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1. BACKGROUND

The background for the issue of this document is presented in tdocs N3-99390 and N99403.

2. Proposed solution

The 3G MSC supports the ATM/TDM interworking providing a 64 kbit/s circuit switched connection towards the 2G MSC IWF  For the T bearer services where the user rate is 64 kbit/s, there is no rate adaptation on the TDM link. The payload of the AAL2, which is the Iu UP payload assuming that the transparent mode of the Iu UP is used, is transported directly on a 64 kbit/s timeslot on the TDM link. The case of a transparent bearer service at 56 kbit/s is handled in the same manner since the rate adaptation betweenn 56 and 64 kbit/s is done at the MS and at the remote side, or at the border betwen the UDI and RDI networks, i.e. it is transparent to the CN.

For other T cases and all NT cases, it is proposed to use the protocol stack depicted in Figure 1. The AAL2 protocol including the SSSAR layer is terminated in the 3G-MSC. The payoad of the AAL2, i.e., the Iu UP frames are relayed from/to the TDM link using HDLC flags as frame delimiters. The Iu UP frames are transmitted between the RNC and the 2G-MSC. 
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Figure 1 Protocol stack
3. Analysis of the adequacy of the proposal

The overhead caused by bit stuffing does no cause any problem for any of the T cases. The maximum bit rate is 33,6 kbit/s. In this case, each Iu frame contains 42 octets or 336 bits and the transmission period is 10 ms. The maximum number of stuffing bits is 336/5=67. In the worst case there is a total of  336+67 = 403 data and stuffing bits. In 10 ms, 640 bits may be transmitted on a 64 kbit/s link, so there is sufficient capasity for flags between each frame.

The only critical case is the one of 57.6 kbit/s NT. A closer analysis is required in this case.

We will assume that the Iu UP frame requires three additional octets. The total Iu UP frame, which is transmitted every 10 ms, is 75 octets = 600 bits long, consisting of 3 Iu UP header octets and 72 RLP frame octets.  This is a valid assumption if the Iu UP is to be used in support mode in order to provide rate control. Between each frame there has to be at least one flag. This leaves room for 640-(608) = 32 bits for bit stuffing. In the worst case one will need 600/5=120 stuffing bits, so there is a clear risk that the bandwidth of 64 kbi/s may be insufficient. However, the worst case is not a realistic assumption.

First assume that the 75 octets are fully random, i.e., each bit is has an equal probability for having the value 0 and having the value 1, and that this probability is independent of the value of the other bits in the frame. Although this assumption does not correspond to the real situation, it provides an initial model for assessing the bit stuffing overhead. 

Figure 2 shows the cumulative distribution of the number of stuffing bits required. The distribution is explained in Annex A. This figure shows that the probability of exceeding 32 stuffing bits is very low. (The actual value is of the order less than 10-9 .) For all practical purposes it can be regarded as insignificant. 
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Figure 2 Cumulative distribution of stuffing bits in a random 584 bit frame

However, the assumption that the Iu UP frame is completely random is not always realistic. The end users may be sending long sequences of 1s filling the RLP informatin field with ones. Also, the L2R PDUs may contain few data octets and, depending on implementation, their remaining part may be filled with ones. However, this may be amended by:

For NT data, use a buffer at the 3G MSC the size of one Iu UP frame. When occasionally full, flush it, thereby discarding an RLP frame to be recovered by the RLP protocol. As an additional messure one may discourage the use of ones as fill in L2R PDUs in the specifications.

4. Advantages of the proposed solution

The proposal is very simple to implement. Flag stuffing is widely used and often supported by HW. It is  already available for existing services in the IWF.

There is no need to synchronise the TDM link. The delay caused by this rate adaptation corresponds to the transmission time of one flag, i.e., 8/64000 s= 125 (s. This is particullarily important for the T cases.

Annex A

Distribution of the number of stuffing bits required for a random frame.

The data transparency overhead of flag stuffing cannot be calculated without making certain assumptions. We will here assume that the frames are random, that is, the value of each bit is independent of the value of all other bits, and has an equal probability for 0 and 1. 
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Cumulative distribution of stuffing bits in a random 600 bit frame







0







0,1







0,2







0,3







0,4







0,5







0,6







0,7







0,8







0,9







1







0







1







2







3







4







5







6







7







8







9







10







11







12







13







14







15







16







17







18







19







20







21







22







23







24







25







26







27







28







29







30







31







32







Exact distribution







Poisson approximation












_1003270773.unknown

_1003298571.unknown

_1003270305.unknown

_1003270490.unknown

_1003269698.unknown

_1003269139.unknown

_1003269593.unknown

_1003268968.unknown

_1003265544.unknown

_1003266001.unknown

_1003266193.unknown

_1003268688.unknown

_1003266063.unknown

_1003265821.unknown

_1003265232.unknown

_1003263747.unknown

_1003263936.unknown

_1003264344.unknown

_1003264674.unknown

_1003264797.unknown

_1003264475.unknown

_1003264250.unknown

_1003263890.unknown

_1003263921.unknown

_1003263873.unknown

_1003263515.unknown

_1003263676.unknown

_1003263710.unknown

_1003261830.unknown

_1003261991.unknown

_1003263341.unknown

_1003262301.unknown

_1003263082.unknown

_1003263204.unknown

_1003262946.unknown

_1003262143.unknown

_1003261925.unknown

_1003261621.unknown

_1003258298.unknown

_1003260790.unknown

_1003261318.unknown

_1003258930.unknown

_1003259183.unknown

_1003258452.unknown

_1003258552.unknown

_1003258355.unknown

_1003258240.unknown

