3GPP TSG CN WG4 Meeting #22
N4-040208

Atlanta, GA, USA, 16th – 20th February 2004
Source:
Lucent (Arnaud SAHUGUET)
Title:
TS 29.240, General Guidelines, Profile Schema.
Agenda item:
6.2
Document for:
Discussion and Approval
1 Introduction

This contribution clarifies further the query language used to reference parts of the GUP user profile.

The proposed modification concerns Section 6.

2 Discussion

The GUP user profile can be viewed as a virtual XML document, which is an instance of the corresponding GUP schema. We need to be able to reference some parts of this document for many purposes such as:

· definition of the GUP data stores that hold some parts of the data

· definition of some access control policies (user’s privacy)

· definition of some billing policies

· query/update/notify/subscribe methods in Rp/Rg

For all this purposes, we need to have a rich yet simple language. We now look at the various candidates for such a language.
2.1 XPath

XPath was the first query language for XML. It is widely used and is at the core of XSL-T. Liberty Alliance uses XPath to reference parts of the LA user profile.

The original goal of XPath is to return a set of nodes from an XML document. XPath is not actually a query language but rather a navigation language used to identify a set of nodes inside an XML document. Note that this is what we need here for GUP since we want to retrieve some nodes from the a GUP user profile.

XPath offers various navigation axis to navigate from one node to other nodes, e.g. parent, ancestor, child, descendant, preceding-sibling, next-sibling, etc. See Figure 1 for a pictural description of the various axis. XPath also offers a rich library of functions (boolean operators, arithmetic functions, string matching functions, etc.)

Note that most real life applications do not require the full set of XPath navigation axis. Note also that supporting the full XPath may generate added complexity for the implementation some GUP components and may also prevent some optimizations and reasoning that would lead to better performance and response time.

Some examples of XPath complexity:

/A/B/following::* returns all the nodes after all the B nodes that are children of the A nodes in the document

/A[B=”Arnaud SAHUGUET”]/B returns all the B nodes that are children of the A nodes such that the string value of B (obtained by serializing whatever in under B) is equal to “Arnaud SAHUGUET”.

It is therefore important to identify the parts of XPath that are needed, the ones that are not needed and also some functionalities that may be missing.

[image: image1.png]
Figure 1: XPath navigation axis.

Aspects that we do not need:

· preceding-sibling:: , following-sibling:: , preceding:: , following:: axis

· most of the functions of the language

Aspects that we do not really need:

· since the GUP schema is fixed, we do not need the descendant::. It can always be replaced by the a sequence of child:: axis navigations.

Aspects that are missing

In the context of GUP, the main limitation of XPath comes from the fact that XPath returns a set of nodes and not a document.

From a pragmatic point of view, using XPath it is not possible to return a subset of a GUP data component. Let us consider the hypothetical <addressBook> component inside the GUP profile and let us assume that our client application (e.g. click-to-dial application) needs to extract from GUP the name and the phone number of a given contact.

	<Gup>
…
 <addressBook>
 <contactItem>*
 <name/>
 <nickname/>
 <phone/>
 <fax/>
 <email/>
 <photo/>
 </contactItem>
 </addressBook>
…
</Gup>

Using XPath, the client application can either request:

· the entire contact entry for a given user using Gup/addressBook/contactItem[name=”Arnaud”]

· or just the name using Gup/addressBook/contactItem[name=”Arnaud”]/name
· or just the phone number using Gup/addressBook/contactItem[name=”Arnaud”]/phone
This becomes a concern when the client application needs to request multiple contact items because asking for Gup/addressBook/contactItem will return way too much information. Asking for two separate queries will return some <name> values and <phone> values, with no explicit correlations between them. There is no guarantee that the orderting of the names will match the ordering of the phones, not to mention the case where the name (or phone) value is missing.

See the companion document (.ppt) for better illustrative description of this issue.

To make a long story short, the problem with XPath is that it has been designed to identify nodes inside an XML document, not to return information. In the context of GUP, we need to access information, not just nodes.

2.2 XQuery

XQuery is the official language to query XML data. This is to XML was SQL is to relational data. XQuery is a very expressive and powerful query language that can be used to navigate, modify and restructure XML documents.

The shortcomings of XPath can be easily fixed using XQuery. To return the subset of the GUP profile that we need, we could write the following query.

	FOR $x IN Gup/addressBook/contactItem
RETURN
<Gup>
 <addressBook>
 <contactItem>
 $x/name, $x/phone
 </contactItem>
 </addressBook>
</Gup>

The main problem with XQuery is that it is a very complex language to implement. Choosing XQuery as the preferred language for the GUP API would force GUP servers to implement the language which is a major overhead. As of this writing there is no complete implementation of the W3C XQuery proposal.

2.3 Proposed alternative: XSquirrel

The right query language for GUP seems to be between XPath and XQuery. At Bell Labs, we are currently looking at an extension of XPath to address the issues mentioned above. As the proposal gets finalized, it will be submitted to W3C or OASIS for inclusion in either XPath or XQuery.

The key idea behind the extension is two-fold:

· return documents instead of nodes

· make it possible to project on certain attributes (using the # operator)

In the previous example, to return only the name and phone number of the contact entries in my address book, I could write the following query,

	Gup/addressBook/contactItem (name # phone)

returning an XML document of the following shape

	<Gup>
 <addressBook>
 <contactItem>
 <name/>
 <phone/>
 </contactItem>
 …
 <contactItem>
 <name/>
 <phone/>
 </contactItem>
 </addressBook>
</Gup>

The advantages of this approach is that we keep the structure of the GUP components while being able to extract only the relevant information. This is critical in the 3GPP context where devices have very limited bandwidth.
The syntax of the XSquirrel language can be defined as follows:

· only child:: and attribute:: axis are supported

· predicates are supported

· expression inside predicates only apply to attribute nodes or element nodes with no children

· usual arithmetic operators are supported

· boolean negation is supported

Note: AND and OR are not part of the syntax because they can be emulated by already existing language constructs: A[exp1 AND exp2] corresponds to A[exp1][exp2]; A[exp1 OR exp2] corresponds to A[exp1] # A[exp2].

Issues that need to be discussed:

· nested predicates

· ordinal predicates, e.g. [1], [last()]
Note: these restrictions are very similar to the ones proposed in N4-031192 (Nokia’s contribution in for CN4-21).
The semantics of the XSquirrel language can be defined as follows:

Syntactically, XSquirrel is a strict subset of XPAth with the exception of the “#” operator. From an XSquirrel expression, we derive the set of XPath expressions it consists of by distributing the “#” sign. For instance, Gup/addressBook/contactItem (name # phone) will result in 2 Xpath expressions: Gup/addressBook/contactItem/name and Gup/addressBook/contactItem/phone.

We can now define the semantics of XSquirrel on a given XML document as follows:

1. we expand the XSquirrel expression into a set of XPath expressions
2. we apply each expression on the document leading to a set of nodes
3. we glue the nodes based on their parent child relationships to obtain a sub-document of the original document
The so-defined semantics makes it easy to reuse any available implementation of the XPath language to implement XSquirrel.

3 Proposal

The following text and subclauses are proposed to be added to TS 29.240 clauses 5 and 6.

5 General Guidelines

5.1
Guidelines to XML usage

5.2 Naming and Namespaces

5.3 XML common attributes

5.4 Data Referencing Language

For referencing components we use subset of the XPath language (called XSquirrel).

Editor’s note: we only use the name “XSquirrel” as a way to avoid confusion. In the final version of this document, the name will be skipped or replaced.
The syntax of the XSquirrel language can be defined as follows:

· only child:: and attribute:: axis are supported

· predicates are supported

· expression inside predicates only apply to attribute nodes or element nodes with no children

· usual arithmetic operators are supported

· boolean negation is supported

Note: AND and OR are not part of the syntax because they can be emulated by already existing language constructs: A[exp1 AND exp2] corresponds to A[exp1][exp2]; A[exp1 OR exp2] corresponds to A[exp1] # A[exp2].
Issues that need to be discussed:

· nested predicates

· ordinal predicates, e.g. [1], [last()]
Note: these restrictions are very similar to the ones proposed in N4-031192 (Nokia’s contribution in for CN4-21).
· “#” operator to follow multiple paths at the same time

The semantics of the XSquirrel language can be defined as follows:

Syntactically, XSquirrel is a strict subset of XPAth with the exception of the “#” operator. From an XSquirrel expression, we derive the set of XPath expressions it consists of by distributing the “#” sign. For instance, Gup/addressBook/contactItem (name # phone) will result in 2 Xpath expressions: Gup/addressBook/contactItem/name and Gup/addressBook/contactItem/phone.

We can now define the semantics of XSquirrel on a given XML document as follows:

4. we expand the XSquirrel expression into a set of XPath expressions
5. we apply each expression on the document leading to a set of nodes
6. we glue the nodes based on their parent child relationships to obtain a sub-document of the original document
6
Profile Schema

6.1

6.3

1.
2.
3.
4.

5.
6.
7.
8.
9.
10.
a)
b)

6.4

The GUP user profile of a given subscriber is represented as an XML document (called the GUP document).

Note: in most cases, the user profile corresponds to a virtual document since it consists of various “pieces” spread across the network. But when we “glue” them together, we obtain such a document.

The structure of this XML document is defined according to a schema (called the GUP schema), using one XML schema language.

Note: it is totally conceivable that more than one schema language be used to describe the GUP schema, as long as the various descriptions are semantically equivalent (i.e. they define the same set of valid documents and invalid documents). The choice of the best schema language for the GUP schema is beyond the scope of this specification. Issues such as expressivity, standardization, market acceptance and performance (e.g. how much time and resources needed to validate a document) should be taken into account.

A GUP user profile consists of one or more profile components.

Components should include some common attributes such as timestamp (see Liberty Alliance Data Services Template document, section on “Common Attributes”).

Note: profile components are needed for multiple purposes such as:

· physical storage: where the component is physically stored

· access control: who can access the component, for what purpose, etc.

· billing: how much should be charged for the access of the component

Therefore, it is important to be able to define multiple “views” over the same user profile which may results in different component sets. For instance, the “slicing” into components of the user profile for storage may be different from the slicing into components of the user profile for access control. Given this, it is not possible to represent the components as part of the GUP schema.
Components are defined as sub-documents of the GUP document using the XSquirrel language.

The physical storage of the GUP document is defined as mapping between components and GUP Data Repositories, expressed using the XSquirrel language.

The access control for for the GUP document is defined as access control rules over components, expressed using the XSquirrel language.

Component definition for physical storage

For a given user, the physical storage is defined as a mapping between one component and a GUP Data Repository. A components is defined using the XSquirrel language.

Example:

	UserID = sahuguet
	/MyGup/AddressBook
	(
	Data Repository 1

	UserID = sahuguet
	/MyGup/(HLR-info # Presence)
	(
	Data Repository 2

The mapping states that for user sahuguet, the AddressBook sub-tree of the GUP document is located at Data Repository 1, while the HLR-info and the Presence subtrees are located at Data Repository 2.

Note: in case of redundancy, the same component can be mapped to multiple Data Repositories. For synchronization purposes, we will need to identify which repository plays the role of the master (For Further Study).

Component definition for access control

For a given user, the set of access control rules is defined as 5-uple containing: identity of the requestor, identity of the requestee (or the owner of the data), component, condition (e.g. time of the day, purpose of the request, etc.) and action (e.g. read, write, modify).

Editor's Note: the exact details of the how the requestor is defined is left for further study. Users should be able to define access control rules based not only on requestor identities but also on roles (e.g. family member).

Editor's Note: the exact details of how conditions are defined is left for further study. One possible generic solution is to use the XACML language. We could also imagine having a more restricted condition language with concepts such as “time of the day”, “caller network”, “purpose of the call”, etc.

Example:

	requestor
	requestee
	component
	condition
	action

	Family
	UserID = sahuguet
	/MyGup/AddressBook/Entry[@type=”public]
	true
	read

	secretary
	UserID = sahuguet
	/MyGup/(Calendar # AddressBook/Entry[@type=”business”])
	9am-6pm
	read

	friends
	UserID = sahuguet
	/MyGup/Presence
	true
	read

Note: for convenience reasons, it might be useful to be able to associate a short name to a given component. See Liberty Alliance Liberty ID-SIS Personal Profile Service Specification, Version 1.0 (option keyword).

