Error! No text of specified style in document.
3
Error! No text of specified style in document.

8 General Guidelines

The GUP architecture has identified three kinds of entities: (1) client applications, (2) GUP servers and (3) data repositories [point to stage 2]. For the communication between these entities, two interfaces have been defined, namely Rp and Rg.

Communication between GUP entities is performed via the exchange of messages expressed as XML documents. XML documents should include the XML declaration with the version and encoding attributes. The XML documents shall be well-formed and valid. The W3C XML Schema [3,4] is used in GUP to define the structure of valid XML documents.
(once we talk about LA, all of this is redundant).
The implementation of the Rp and Rg interfaces follows the Liberty Alliance Data Service Template specification [Liberty Alliance].

From a Liberty Alliance point of view, GUP servers and data repositories will play the role of Liberty Alliance data services.

8.1 Reusing Liberty Alliance DST

Liberty Alliance Data Service Template proposes a framework for web services that offer access to data in general. In the context of GUP, the data services should be restricted to GUP user profile data.

The Data Service Template defines: (1) some abstract definitions about messages that are sent and received by the web service and (2) some guidelines regarding the structure of the data offered through the service.

More concretely, the Liberty Alliance Data Service Template specification offers a set of incomplete XML schemas with placeholders (for data types) that need to be filled based on the nature of the data offered by the data service.

In the context of GUP, we will:

· fill the place holders with some GUP specific data types, and

· add some new messages that are not offered by the Data Service Template specification

The details of this instantiation of the Liberty Alliance Data Service Template are summarized in the DST check list presented in the Annex E.
The guidelines and naming conventions recommended by LA when using XML and XML Schemas are directly applicable to GUP.

8.2 Guidelines for XML usage

WS001: Rewrite this chapter to align with Liberty DST.

8.3 GUP Specific Naming and Namespaces

The namespace URI for GUP specific XML documents is a 3GPP specific namespace identifier 'http://3gpp' followed by a namespace specific string starting with 'gup' followed by 'ns' and a sub-namespace specific for a certain namespace. (The 'ns' is used to grouping instances of the namespace type of URIs together. Other types of usage of URIs may be defined later.) The sub-namespaces are defined in GUP specifications and/or implementations.

Thus the syntax of the URI for all GUP specific namespaces is: 'http://3gpp/gup/ns/<sub-namespace>'.

The sub-namespace for the GUP Component specific Profile Components consists of the common 'comp' part followed by the component name.

The following namespaces are defined for GUP:

· GUP Profile:

'http://3gpp/gup/ns/profile'

· Common Attributes:
'http://3gpp/gup/ns/common/<name>'

· GUP procedures:

'http://3gpp/gup/ns/proc/<name>'

· GUP Components:

'http://3gpp/gup/ns/comp/<component name>'.

For example an HSS related component URN could be 'http://3gpp/gup/ns/comp/IMSSubscription'.

Editor’s note: This section should go into 23.003 when the specification is getting to a stable condition.

WS002: Liberty is using different syntax??? Check this and change this chapter.

8.4 GUP Profile schema

If the Liberty Alliance data service template specifies the interfaces that can be used to access this data, it does not specify the exact nature of the data. In the context of GUP, we need to explicitly define what the subscriber profile data consists of.

3GPP GUP defines a global schema for the XML content of the user profile.

This schema is unique and the same for every user. The schema is defined using W3C XML schemas.

The GUP user profile consists of profile components.

Editor’s note: there are many manners to generate the schema for Generic User Profile. But irrespectively of the manner (e.g. one single XML schema vs many schema nested within each other), the schema can always be transformed into a single "canonical" XML schema. A user profile will be a valid instance of this "canonical" schema.
There are more than one way to define the global schema.
Option 1: the global schema defines a single rooted XML document that is a valid instance of the global schema.
Option 2: the global schema consists of a set of sub-schemas, each with its own namespace. The schema defines a set a single rooted XML documents, each of them being a valid instance of one component defined by the schema.
We need to look at the pros and cons of both approaches in terms of: schema management and how this affects the applications. More precisely: applications should not have to worry about the whole schema, but only the parts they are interested in; when one schema component gets modified, only applications using this component should care about the change. [End of Editor’s note]

8.4.1 Guidelines for the construction of the profile schema

When designing the schema we want to achieve:

· Modularity

· Extensibility

· Readability

· Easy support for versioning

· Isolation (only applications concerned by the schema component should be affected)

The GUP schema will be produced in terms of UML class diagrams.
GUP components are defined using fully qualified UML classes.

Relationships between components are defined using UML associations.

A component belongs to a given UML package.

Packages can be nested.

Qualified names of UML classes correspond to their corresponding package hierarchies.

Figure 1 shows a possible example of GUP schema as a UML diagram.

[image: image1.png]e B

LB Top Levelviaws
¢ E130p7
& B our
& Byuss
8 Package ueniew H3s
B nss
B dentity
B private dentity
3 Loostion
=L

1 AddressBook

gi

3 catendar
3 100
gi Package Oveniew: Tobo

B Tovotem
8 Tovotis
& B Prsanca

B o

Figure 1: UML hierarchy for GUP schema

Note that multiple UML diagrams can be authored (e.g. by different working groups). Using the namespace hierarchies, they can easily be merged into a single diagram, as long as each package is managed by a single contributor.

From the UML diagram(s), an XMI file will be derived.

Note: XMI is an XML dialect defined by OMG and used to represent UML models.

From the XMI, we can derive the corresponding WXS schema for GUP using some stylesheet mechanisms.

The derivation will be done using the official 3GPP GUP stylesheets (XSLT, XQuery or another program).

These stylesheets will translate the UML model into one or more WXS schemas that match the various requirements (e.g. LA compliance, etc.).

Each application will also be able to derive the portion of the model it is interested in (e.g. presence application interested in the presence section of the schema).

The derivation mechanism is illustrated in Figure 2.

[image: image2.png]XMI -> WXS
transformer

g Ny

GLP components LA complient
as a UML model WS schemas for GUP

Figure 2: from UML to WXS

Editor’s note: the details of the stylesheet mechanism are left for further study.

8.4.2

	

·
·
·
·

8.5 Data Referencing Language

For referencing components, the GUP Component Language (GCL) shall be used.

The GCL is a subset of the XPath 1.0 language [XPath reference], as defined below

Editor’s note: we only use the name "GCL" as a way to avoid confusion. In the final version of this document, the name will be skipped or replaced.

Editor’s note: we need to define the LA name to identify the GCL for the discovery service. Probably something like: xpath-gup-gcl.

8.5.1 Language Syntax for GCL

The following subset of XPath shall be supported by GCL:

· only the child:: and attribute:: axis of XPath are supported

· predicates are supported

· expressions inside predicates only apply to attribute nodes or element nodes with no children

· expressions inside predicates shall be of the form "node <op> value" where <op> ranges over the usual string and arithmetic operators.

· boolean negation is supported

· ordinal predicates are supported (e.g. [1], [last()], [position()<=2])

· the union operator ("|") can be used at any level of nesting (not permitted for XPath 1.0, but OK with XPath 2.0)

Note: AND and OR are not part of the syntax because they can be emulated by already existing language constructs: A[exp1 AND exp2] corresponds to A[exp1][exp2]; A[exp1 OR exp2] corresponds to A[exp1] | A[exp2].

8.5.2 Semantics

The semantics of the GCL language can be defined as follows:

1. we evaluate the GCL expression on the document using the XPath semantics leading to a set of nodes
2. for each node in the set, we also include its descendants and its ancestors
This defines a new document, sub-document of the original document.
WS note: This will be moved to the GUP Data types section.

8.6 GUP metadata

The 3GPP Rp and Rg interfaces define the management of data and metadata for user profile components. For the sake of uniformity, Rp and Rg do not define special procedures for metadata management. Rather, we distinguish between user profile components (or data components) and metadata components.

We define two kinds of metadata components: access control metadata and mapping metadata. The definition of other metadata components (e.g. billing, etc.) is beyond the scope of this specification.

In the following definition, ResourceIDGroup and SelectType are defined by Liberty Alliance.

3GPP

