3GPP TSG CN WG4 Meeting #20
N4-030780
Sophia Antipolis, FRANCE, 25th – 29th August 2003
Source:
Nortel Networks

Title:
GTP Path Failure Recovery

Agenda item:
6.6

Document for:
Discussion

1. Introduction
Previous CN4 meetings have devoted considerable amounts of discussion to the problems associated with deletion of Dangling PDP Contexts. The last time this was discussed, the resultant change was CR 294r1 to 29.060 describing an enhancement to Update PDP Context Req/Res to allow devices to use Update PDP Context (with no actual Update required) to check if the Context is still active. However, this solution only is implemented after a GSN ‘detects that a Context has been inactive for some time’.

In a situation where a path between a SGSN and a GGSN has gone down, this mechanism will result in an influx of Update PDP Context Req messages being sent by the GGSN. An alternative solution to this particular case would be to allow nodes to indicate when they think that the path between them has gone down.

2. Standards details

Within 29.060, the following text is included on Path Failure (section 11.2).

‘A path counter shall be reset each time a response is received on the path and incremented when the T3-RESPONSE timer expires for any message sent on the path. The path shall be considered to be down if the counter exceeds N3-REQUESTS. In this case, the GSN or RNC may notify the Operation and Maintenance network element. GTP shall also notify the upper layer of the path failure, so that PDP contexts associated with this path may be deleted.’

One mechanism for detecting if a path is down is for nodes to support the sending of Echo Requests, see 7.2.1 and 7.2.2 from 29.060 below. However, Echo Request is optional (although Echo Response is mandatory on GSN’s).

7.2.1
Echo Request

An Echo Request may be sent on a path to another GSN or RNC to find out if the peer GSN or RNC is alive (see section Path Failure). Echo Request messages may be sent for each path in use. A path is considered to be in use if at least one PDP context uses the path to the other GSN. When and how often an Echo Request message may be sent is implementation specific but an Echo Request shall not be sent more often than every 60 s on each path.

A GSN or RNC shall be prepared to receive an Echo Request at any time and it shall reply with an Echo Response. A GSN or RNC may optionally send Echo Request messages.

The optional Private Extension contains vendor or operator specific information.

Table 2: Information Elements in an Echo Request

	Information element
	Presence requirement
	Reference

	Private Extension
	Optional
	7.7.46

7.2.2
Echo Response

The message shall be sent as a response to a received Echo Request.

The Recovery information element contains the local Restart Counter (see section Restoration and Recovery) value for the GSN that sends the Echo Response message. For GTP-U the Restart Counter value shall not be used, i.e. it shall be set to zero by the sender and shall be ignored by the receiver.

The GSN that receives an Echo Response from a peer GSN shall compare the Restart Counter value received with the previous Restart Counter value stored for that peer GSN. If no previous value was stored, the Restart Counter value received in the Echo Response shall be stored for the peer GSN.

The value of a Restart Counter previously stored for a peer GSN may differ from the Restart Counter value received in the Echo Response from that peer GSN. In this case, the GSN that sent the Echo Response shall be considered as restarted by the GSN that received the Echo Response. The new Restart Counter value received shall be stored by the receiving entity, replacing the value previously stored for the sending GSN.

If the sending GSN is a GGSN and the receiving GSN is an SGSN, the SGSN shall consider all PDP contexts using the GGSN as inactive. For further actions of the SGSN refer to 3GPP TS 23.007 [3].

If the sending GSN is an SGSN and the receiving GSN is a GGSN, the GGSN shall consider all PDP contexts using the SGSN as inactive. For further actions of the GGSN refer to 3GPP TS 23.007 [3].

The optional Private Extension contains vendor or operator specific information.

Table 3: Information Elements in an Echo Response

	Information element
	Presence requirement
	Reference

	Recovery
	Mandatory
	7.7.11

	Private Extension
	Optional
	7.7.46

Whilst Echo Request allows devices to detect when the node that is being sent the Request is not receiving it, it offers no understanding of why the Response message is not being returned. It could be because the node has failed or because the path between the two nodes is down. If the node has failed then the active contexts between the two devices will be deleted on the failed device and the Recovery IE will include an incremented value of the Local Restart Counter. This increment will notify the other node that the device sending the Response has restarted and so the node receiving the response will be able to delete the contexts associated with the restarted node.

However, if it is the path between the two nodes that has gone down, when the path is restored, the device sending the Echo Response will not have incremented it’s Local Restart Counter (since it hasn’t restarted) and that node which sends the Echo Requests might well have deleted the associated contexts. As a result the contexts will be left dangling on the node sending the Echo Response.

[image: image1.wmf]PDP Contexts 1, …, n

PDP Contexts 1, …, n

Echo

Req

Echo

Res

(Restart = A)

GSN1

GSN2

PDP Contexts 1, …, n

(no traffic)

PDP Contexts 1, …, n

Echo

Req

X

PDP Contexts 1, …, n

Echo

Req

(N3)

X

PDP Contexts deleted

X

No PDP Contexts

Echo

Req

Echo

Res

(Restart = A)

PDP Contexts 1, …, n

(no traffic)

PDP Contexts 1, …, n

(no traffic)

PDP Contexts 1, …, n

(dangling)

This situation would also arise if;-

· neither node sends Echo Request messages and any other command from one node to the other fails N3 times and the sending node deletes the contexts

· either side sends Echo Requests, but only one side exercises the option to delete contexts after N3 failures.

3. Proposal

Nortel proposes that the definition of the contents of the Recovery IE be updated. Recovery IE is currently defined as ‘The Recovery information element indicates if the peer GSN has restarted. The Restart Counter shall be the value described in the section Restoration and Recovery’.

Currently the Restart Counter is a number associated with the node that is incremented and re-issued when the node restarts. Nortel would propose that it becomes a number associated with the Node and Path. Consider a GGSN (GGSN1) that is connected to SGSN1, SGSN2 and SGSN3 and supports this new definition of the Restart value. GGSN1 stores its local restart value associated with each SGSN in non-volatile memory, and stores the restart value it has received from each SGSN in volatile memory. SGSN1 and SGSN2 also support the new definition of Restart, but SGSN3 is a pre-R6 SGSN and supports the current definition. Similarly, GGSN 2 is connected to SGSN1, SGSN2 and SGSN3, but supports the current definition of Restart (see figure below). GGSN2 and SGSN3 store a single value in their non-volatile memory which is their local restart value and is only incremented when the node goes down. The values stored in the non-volatile memory of GGSN1, SGSN1 and SGSN2 are incremented individually if contact is lost with the respective node individually or are all incremented if the node itself goes down.
[image: image2.wmf]GGSN1

GGSN1

SGSN1

SGSN1

SGSN3

SGSN3

SGSN2

SGSN2

Non

-

volatile

a

b

c

Volatile

x

y

z

SGSN1

SGSN2

SGSN3

Non

-

volatile

a

b

c

Volatile

x

y

z

SGSN1

SGSN2

SGSN3

Non

-

volatile

z

z

Volatile

c

d

GGSN1

GGSN2

Non

-

volatile

z

z

Volatile

c

d

GGSN1

GGSN2

Non

-

volatile

y

q

Volatile

b

d

GGSN1

GGSN2

Non

-

volatile

y

q

Volatile

b

d

GGSN1

GGSN2

Non

-

volatile

x

p

Volatile

a

d

GGSN1

GGSN2

Non

-

volatile

x

p

Volatile

a

d

GGSN1

GGSN2

GGSN2

GGSN2

Non

-

volatile

d

d

d

Volatile

p

q

z

SGSN1

SGSN2

SGSN3

Non

-

volatile

d

d

d

Volatile

p

q

z

SGSN1

SGSN2

SGSN3

It should be noted that one important component of the current functionality is that the GSN has the option to delete the active contexts associated with a link if the link goes down. However, there is no way of communicating to the node at the other end of the link that this action has occurred. This proposal allows the nodes to exchange this information by setting the simple rule that the Restart value is only incremented by a node for a link if the contexts have been lost.
4. Analysis of Backwards Compatibility
With reference to the network configuration shown above, the following analysis of possible failure scenarios has been considered. The concept of ‘noticed’ and ‘not-noticed’ is used in this analysis. ‘Noticed’ means that the node has attempted N3 attempts of a GTP-C message without reply and so is of the opinion that the receiving node is unreachable. ‘Not noticed’ means that whilst the link between two nodes may be down, or the receiving node is out of commission, the node that would have sent the GTP-C messages to the receiving node has not sent any GTP-C messages in the period that the failure has occurred.
Link failure between GGSN1 and SGSN1

· If GGSN1 has noticed that the link is down, it may delete the contexts affected. If it does so, it updates Restart from 'a' to 'a+1' for the path to SGSN1 in non-volatile memory, sends the revised Restart to SGSN1 in the next available GTP-C message, and SGSN1 stores the revised value in volatile memory. If SGSN1 has not noticed that the link is down, upon receipt of the updated value of Restart, it deletes the contexts on that link. If GGSN1 has not deleted the contexts, it does not update its value for Restart related to that link in non-volatile memory.
· If SGSN1 has noticed that the link is down, it may delete the contexts affected. If it does so, it updates Restart from 'x' to 'x+1' for the path to GGSN1 in non-volatile memory, sends the revised Restart to GGSN1 in the next available GTP-C message, and GGSN1 stores the revised value in volatile memory. If GGSN1 has not noticed that the link is down, upon receipt of the updated value of Restart, it deletes the contexts on that link. If SGSN1 has not deleted the contexts, it does not update its value for Restart related to that link in non-volatile memory.
· If neither node has noticed that the link between them is down, no updates take place.
Link between GGSN1 and SGSN3 is down

· If GGSN1 has noticed that the link is down, it may delete the contexts affected. If it does so, it updates Restart from 'c' to 'c+1' for the path to SGSN3 in non-volatile memory, sends the revised Restart to SGSN3 in the next available GTP-C message, and SGSN3 stores the revised value in volatile memory. If SGSN3 has not noticed that the link is down, upon receipt of the updated value of Restart, it deletes the contexts on that link. If GGSN1 has not deleted the contexts, it does not update its value for Restart related to that link in non-volatile memory.
· If SGSN3 has noticed that the link is down, it may delete the contexts affected. However, because SGSN3 is not supporting the new definition of Recovery IE, it does not update ‘z’ and so does not have a mechanism to inform GGSN1 that the contexts associated with the link have been deleted. If GGSN1 has not noticed that the link is down and SGSN3 has deleted the associated contexts, the contexts will be left dangling on GGSN1 (this is the behavior of a GSN according to standards as they stand today).
· If neither node has noticed that the link between them is down, no updates take place.
Link between GGSN2 and SGSN1 is down

· If GGSN2 has noticed that the link is down, it may delete the contexts affected. However, because GGSN2 is not supporting the new definition of Recovery IE, it does not update ‘d’ and so does not have a mechanism to inform SGSN1 that the contexts associated with the link have been deleted. If SGSN1 has not noticed that the link is down and GGSN2 has deleted the associated contexts, the contexts will be left dangling on SGSN1.
· If SGSN1 has noticed that the link is down, it may delete the contexts affected. If it does so, it updates Restart from 'p' to 'p+1' for the path to GGSN2 in non-volatile memory, sends the revised Restart to GGSN2 in the next available GTP-C message, and GGSN2 stores the revised value in volatile memory. If GGSN2 has not noticed that the link is down, upon receipt of the updated value of Restart, it deletes the contexts on that link. If SGSN1 has not deleted the contexts, it does not update its value for Restart related to that link in non-volatile memory.
· If neither node has noticed that the link between them is down, no updates take place.
Link between GGSN2 and SGSN3 is down

· This is the same situation as current Path Failure procedures since both devices do not support the new definition of Recovery IE.
GGSN1 is down

· When GGSN1 comes back up it sends Recovery IE in next available GTP-C messages with Restart value a+1 to SGSN1, b+1 to SGSN2 and c+1 to SGSN3. Upon receipt of the updated Recovery IE values, the SGSNs delete contexts that were active on the links to GGSN1 if they have not done so already (see below).

· If SGSN1 and SGSN2 have noticed that there is no response from GGSN1, they may delete the contexts affected (note that they have no way of telling at the GTP-C layer whether GGSN1 is down or simply the link between themselves and GGSN1 is down, so it is still optional to delete the Contexts at this stage). If they delete the contexts they send x+1 and y+1 respectively in the next available GTP-C message. GGSN1 will already have ‘deleted’ the contexts (actually the contexts have been lost as a result of the restart).
· If SGSN3 has noticed that there is no response from GGSN1, it may delete the contexts affected (note that it has no way of telling at the GTP-C layer whether GGSN1 is down or simply the link between itself and GGSN1 is down, so it is still optional to delete the Contexts at this stage). However, because SGSN3 does not support the new Restart definition and associated functions, it does not increment the Restart value stored in its non-volatile memory.
· If SGSN1, SGSN2 and/or SGSN3 have not noticed that GGSN1 is down, ultimately the contexts will be deleted on these nodes since they will receive incremented Restart values from GGSN1 when GGSN1 comes back up.
SGSN1 is down

· When SGSN1 comes back up it sends Recovery IE in next available GTP-C messages with value Restart x+1 to GGSN1 and p+1 to GGSN2. Upon receipt of the updated Recovery IE values, the GGSN's delete contexts that were active on SGSN1 if they have not done so already (see below).
· If GGSN1 has noticed that there is no response from SGSN1, it may delete the contexts affected (note that they have no way of telling at the GTP-C layer whether SGSN1 is down or simply the link between itself and SGSN1 is down, so it is still optional to delete the Contexts at this stage). If it deletes the contexts it sends a+1 in the next available GTP-C message. SGSN1 will already have ‘deleted’ the contexts (actually the contexts have been lost as a result of the restart).
· If GGSN2 has noticed that there is no response from SGSN1, it may delete the contexts affected (note that it has no way of telling at the GTP-C layer whether SGSN1 is down or simply the link between itself and SGSN1 is down, so it is still optional to delete the Contexts at this stage). However, because GGSN2 does not support the new Restart definition and associated functions, it does not increment the Restart value stored in its non-volatile memory.
· If GGSN1 and/or GGSN2 have not noticed that SGSN1 is down, ultimately the contexts will be deleted on these nodes since they will receive incremented Restart values from GGSN1 when GGSN1 comes back up.
GGSN2 is down
· When GGSN2 comes back up it sends Recovery IE in next available GTP-C messages with Restart value d+1 to SGSN1, SGSN2 and SGSN3. Upon receipt of the updated Recovery IE values, the SGSNs delete contexts that were active on the links to GGSN2 if they have not done so already (see below).

· If SGSN1 and SGSN2 have noticed that there is no response from GGSN2, they may delete the contexts affected (note that they have no way of telling at the GTP-C layer whether GGSN2 is down or simply the link between themselves and GGSN2 is down, so it is still optional to delete the Contexts at this stage). If they delete the contexts they send p+1 and q+1 respectively in the next available GTP-C message. GGSN2 will already have ‘deleted’ the contexts (actually the contexts have been lost as a result of the restart).
· If SGSN3 has noticed that there is no response from GGSN2, it may delete the contexts affected (note that it has no way of telling at the GTP-C layer whether GGSN2 is down or simply the link between itself and GGSN2 is down, so it is still optional to delete the Contexts at this stage). However, because SGSN3 does not support the new Restart definition and associated functions, it does not increment the Restart value stored in its non-volatile memory.
· If SGSN1, SGSN2 and/or SGSN3 have not noticed that GGSN2 is down, ultimately the contexts will be deleted on these nodes since they will receive incremented Restart values from GGSN2 when GGSN2 comes back up.
SGSN3 is down

· When SGSN3 comes back up it sends Recovery IE in next available GTP-C messages with value Restart z+1 to GGSN1 and GGSN2. Upon receipt of the updated Recovery IE values, the GGSN's delete contexts that were active on SGSN3 if they have not done so already (see below).

· If GGSN1 has noticed that there is no response from SGSN3, it may delete the contexts affected (note that they have no way of telling at the GTP-C layer whether SGSN3 is down or simply the link between itself and SGSN3 is down, so it is still optional to delete the Contexts at this stage). If it deletes the contexts it sends c+1 in the next available GTP-C message. SGSN3 will already have ‘deleted’ the contexts (actually the contexts have been lost as a result of the restart).
· If GGSN2 has noticed that there is no response from SGSN3, it may delete the contexts affected (note that it has no way of telling at the GTP-C layer whether SGSN3 is down or simply the link between itself and SGSN3 is down, so it is still optional to delete the Contexts at this stage). However, because GGSN2 does not support the new Restart definition and associated functions, it does not increment the Restart value stored in its non-volatile memory.
· If GGSN1 and/or GGSN2 have not noticed that SGSN3 is down, ultimately the contexts will be deleted on these nodes since they will receive incremented Restart values from GGSN1 when GGSN1 comes back up.
5. Conclusion

By changing the definition of, and the conditions for the incrementing of Restart value, many situations where PDP contexts may be left dangling following path failure can be avoided. The changes that are proposed herein result in no compatibility issues with GSN’s that do not support the new definition of Restart. Hence it is proposed that CR xxx (N4-030xxx) to 29.060 and CR yyy (N4-030yyy) to 23.007 are approved.
