon technical merit should be accepted by OSA and JCC groups, and incorporated into their respective specifications and related documents, such as message sequence charts.

· The alignment should be completed by December 2000

· Release '99 should be completed by December 2000

4
Resolutions for the alignment

In determining the resolutions for alignment, ETSI/3GPP and JAIN undertook a high-level comparison of GCCS/MPCCS and JCC. ETSI/3GPP and JAIN used the ETSI GCCS and MPCCS draft documents (2000-09) as a baseline. Features that were different in JCC (0.8.4) were compared with the baseline; the benefits/drawbacks were discussed; and a resolution was arrived at. The result of this work is given below.

The mapping should be further investigated between the involved parties. The idea of adaptation layer is a first proposal in order to resolve the identified issues. As a start of further co-orperation we include the following figures 1, 2 and 3 for more detailed analysis.

	Number
	Issue
	Discussion
	Resolution

	1.
	Exceptions and results
	JCC uses exceptions, xCCS uses TpResults. This is a technology deviation from the UML and, as such, a simple mapping should be provided. Should the semantics be aligned and the format?
	Provide a mapping rule from the technology independent UML API to the technology dependent Java API. .

The CORBA IDL as produced by 3GPP/ETSI also uses exceptions. The difference between the 3GPP/ETSI IDL and JCC is the definition of exception causes.

The same granularity of exceptions should be used for both CORBA IDL and Java, which should then result in no need to map between the two technologies.

	2.
	Return parameter and out parameter
	JCC uses the return parameters to pass results while xCCS uses a single 'out' parameter. This is a technology deviation from the UML and, as such, a simple mapping should be provided.
	Provide a mapping rule from the technology independent UML API to the technology dependent Java API.

	3.
	SessionIDs
	JCC doesn't use SessionIDs as this is not in line with the Java concepts of OO; xCCS does permit the use of sessionIDs for systems that may encounter scaleability issues. This is a technology deviation from the UML.
	State that when going from the technology independent UML API to the technology dependent Java API, sessionIDs are removed. The performance / scalability issues will be dealt by using other Java technology techniques.

	4.
	Event listeners and callbacks
	JCC uses event listeners as they align with the way events are dealt with in Java. xCCS uses callbacks. This is a technology deviation from the UML and, as such, a simple mapping should be provided.
	Provide a mapping rule from the technology independent UML API to the technology dependent Java API.

The same mapping rule should be applied for both CORBA and Java technology instantiations. For example, CORBA should be encouraged to use the event listener model where necessary as it has shown to be more flexible.

	5.
	Synchronous methods
	JCC uses synchronous method calls, xCCs uses a mixture of synchronous and asynchronous (*Res) method calls. Asynchronous methods reduce thread usage across the API, however, the synchronous/ asynchronous mix makes the API more difficult to understand and use. Thread management in Java makes synchronous method calls simple. This is a technology deviation from the UML and, as such, a simple mapping should be provided. Note: JCC deals with asynchronous behavior though the use of event listeners.
	Provide a mapping rule from the technology independent UML API to the technology dependent Java API.

	6.
	Answer method
	In JCC, the connection interface has a CTI-like answer method to allow the application to connect to a party. xCCS currently solely follows a third-party model, so does not permit this. End point applications are currently out of the scope of Parlay so it is suggested that this method is not used.
	Rather than put the answer method in a non-Parlay extension package on its own, indicate in the mapping document why this method has been added and that it doesn’t map to an equivalent CORBA method.

	7.
	Event generation
	In JCC providers can only generate provider events; calls can only generate call events; and connections can only generate connection events. In xCCS, CCMs can generate CCM, call and call leg events; call can generate call and call leg events; and call legs can generate call leg events. Duplication of event generation by several interfaces causes redundancy in the specification and may confuse application developers. For example, in certain circumstances, call leg events will come from the CCM, while in others they will come from the call or call leg. JCC providers can generate callLoadControlEvents. These events should be incorporated as standard provider events.
	Change JCC so that callLoadControlEvents are incorporated as standard provider events.

The call manager generates the static trigger events via a callEventNotify() method while the Call and CallLeg objects generates the subsequent dynamic armed events. 3GGP/ETSI have seriously considered that no call and callLeg object event notifications will overlap in the multiparty call control. This results in a thin stateless adaptation layer to deliver events to corresponding listener’s.

	8.
	Calls without call legs
	JCC uses connection objects† even for 2-party calls, GCCS provides a simple interface that does not support call leg objects
	3GPP/ETSI will focus on the multiparty call control for alignment with JAIN. (see also point 7 for the handling of events) The following options are considered regarding GCCS :

i)Leave GCCS as it has been defined presently, but let e.g. multi-party no longer inherit from the GCCS. A different inheritance tree is created.

ii) Change GCCS such that inheritance can be maintained.

	9.
	Call legs or Connections
	JCC refers to call legs as connections. This terminology aligns with CTI terminology.
	The reference of xCCS call legs to connections can be handled in the adaptation layer.

	10.
	Event filters
	JCC passes an event filter to the event source to indicate what events the listener requires, and whether the event should be blocking or not. This appears to be a more flexible way of requesting events than using the eventCriteria/ responseRequested mechanisms provided by xCCS in that you can specify blocking/ non-blocking events. However, event filters only work on addresses within the context of the provider, call or connection whereas xCCS works on a range of originating/ destination addresses.
	Change JCC event filters to specify originating and destination addresses.

The trigger criteria normally required can be handled by the eventCriteria mechanisms and be mapped to the standard JCC filters. Apart from that customized filters could be used at the application side.

The event criteria in Parlay could be looked at and if the standard filters in JCC do not cover any scenario then

standard event filters to cover this scenario can be proposed in JCC.

Deploying the customized filters at the network side would make the checking impossible at the network side. This also applies to the regular expressions for standardized filters.

Clarification is needed here.

	11.
	Pre- and post-conditions
	JCC documents pre- and post-conditions for each method call in its specification. This helps with the clarity of the specification.
	Since the state transition diagrams are specified in the CCS the pre- and post-conditions for the methods are covered. Investigations will be performed whether the treatment of values and exceptions can be handled by notes to be included into the STD’s.

Some of the methods affect more than one object and these would have to be clarified since the FSMs do not address this scenario.

	12.
	Address interface
	JCC includes an address interface. xCCS uses an address data type, which would be mapped into a Java object.

xCCS uses a specific address while JCC uses a generic address.
	. JCC's addresses has less information than in the PARLAY TpAddress parameter. The necessary extensions must be worked out by JAIN to ensure alignment. JAIN should also consider the remote addresses, and the JOINT activity would like to be informed about the on-going discussions. .

	13.
	Multiple event handling for the same detection point.
	
	3GPP/ETSI considered already to support of the multiple point of control paradigm. This results in that the adaptation layer will ensure delivering of the events to the corresponding listeners

Clarification and example required.

	14.
	Point of view (pov): ;
	JCC models the application as well as the network pov
	Parlay can terminate or maintain the application relationship if it desires so. This is considered as an advantage, since less resources are occupied (especially in the case of IN).
JCC always maintains the relationship, which is related to the fact that JCC does not distinguish between static and dynamic events.

Another aspect of the Point of View is the visibility of full call topology. The extent to which this is true in reality depends on the underlying network.

3GPP/ETSI/Parlay will consider the applicability of a notification of the addition of a call leg to the call.
The issue of allowing control versus only monitoring was raised.

Example required here.

	15.
	Connection/ Call leg FSM
	
	3GPP will consider the alignment of the call leg STD in accordance with the JAIN FSM.

A number of points were raised with regard to the JCC connection FSM namely:

-separation of call mid call events/ suspend are advisable. Mid call events may also be valid during alerting.

JAIN to consider introducing these into the JCC FSM.

-distinction between abandon and disconnect will be considered.

-in JCC “call delivery” is considered as a super-state when compared to the INAP O_BCSM states.

-the failed JCC state is not unique e.g it contains busy, no answer, not accessible.

These are the causes due to which the failed state is reached.

-what conditions are covered by the unknown state.

Currently, any condition causing the implementation to be unable to determine the current state of the Connection (such as in case of a distributed call, the implementation not being aware of the state of the distant Connection object) causes the object to be in the UNKNOWN state. Once the state is known, the object’s FSM traverses to the relevant state.

	16.
	Package separation: .
	JCC would prefer to put charging and overload control into separate packages or interfaces
	3GPP/ETSI and JAIN will consider to put charging and overload control into separate packages or interfaces. Linkage with the state transitions behavior with regard to the separation will be further investigated.

The following figures represent example environments where it is advantageous to have some sort of understanding of how to map between Parlay and JCC.

Figure 1 represents a typical Parlay gateway communicating with two separate environments. The first terminates at a Parlay only environment. The second implements a JAVA environment behind the interface. Here the proxy represents the terminating parlay environment and it is the thin line between the Proxy and the JCC app that provides the necessary mapping functionality.

Figure 2 is the reverse of figure 1. Here the gateway and the interface to the two terminating ends runs a JAVA protocol implementing the JCC. In this case the thin line between the Proxy and the JCC Parlay Box represents the necessary mapping functionality.

Figure 3 should be used in conjunction with point 8 in the table above. It represents a possible new modeling view of the inheritance hierarchy of the Parlay Call control Interfaces. This view was drawn up as one of many possibilities of solving the problem of interworking between Parlay and JCC.

[image: image1.wmf]Parlay Gateway

PROXY

Parlay JCC

JCC

App

Parlay

App

Figure 1
[image: image2.wmf]JCC Gateway

PROXY

JCC_Parlay

Parlay

App

JCC

App

Figure 2
[image: image3.wmf]Ip Service

GCCS

MPCC

MMCC

CCC

CH

CH

LC

LC

LC

CH

•

Add ability for mid-call events

•

cannot receive mid-call events from ‘B’ party

Advantages to

seperation

•

Removes convenience functions from MPCC

•

Aligns with JCC (use MPCC only)

•

minimizes changes to 3GPP

•

Adds service capabilities available to 2 party calls

•

Charging and load control packages are available to

MPCC, MMCC and CCC.

Figure 3

