ITU - Telecommunication Standardization Sector

Temporary Document 4/11-38R1

Study Group 11 (WP4/11)

Geneva, 1 – 19 March, 1999

Text available only in) E
Document addressed to WP4/11

Question(s):
22/11
SOURCE*: Co-Editor of Q.1238
TITLE:
Q.1238.7 - SCF-CUSF interface (output from March 1999)
--

 *contact point Co-editor K. Sahara (NTT)

 (tel +81 422 59 7603 fax +81 422 59 4310 email Sahara.Kouji@nslab.ntt.co.jp)

This document is an output from March 1999 meeting and clean-up version.

Revised Contents:

1.
T
ASN.1 modules
Add the following comment for OCTET STRING type parameter for which the internal coding is left open : « Its content is network operator specific. The internal coding of this parameter can be defined using ASN.1 and the related Basic Encoding Rules (BER). In such a case the value of this parameter (after the first tag and lenght information) is the BER encoding of the defined ASN.1 internal structure. The tag of this parameter as defined by ITU-T is never replaced. ».

It is to avoid inconsistencies noticed between different implementations.
Done

2. 2
T
ASN.1 modules
Add extension marker to SEQUENCE type, for both data type level or OPERATION ARGUMENT level.

It is in order to secure forward comparability.
Done

3.
T
ASN.1 modules
Add error « UnknownLegID » for operations with a legID parameter. where missing (e.g. RequestReportUTSI, PlayAnnouncement).
[Editor note: This error should not be added to RRBCSM, RNCE to allow event arming to be requested prior to creation of new leg with Connect e.g. in a multi call segment CSA.).
Done

(RRBCUSMEvent, error mapping table is also modified)

4.
T
ASN.1 module

/Q1238-7
Import MiscCallInfo in the SCF/CUSF operation/argument module
Done

5.
T
ASN.1 module

/Q1238-7
Add a « OPTIONAL TRUE » after the ContinueAssociationArg in the continueAssociation operation definition. It is in order to avoid an empty SEQUENCE
Done

6.
T
ASN.1 module

/Q1238-7
Boundary indication for imported operations is missing
Done

7.
T
CUSF AE

/Q1238-7
For « er7 » add « or monitoring duration last EDP expired »
Done

8.
T
CUSF AE

/Q1238-7
In the description of the CUSF FSM, for the state Waiting For Instruction, replace the first sentence with « This state is entered from the Idle state, as indicated above (transition er1 and er10) on sending an InitialAssociationDP, on receiving an InitiateAssociation or from the « Monitoring » state on detection of an EDP-R »

Done, but not only for the Generic option, DP specific option is also added.

9.
T
x.x.1.1
/Q.1238-7
InitialAssociationDP

USI Service indicator parameter rephrase text

‑
USIServiceIndicator:
It indicates the Service Logic requesting the UTSI information element. It may be used as a Triggering criterion at the CUSF level.

Align text with text used in IDP (indicate ‘based on trigger criteria’)
Done

10.
T
x.x.1.1
/Q.1238-7
InitialAssociationDP
Note Case2 Too restrictive restrictions.
Replace last sentence with proposed new text i.e. describe that USIServiceIndicator and USIInformation are applicable and that cUApplication parameter shall not be used.

Case 2:
The service ASE is located in the SCF and the CUSF acts as a relay function between the user and the SCF. The SCF receives and may send USI information. In this case USIServiceIndicator and USIInformation are applicable. The parameter cUApplicationInd shall not be used.

Done

11.
T
x.x.2.1
/Q.1238-7
InitiateAssociation
After SCF Postconditions

Add text:”The SLPI shall send a “ContinueAssociation“ operation to request the CUSF to continue the call unrelated processing from the suspended DP.”
Done (keep as it is)

12.
E
x.x.2.1
/Q.1238.7
InitialAssociationDP
CUSF Postcondition
Note: In the text of the note replace word ‘by’ with ‘to’ (i.e. to the SCF)
Done

13.
E
x.x.1.1
/Q.1238.7
InitiateAssociation procedure
UsiServiceIndicator parameter
Wrong text, Replace text to
‘ The parameter indicates the Service Logic which provides the STUI information’.
USIInformation parameter

Change words ‘SSF level’ to ‘CUSF level’
Done

Followings are revised contents from the SanDiego input.

14

all
Change “information flow” to “message” or “operation”
Done

15

all
Change “CS2” to appropriate word, e.g. “CS3”
Done

16

1
Add the Introductory text as required in Q22 editors meeting report
Done

17

1.2
Remove some texts for simplifying.
Done

18

1.3
Add CUSF model texts and a figure from Part 1
Done

19

1.4
Change the “CUSF” to “CCF” for placing BCUSM in CCF
Done

20

1.4.3
Change the trigger classification as required in Q22 editors meeting report
Done

21

1.4.3
Remove the Note 1, which is not needed.
Done

22

1.4(old)
Remove the section “Description of Relationship Model”, which is not needed.
Done

23

1.5
Move the section “Modelling and ROSE APDU Handling” from PART1
Done

24

2.1
Add an SCF FSM structure
Done

25

2.2
Add an SCME FSM regarding ActivityTest
Done

26
E
2.3
Add a text of the CUSF FSM instance creation on SCF instruction
Done

27

4
Move the OCCUUI related texts in appropriate section, and refine based on the SCF-SSF parts description.
Done

28

3.1
Remove CUSME FSM related texts because ActivityTest operation is handled in CUSME-Control.
Done

29

3.1
Change the FEAM related texts as required in Q22 editors meeting report
Done

30

1.1

5.1.1

5.2.1

5.4.1

5.6.1

5.7.1
Describe three cases:

· case1: ROSE

· case2: USI

· case3: other (service ASE is located in CUSF)

for using CUSF relationship clearly for the following operation procedures:

· ActivationReceivedAndAuthorized (case 1,2, and 3),

· AssociationReleaseRequested (case 1 and 3),

· ComponentReceived (case 1 and 3),

· InitialAssociationDP (case 2 and 3), and

· EventReportBCUSM (case 3).

[Question: above conditions are correct?]
Refer to item 43

31

5.1.1.1

5.2.1.1

5.4.1.1

8.1
Incorporate all the parameters in InitialAssociationDP to “callUnrelatedDPSpecificCommonParameters” in operation templates and ASN.1.
Done

32

5
Simplify the paramer description in operation template
Done

33

6
Add the parameter description.
Done

34

7
Change the Error procedure description as required in Q22 editors meeting report
Done

35
E
8.1
Remove “OperationCode” type definition because this is not used.
Done

36
E
7

8.2
Add unknownLegID error for the ComponentReceived and AssociationReleaseRequested operation with legID parameter.
Done

37

8
Remove operation code value definition
Done

38

8
Refine parameterized related description regarding bounds as required in Q22 editors meeting report
Done

39

8.3
Add new application contexts, contracts, package, and abstract syntaxes.
Done

40

8.4
Add class module definition and bound definition
Done

41

9
Add the low layer description as required in Q22 editors meeting report
Done

42
E
1.4.2
Add the transition “Component Received” to “Active” in Table 1
Done

Followings are revised contents from the Geneva 1999 March input.

43

4.1

10.1

10.3

10.4

10.7

10.8
Describe three cases:

· case1: ROSE

· case2: USI

· case3: other (service ASE is located in CUSF)

for using CUSF relationship clearly for the following operation procedures:

· ActivationReceivedAndAuthorized (case 1,2, and 3),

· AssociationReleaseRequested (case 1,2, and 3),

· ComponentReceived (case 1,2, and 3),

· InitialAssociationDP (case 1, 2 and 3), and

· EventReportBCUSM (case 1 and 3).
Done (according to the Q22 meeting result)

44

10.7

10.8

13.3
Add the ROSE related parameters (componetType, componentCorrelationID, component) in the following generic operations:

· InitialAssociationDP

· EventReportBCUSM.
Done (related to the item 43 result)

45

13.4
Add the cusfComponentHandlingPackage in the generic contract definitions.
Done (related to the item 43 result)

46

13.4
Add the sendComponent operation in the generic Invokable/Returnable definitions.
Done (related to the item 43 result)

47

all
Add summary, scope, etc. and modify the structure according to the TD4/11-65R1 Annex 3 (1999 March Q22 report).
Done

48

all
Modify the wording “connection” to the “association”
Done

49

5.4.1.2
Add a new subclause regarding BCUSM for case 3 (see item 43) as the March Q22 meeting result. The content was proposed from editor in TD4/11-38.
Done

50

6
Add a new subclause “SCF Model”
Done (related to the item 47)

51
E
7.2
Change “er7
EDP‑N last encountered or monitoring duration last EDP expired” to “er7
EDP‑N last encountered or monitor duration for last EDP expired” as the March Q22 meeting result. This was aligned with the approved CS2 implementors guide.
Done

52
E
8.1
Change the figure “SCF FSM structure” based on that of Q.1238.1
Done

53

10.2

Add the following operation procedures:

· ActivityTest

· RequestReportUTSI

· ReportUTSI

· SendSTUI
Done

54

12.1
Add the ParameterOutOfRange error in RequestReportUTSI operation. This will be aligned with Q.1238.2.
Done

55

12.1
Delete the duplicated operation descriptions
Done

56

13
Change the module Ids in consistent with Q.1238.1
Done

57

13.2
Add the following bound definitions which are needed in CUSF-SCF:

· sCFSSFBoundSetforCUSF

· commonBoundSetforCUSF.
Done

58

13.2
Change all the mandatory parameters to optional in SCF-CUSF-Bounds class definition.
Done

59

13.3
Add the “OPTIONAL TRUE” in the ARGUMENT of continueAssociation operation definition for avoiding empty SEQUENCE (refer to TD4/11-19)
Done

60

13.4
Remove the imported “ABSTRACT-SYNTAX” because this is an ASN.1 keyword.
Done

61

13.4
Delete all the “emptyConnectionPackage” description because this is meaningless in SCF-CUSF relationship.
Done

62

14.1.1.1

14.1.1.2
Revise the texts by using explicit operation names and add the InitiateAssociation operation.
Done

63

10.1.2

10.4.2

10.7.2

10.8.2

10.14.2

11.11
Add some texts for more clear explanation and for avoiding confusion as for “Component Type” parameter.
Done

64

11.9
Add the appropriate description for Component parameter considering the use of both SCF-to-CUSF and CUSF-to-SCF direction.
Done

65

11.12
Add the “ComponentTypes” parameter description
Done

66

11.19
Add the Leg ID numbering rules as the March Q22 meeting result. The content was proposed from editor in TD4/11-38.
Done

68

11.22

10.7.2
Move and revise the explanation of “MiscCallInfo” parameter for more clarification.
Done

69

7.1
Revise the texts because the interaction between the CUSF and the SSF is described in spite of network/vendor option.
Done

70
E
8.3.2.1
Add the transition condition in the (Ne2.3) event.
Done

71
E
7.2
Add some Tcusf related descriptions because some conditions are missing.
Done

72
E
10.14.4.1
Add some texts in CUSF post condition for alignment with the FSM specification.
Done

73

11.25
Add the “RequestedUTSIList” parameter description
Done

?

11.19
In “LegID” parameter description, the following is not appropriate in spite of new parameter introduced in CS3 (backward compatibility problem). In ASN.1, this parameter is defined as OPTIONAL.

"LegID" parameter shall always be included for the events ComponentReceived and AssociationReleaseRequested.
Change above to the followings:

"LegID" parameter shall be included only when more than one leg are used for identifying the side events ComponentReceived and AssociationReleaseRequested in a BCUSM.
In “RequestReportBCUSMEvent” operation procedure, the following is not appropriate similarly.

2) The “legID” parameter shall be included

Delete the note 2), and specify the default LegID=1 for ComponentReceived/AssociationReleaseRequested EDP.

Change the Leg numbering rule as follows:

When an InitiateAssociation operation is used, legID =2 is the side that has initiated the association specified by this operation (passive leg).
To

When an InitiateAssociation operation is used, legID =1 is the side that has initiated the association specified by this operation (passive leg).
needed to be confirmed in Q22 meeting for this modification.

Summary

Recommendation Q.1238 defines the Intelligent Network (IN) Application Protocol (INAP) for IN Capability Set 3 (IN CS-3). Q.1238 defines the INAP for IN CS-3 based upon IN CS-2 Q.1228 specification (1997), and the general rules for INAP provided in Q.1208, and is consistent with the scope of IN CS-3 as defined in Q.1231.

Within the Q.123x Recommendation series, Q.1238 describes the protocol realising the Q.1231 Distributed Functional Plane in a service and vendor implementation independent manner, as constrained by the capabilities of the embedded base of network technology. This provides the flexibility to allocate distributed functionality into multiple physical network configurations and to evolve IN from IN CS-3 to some future CS-N.

The present document is part 7 of the multi-part ITU-T Recommendation Q.1238 for IN Capability Set -3. The part 7 covers the CUSF-SCF interface including the description of the aspects of the CUSF and SCF Functional Entities which are relevant to this interface.
1. Scope

The present document is part 7 of the multi-part ITU-T Recommendation Q.1238 for IN Capability Set -3 (Q.1238.7). The part 7 specifies the protocol on the CUSF-SCF interface and provides a description of the aspects of the CUSF and SCF Functional Entities which are involved in the realisation of this interface.
2. References

All ITU-T Recommendations and other referred to in this text are identified in Part 1 of this Recommendation.

3. Abbreviations and acronyms

All abbreviations and acronyms used in this text are defined in Part 1 of this Recommendation.

4. Relationships
4.1 CUSF-SCF relationship

The SCF-CUSF relationship is used for messages between an SCF and a CUSF in the public network. This relationship provides service or service features which need call-unrelated user interaction. This provides, for example, user location registration, user authentication, supplementary service activation or de-activation. Details of service drivers can be found in Q.1231.
This relationship is used for three cases, and respective cases are exclusive for the others.

Case1: for sending/receiving ROSE APDUs to/from a user.

Case2: for sending/receiving USI informations to/from a user.

Case3: for relaying some informations for call unrelated association establishment from a supplementary service in CUSF.

4.2 CUSF-SSF and CUSF-CCF relationship

It is considered that the CUSF and the SSF may have a relationship, but the relationship is not defined in CS-3, and is not mandatory. This relationship may be used to influence the basic call processing in the SSF/CCF (e.g. activation or de-activation of Call Forwarding) via call-unrelated interaction.
5. CUSF Model

5.1 General

The CUSF model shown in Figure 1 is for a single ended service logic instance related to a user. The purpose of this model is to provide a framework for the understanding of call unrelated modelling with respect to the CUSF.

5.2 CUSF Components

The SSF/CCF model consists of several entities. Each of the entities is briefly described below. It is noted that this shows a conceptual model of CUSF and is not intended to imply an actual implementation of the CUSF.

5.2.1 Basic Non Call Manager (BNCM)

This entity provides an abstraction of an association and proceedings for call unrelated interactions between a user and a network. It detects basic call unrelated events that can lead to the invocation of IN service logic instances or those that should be reported to active IN service logic instances. It also manages resources required to support basic call unrelated control. The BNCM interacts with the FIM/NCM as described in the FIM/NCM description below.

5.2.2 IN - Non-Switching Manager (IN-NSM)

This entity interacts with the SCF via SCF Access Manager in the course of providing IN services/features to users. It provides the SCF an observable view of a CUSF call unrelated processing activities, and provides the SCF with access to CUSF capabilities, such as managing of an association and invoked operations. It also detects non-call processing events that should be reported to active IN service logic instances or can lead to the invocation of IN service logic instances. It manages CUSF resources required to support IN service logic instances, if any.

5.2.3 Feature Interaction Manager/Non-Call Manager (FIM/NCM)

This entity provides mechanisms to prevent invocation of multiple instances of IN and non-IN service logic instances on a single association. The ability of the FIM/NCM to arbitrate IN/non-IN call associated/call unrelated associated services/features and IN call unrelated associated services/features is outside the scope of this capability set. These two types of arbitration need an implicit relationship. The FIM/NCM integrates these interactions mechanisms with the BNCM and IN-NSM to provide the CUSF with a unified view of call unrelated processing internal to the CUSF for an association.
5.3 Relationship of SSF/CCF Model Components

5.3.1 BNCM relationship to IN-NSM

This is the relationship that encompasses the interaction between the BNCM and the IN-NSM, through the FIM/NCM. The message related to this interaction is not externally visible and is not for standardization. However, an understanding of this subject is required to identify how basic call unrelated processing and IN call unrelated processing interact.

5.3.2 BNCM and IN-NSM relationships to FIM/NCM

This is the relationships that encompass the interaction between the BNCM and the FIM/NCM, and the interation between the IN-NSM and the FIM/NCM. The messages related to these interactions are not externally visible and are not for standardization. However, an understanding of this subject is required in order to unify the BNCM, IN-NSM and FIM/NCM.

[image: image1.wmf]SLPI

A

SCF

<

INAP operations

>

<

 INAP operations

 >

CUSF

SSF

FE Access Manager

FE Access Manager

IN Local Resource

Data Manager

IN Local Resource

Data

IN-Non-Switching Manager

IN-Non-Switching

State Model

Instance

<IN-NSSM>

processing >

IN-Switching Manager

Feature Interaction

Manager

/

Non-Call Manager

Feature Interaction Manager/

Call Manager

Non-IN Feature

Manager

Basic Call Manager

<BCSM>

Bearer Control

Basic Call

Resource Data

Manager

Basic Call

Resource Data

SRF

CCAF

SCUAF

CCAF

Interaction which may be

vender-

specific

Functional

Grouping/Entity

Data to be

managed

Functional Grouping

Not addressed in

this capability set

Basic Non-Call Manager

<BCUSM>

<Basic non-call triggers

<Basic non-call events

CCF

<

xxx> Subjects Identified

<

IN-NSSM events

processing >

processing >

SMF

Figure 1/Q.1238.7 – Internal CUSF structure and the relationship between FEs
5.4 BCUSM (Basic Call Un-related State Model)

This model relates to the call unrelated associated connection-oriented interaction between the user and the IN service logic using existing ISDN user-to-network signaling procedures.

Main concept of the BCUSM is similar to the BCSM. The BCUSM is a high-level description of the CCF activities required to establish and maintain an association between users and service processing, to manage invoked operations. For this, it identifies a set of basic call unrelated associated activities in the CCF and shows how these activities are joined together to process a basic call unrelated associated services/features (e.g. establish and maintain an association between a user and a network, manage this and all operation invocations).

Many aspects of the BCUSM are not externally visible to IN service logic instances. However, aspects of the BCUSM that are reflected upward to the IN-NSM and FIM/NCM are visible to IN service logic instance. Only these aspects of the BCUSM will be the subject of standardization. Therefore, the BCUSM is primarily an explanatory tool for providing a representation of CUSF activities that can be analyzed to determine which aspects of the BCUSM will be visible to IN service logic instances, if any, and what level of abstraction and granularity is appropriate for this visibility.

The BCUSM identifies points when IN service logic instances are permitted to interact with basic call unrelated interaction processing (for the time being it is reasonable to assume ROSE procedures). In particular, it provides a framework for describing basic call unrelated events that can lead to the invocation of IN service logic instances or reporting of the events to the active logic, for describing those points in association and operation processing when the transfer of control can occur.

Figure 2 shows the components that have been identified to describe a BCUSM. Points in association (PIA), detection points (DPs). Transitions and events are not depicted in the figure but they are self-explanatory. Figure 2 also shows the BCUSM. PIAs represents the states of an association for the call unrelated interaction. The concepts of DPs are same as the BCSM, however an IN service logic instance can influence a call unrelated interaction processing with specifying a ROSE APDU (invoke, return result, return error, reject) which should be delivered via appropriate signaling messages between the user and the network (e.g. REGISTER, FACILITY, REL, and REL COMP on DSS1).

5.4.1 BCUSM description

In the following descriptions, the PIAs are related at a high level to the procedure taking place in an entity that supports ROSE. To help the understandings, Q.931 and Q.932 messages with information elements are attached to the description, however these do not intend to limit the scope of BCUSM only to DSS 1.

The following is the BCUSM description for this capability set.

[image: image2.wmf]Idle and Authorize Activation/

Association request

Activation Received and Authorized

Active

Release

Component Received

Activation Failed

Released

Association Release Requested

Detection Point

Point in Activation

Figure 2/Q.1238.7 – BCUSM
5.4.1.1 BCUSM model for ROSE APDU

5.4.1.1.1 Idle and Authorize Activation/Association request

Entry Event:

–
All previously invoked operations between a user and a network are completed (event: Released), or the (last) invocation of an operation was rejected by the user or the network (event: Activation Failed). There is no relationship between the user and the network, e.g. no call reference exists between the user and the network.

Functions:

–
Logical association is idled (e.g. no call reference, no data link connection).

–
When the indication to establish an association and optionally invoke an operation is received (e.g. Q.932 REGISTER with FACILITY IE), the authority/ability of the user invoking the particular operation is verified. For example, some restrictions may be checked that are assigned to the used access, such as invoking User Registration is prohibited, if any.

Exit Event:
–
An indication to establish an association and optionally invoke an operation is received (e.g. Q.932 REGISTER with FACILITY IE), the authority/ability of the user invoking the particular operation was verified. (DP Activation Received and Authorized).

5.4.1.1.2 Active

Entry Event:
–
An indication to establish an association and optionally invoke an operation is received (e.g. Q.932 REGISTER with FACILITY IE), the authority/ability of the user invoking particular operation was verified (DP Activation Received and Authorized), or a response/invocation from the user is received. (DP Component Received).

Functions:

–
Logical association is established (i.e. a call reference is assigned).

–
The received operation is processed and an appropriate response is send to the user, or the response/invocation from the user is monitored.

Exit Event:

–
A response/invocation from the user is received. (DP Component Received).

–
Activation is failed. (Activation Failed).

–
An association release request is received from the user or the network (e.g. Q.931 REL). (DP Association Release Requested).

5.4.1.1.3 Release

Entry Event:

–
An association release request is received from the user or the network (e.g. Q.931 REL), this request optionally contains response/invocation to the user or from the network. (DP Association Release Requested).

Functions:
–
The association is being released with appropriate procedures (a pending response may be delivered with an association release message, e.g. Q.931 RELComp), this procedure may deliver final invocation/response to the user or to the network.

Exit Event:
–
The association is completely released (Released).

5.4.1.1.4 Transition for BCUSM

Table 1/Q.1238.7 – Transition for BCUSM

From
To

Activation Received and Authorized
Idle and Authorize Activation/Association request

Activation Received and Authorized
Active

Component Received
Idle and Authorize Activation/Association request

Component Received
Active

Association Release Requested
Idle and Authorize Activation/Association request

NOTE – These transitions are depicted here as they are beyond the normal BCUSM transitions.
5.4.1.1.5 Modelling for ROSE APDU Handling

The current BCUSM models only the association handling parts and detection of the ROSE APDU as it is received. While it may be possible to model the analysis of the received ROSE APDU and invoke ID, it is not done since all ROSE ADPU are specific to a service. This would mean having to model every service. Therefore, only the general parts (component handling and association handling) are modelled.

The modelling is similar to the BCSM in the sense of how far the interaction portion of the state model depicts the details of the activities in the physical entity, however the interaction is different from the circuit mode switched bearer services (represented by the BCSM) with following:

a)
the variation of the service triggering points (corresponds to TDP) is limited to the association establishment / release phases or the reception of the ROSE APDU,

b)
the ROSE APDU is received during the association establishment / release phase or within the established association,

c)
the modeling of the analysis of a received ROSE APDU may be not necessary, because it can be well modelled as the TDP criteria check,

d)
the procedures with the interaction vary a service to a service and have many variations, so each supplementary service has different states to handle the ROSE APDUs (but, reject or failure of the invocation may be possible to be modelled);

The DP indicates the place of:

a)
the event of the association establishment request or release;

b)
the detection of the ROSE APDU reception. (Figure 3 shows what part is service dependent and what part is general for this type of interaction.)

[image: image3.wmf]T1188710-97

SLPI

SCP

INAP header

APDU header

ISDN

CPE

SW

e.g. REGISTER message

CUSF/SSF/CCF

(Local switch)

TDP message of INAP

INAP APDU

On UNI:

service depend, and has various internal structures

general parts (invoke id, component type, etc.)

General parameters are

separately mapped to the

defined INAP parameters

(e.g. "componentType", etc.)

Service dependent APDU is

dealt with as a whole

(mapped to the "component"

parameter)

SLPI is responsible for

the internal structure of

the APDU, therefore the

INAP protocol is not

affected by the APDU

internal structure

Figure 3/Q.1238.7 – ROSE APDU treatment scheme
5.4.1.2 BCUSM model for association establishment from a service ASE in CUSF

5.4.1.2.1 Idle and Authorize Activation/Association request

Entry Event:

–
A previously invoked call unrelated association establishment is completed (event: Released), or the (last) association establishment was failed (event: Activation Failed). There is no association for a service ASE in CUSF.

Functions:

–
Logical association is idled.

–
When the request to establish a call unrelated association from a service ASE in CUSF is received, the authority/ability of the invocation of the association establishment is verified.

Exit Event:
–
The authority/ability of invoking the association establishment was verified. (DP Activation Received and Authorized).

5.4.1.2.2 Active

Entry Event:
· The authority/ability of invoking the association establishment was verified (DP Activation Received and Authorized), or
· a response for the call unrelated association is received. (DP Component Received).

Functions:

–
Logical association is established.

–
The response is processed and a further response is monitored.

Exit Event:

–
A response for the call unrelated association establishment is received. (DP: Component Received).

–
The association establishment is failed. (Activation Failed).

–
The association is released. (DP: Association Release Requested).

5.4.1.2.3 Release

Entry Event:

–
The association is released. (DP: Association Release Requested).

Functions:
–
The association is being released with appropriate.
Exit Event:
· The association is completely released (Released).
5.4.1.2.4 Transition for BCUSM

Table 2/Q.1238.7 – Transition for BCUSM

From
To

Activation Received and Authorized
Idle and Authorize Activation/Association request

Activation Received and Authorized
Active

Component Received
Idle and Authorize Activation/Association request

Component Received
Active

Association Release Requested
Idle and Authorize Activation/Association request

Association Release Requested
Active

NOTE – These transitions are depicted here as they are beyond the normal BCUSM transitions.
5.4.2 BCUSM DP Criteria

As for CS-3 BCUSM, the DP criteria means to check the specific out-channel interaction activation at the Activation Received and Authorized, or Component Received DP against the specified pattern, for example an operation code for ROSE like interaction. The formal description is not defined for IN CS-3.

Following table denotes the applicability of DP criteria to Dps of BCUSM. The entries in the table can be (these are the same as the BCSM):

•
Line-Based (Subscriber line or Trunk line);

•
Group-Based (including Private Facility Group);

•
Office-Based.
Table 3/Q.1238.7 – BCUSM DP Criteria

DPs

DP criteria
ActivationReceivedAndAuthorized
ComponentReceived

Trigger Assigned
X
X

ITU-T ISDN supplementary services' operation codes
X
O

Regional/Network operator specific ISDN supplementary services' operation codes (Note 1)
X
O

USIServiceIndicator
X
O

NOTE 1 – The total number of the codes is regional or network operator specific.

X
Applicable

O
Optional

(the meaning of "X" and "O" is the same as for the BCSM)

6. SCF Model

Refer to Q.1238.1.

7. FSM for CUSF

7.1 Relations between CUSF FSM and the SSF/CCF and maintenance functions

The primitive interface between the CUSF FSM and the CCF/SSF/maintenance functions is an internal interface and is not subject to standardization in IN CS-3. Nevertheless this interface should be in line with the BCUSM defined in clause 5.4.

The relationship between the BCUSM and the CUSF FSM may be described as follows for the case of a call unrelated associated association / operation attempt from an end user or IN service logic, or initiated by an end user or IN service logic:

–
When a call unrelated associated association / operation attempt is initiated by an end user and processed at an exchange, an instance of a BCUSM is created. As the BCUSM proceeds, it encounters detection points (DPs, see clause 5.4. If a DP is armed as a Trigger DP (TDP), an instance of a CUSF FSM is created.

–
If an InitiateAssociation is received from the SCF, an instance of a BCUSM is created, as well as an instance of a CUSF FSM.

The CUSF logic should:

–
perform the DP processing actions, including if DP criteria are met;

–
check for SCF accessibility; and

–
handle service feature interactions in conjunction with the SSF (note: this processing is an optional and a network specific, and there are no more descriptions for these interactions).

The CUSF hands control back to the BCUSM at least in the following cases:

–
if a trigger (TDP) criteria match is not found (e.g., insufficient information to proceed): the CUSF logic continues supplementary service control processing;

–
if the association is abandoned: the CUSF logic continues supplementary service control processing;

–
if the destination SCF is not accessible: the CUSF logic will apply final treatment to the end user for the TDP‑R case, or continue supplementary service control processingfor the TDP‑N case.

The management functions related to the execution of operations received from the SCF are executed by the CUSF Management Entity (CUSME)-Control. The CUSME‑control interfaces the different CUSF FSMs and the Functional Entity Access Manager (FEAM). Figure 4 shows the CUSF Interfaces.
The function of FEAM is defined in Q.1238.1.

The CUSME‑control maintains the dialogues with the SCF on behalf of all instances of the CUSF Finite State Model (FSM). These instances of the CUSF FSM occur concurrently and asynchronously as associations occur, which explains the need for a single entity that performs the task of creation, invocation, and maintenance of the CUSF FSMs. In particular the CUSME‑control performs the following tasks:

1.
Interprets the input messages from other FEs and translates them into corresponding CUSF FSM events;

2.
Translates the CUSF FSM outputs into corresponding messages to other FEs;

3.
Captures asynchronous (with processing association and/or operation request from the end user) activities related to management or supervisory functions in the CUSF;

4.
Checks the existence of a CUSF-SCF relationship by receiving an ActivityTest operation from the SCF and returns the result to the SCF.

The CUSF FSM passes component handling instructions to the related instances of the BCUSM as needed. DPs may be dynamically armed as EDPs, requiring the CUSF FSM to remain active. At some point, further interaction with the SCF is not needed, and the CUSF FSM may be terminated while the BCUSM continues to handle the association as needed.

[image: image4.wmf]SCUAF

FEAM

SCF

CUSME-Control

CUSF

FSM

CUSF

FSM

Figure 4/Q.1238.7 – CUSF Interfaces

7.2 CUSF state transition diagram

Figure 5 shows the state diagram of the CUSF part of the SSP, CUSP, SN (see Q.1205) during the processing of an IN association request from the user or IN service logic/operation attempt.

Each state is discussed in the following sections. General rules applicable to more than one state are addressed here.

One or a sequence of components received in one or more TCAP messages may include a single operation or multiple operations, and is processed as follows:

–
Process the operations in the order in which they are received.

–
Each operation causes a state transition independent of whether a single operation or multiple operations are received in a message.

–
The CUSF examines subsequent operations in the sequence. As long as sequential execution of these operations would leave the FSM in the same state, it will execute them. If a subsequent operation causes a transition out of the state then the following operations should be buffered until the current operation has been executed. In all other cases, await an event that would cause a transition out of the current state (such an event would be the completion of operation being executed, or reception of an external event). An example of this is as follows:

The CUSF receives the operations SendComponent, ReleaseAssociation in a component sequence inside a single TCAP message. Upon receipt of this message, these operations are executed up to and including SendComponent while the CUSF is in the Waiting For Instructions state. However, if the SendComponent specifies to deliver the component with an association release message to the user, the actual transmission of the component should be deferred until the next operation, ReleaseAssociation. The operation will be executed when the FSM transits to the Idle state.

–
If there is an error in processing one of the operations in the sequence, the CUSF FSM processes the error (see below) and discards all remaining operations in the sequence.

–
If an operation is not understood or is out of context (i.e. violates the SACF rules defined by the CUSF FSM) as described above, the CUSF aborts the TC dialogue.

In any state, if there is an error in a received operation, the maintenance functions are informed and the CUSF FSM remains in the same state as when it received the erroneous operation. Depending on the class of the operation, the error could be reported by the CUSF to the SCF using the appropriate component (Recommendation Q.774).

In any state (except Idle), if the party requesting the association abandons before it is established (i.e. before the Active PIA in the BCUSM), then the CUSF should clear the association and ensure that any CUSF and CCF resources allocated to the association have been de‑allocated. Then the CUSF FSM moves to the Idle state.
In any state (except Idle), if a call party releases a stable association (i.e. from the Active PIA in the BCUSM), then the CUSF FSM should move to the Idle state.

The CUSF has an application timer, TCUSF, whose purpose is to prevent excessive association processing suspension time and to guard the association between the CUSF and the SCF.

Timer TCUSF is set in the following cases:

–
when the CUSF sends a TDP-R/EDP-R reporting operation (refer to subclause 7.2.2 State b: Waiting For Instructions).
–
when the CUSF receives an InitiateAssociation operation from the SCF.

–
when the CUSF FSM enters the Waiting for Instructions state under any other conditions then the ones listed above. If the timer is already active, the timer is restarted.

On expiration of TCUSF the CUSF FSM transits to the Idle state and aborts the TC dialogue with the SCF, and the CUSF progresses the BCUSM if possible.

The CUSF state diagram contains the following transitions (events):

er1
TDP‑R encountered

er2
Idle return from waiting for instructions

er3
Request to send a component received (if no EDP armed) or monitoring instruction received

er4
TDP‑N encountered

er5
Request to send a component received (if EDP(s) armed)

er6
EDP‑N not last encountered

er7
EDP‑N last encountered or monitor duration for last EDP expired
er8
EDP‑R encountered

er10
Initiate association received

The CUSF state diagram contains the following states:

State a

Idle

State b

Waiting For Instructions

State c

Monitoring

[image: image5.wmf]T1188730-97

er4

State a

Idle

State b

Waiting For

Instruction

s

State c

Monitoring

er1

er10

er2

er7

er5

er8

er3

er6

Figure 5/Q.1238.7 – CUSF FSM

7.2.1 State a: Idle

The CUSF FSM enters the Idle state when sending or receiving an ABORT TCAP primitive due to abnormal conditions in any state.

The CUSF FSM enters the Idle state when one of the followings occurs:

–
when the association is released by the end user request in the Waiting For Instructions (transition er2) or in the Monitoring (transition er7);

–
when a ReleaseAssociation, a ConnectAssociation or a ContinueAssociation (without monitor requested) operation is processed in the Waiting For Instructions (transition er2);

–
when a last EDP‑N is reported in the Monitoring (transition er7);

–
when the application timer TCUSF expires in the Waiting for Instructions state (transition er2).

When transiting to the Idle state, if there is a component to be delivered with an association release message to the user, the CUSF sends the component with the specified association release message to the SCUAF before returning to Idle.

During this state the following call unrelated associated event can occur:

–
an armed TDP is encountered related to a possible IN call unrelated attempt, the CUSF FSM acts as described below.

–
if the DP is a TDP-N, send a DP‑specific operation or an InitialAssociationDP to the SCF, as determined from DP processing; there is no resulting transition to a different state (transition er4).

–
if the DP is a TDP‑R, send a DP‑specific operation or an InitialAssociationDP to the SCF, as determined from DP processing, and transit to the Waiting For Instructions state (transition er1);

–
a message related to a new transaction containing an InitiateAssociation operation is received from the SCF: in this case the CUSF moves to the state Waiting For Instructions (transition er10).

Any other operation received from the SCF while the CUSF is in Idle state should be treated as an error. The event should be reported to the maintenance functions and the transaction should be aborted according to the procedure specified in TCAP (Recommendation Q.774).

Note: DP specific operations are the followings: ActivationReceivedAndAuthorized, ComponentReceived and AssociationReleaseRequested.

7.2.2 State b: Waiting For Instructions

This state is entered from the Idle state on sending an InitialAssociationDP or a DP Specific operation (transition er1) or on receiving an InitiateAssociation (transition er10), or from the Monitoring state on detection of an EDP-R (transiton er8).

In this state the CUSF FSM is waiting for an instruction from the SCF; association handling /supplementary service processing is suspended and an application timer (TCUSF) should be set on entering this state.

During this state the following events can occur:

–
The user releases the association. This should be processed in accordance with the general rules in clause 7.2.

–
The application timer TCUSF expires: the CUSF FSM moves to the Idle state, the CUSF processes the invocation if possible, the TCUSF expiration is reported to the maintenance functions and the transaction is aborted.

–
An operation is received from the SCF: The CUSF FSM acts according to the operation received as described below.

The following operations may be received from the SCF and processed by the CUSF with no resulting transition to a different state (transition er3):

SendComponent (if no EDP is armed),
RequestReportBCUSMEvent
The following operations may be received from the SCF and processed by the CUSF, causing a state transition to the Monitoring state (transition er5):

SendComponent (if EDP(s) is(are) armed),

ConnectAssociation (if EDP(s) is(are) armed),

ContinueAssociation (if EDP(s) is(are) armed).
ReleaseAssociation operation may be received from the SCF. In this case, the CUSF FSM transits to the Idle state (transition er2). And the CUSF should release the association to the user and ensure that any CUSF resources allocated to the association have been de‑allocated.
ContinueAssociation or ConnectAssociation operation may be received from the SCF. In this case, the CUSF FSM transits to the Idle state (transition er2). And the CUSF returns the service control to the suspended association handling /supplementary service processing in the CUSF if no DP is armed.

Any other operations received in this state should be processed in accordance with the general rules in clause 7.2.

7.2.3 State c: “Monitoring”

The CUSF enters this state from the Waiting For Instructions state (transition er5) upon receiving a SendComponent, ContinueAssociation or ConnectAssociation if EDP(s) is (are) armed.

In this state the timer TCUSF is not used.

During this state the following events can occur:
–
An EDP‑N should be reported to the SCF by sending a DP specific operation or an EventReportBCUSM operation; the CUSF FSM should remain in the Monitoring state (transition er6) if one or more EDPs are armed. The CUSF FSM should move to the Idle state (transition er7) if there are no remaining EDPs armed.
–
An EDP‑R should be reported to the SCF by sending a DP specific operation or an EventReportBCUSM operation; the CUSF FSM should move to the Waiting For Instructions state (transition er8).

–
The receipt of an END or ABORT primitive from TCAP handling the INAP has no effect on the association; the association may continue or be completed with the information available. In this case, the CUSF FSM transits to the Idle state (transition er7), disassociating the CUSF FSM from the association.

–
The user abandons or releases the association. This should be processed in accordance with the general rules in clause 7.2.
8. FSM for SCF

8.1 Overview

Figure 6 is an SCF FSM structure. Related parts with this section are;

· SCME FSM interacting with CUSME-control in CUSF and

· SCSM-CUSF interacting with CUSF FSM in CUSF,

and highlighted in the figure.

[image: image6.wmf]SCME-Control

FEAM

SSF

SRF

SDF

SMF

CUSF

SCF

SCSM-SDF

SCME-FSM

SCSM-CUSF

SCSM-SCF

SCSM-SSF/SRF

…

SCF

…

…

…

…

Figure 6/Q.1238.7 – SCF FSM structure

8.2 SCME FSM
The SCME handles an ActivityTest operation in a CUSF-SCF relationship.

The ActivityTest related SCME FSM is the same FSM as defined in Q.1238.2 by replacing “SSF” with “CUSF”.

8.3 CUSF Related states (SCSM-CUSF)

Figure 7 shows State Diagram of the SCSM as relevant to the procedures concerning the FSM for CUSF part of the SCP/AD/SN (see Q.1205) during the processing of an IN call. Each state is discussed in one of the following subclauses.

An instance of FSM for CUSF is created on reception of an instruction from the CUSF indicating a TDP and an instruction from the SCF. The instance is released when the state of the instance of FSM for CUSF transits to the state "Idle".

The letter 'N' is added to the head of the number of each state and event in FSM for CUSF to distinguish the states and events in FSM for CUSF from those in other FSMs in the SCSM.
Note that "Ne" is an event from SCF (internal event), and "NE" is an event from CUSF (external event).

8.3.1 State N1: "Idle"

The following events are considered in this state:
•
(Ne1) CUSF_Initiate_Control_Requested: This is an internal event caused by the service logic's need to have a new control relationship with CUSF. The FSM for CUSF requests to transmit the InitiateAssociation operation to the CUSF. This event causes a transition to the state N2, Preparing CUSF Instructions, if the return result of InitiateAssociation operation has been successfully received.

•
(NE2) Query_from_CUSF : This is an external event, caused by a reception of one of the following operations:

- ActivationReceivedAndAuthorized(for TDP-R),

- ComponentReceived(for TDP-R),

- AssociationReleaseRequested(for TDP-R),

- InitalAssociationDP (for TDP-R).

 This event causes a transition to State N2, Preparing CUSF Instructions.

•
(NE3) Notification_from_CUSF : This is an external event, caused by a reception of one of the following operations:

- ActivationReceivedAndAuthorized(for TDP-N),

- ComponentReceived(for TDP-N),

- AssociationReleaseRequested(for TDP-N),

- InitalAssociationDP (for TDP-N).

This event causes a transition back to the same state.
8.3.2 State N2: "Preparing CUSF Instructions"

In this state, FSM for CUSF prepares appropriate instructions to the CUSF.

The following events are considered in this state:

•
 (Ne4) Processing_completed: This is an internal event. In this case, the SCF has completed the processing of the instructions to the CUSF. This event causes the following operation to be sent to the CUSF and a transition to State N1, Idle:

- ReleaseAssociation,

- ConnectAssociation (no DP armed),

- ContinueAssociation (no DP armed) .
To further describe the procedures relevant to this state, the state is divided into two sub-states, which are described in the following two subclauses (this subdivision is illustrated in Figure 8).

8.3.2.1 State N2.1: "Preparing CUSF Instructions"

In this state, FSM for CUSF determines whether the BCUSM processing will be resumed or not, and deals with a EDP relating processing.

The following events are considered in this state:

•
(Ne2.1) Event_Request: this is an internal event caused by the service logic when there is a need to send such an operation to the CUSF . It caused one or more of the RequestReportBCUSMEvent operations to be issued to the CUSF. This event causes a transition back to state N2.1 Preparing CUSF Instructions.

•
(Ne2.2) Request_Send_Component (monitor not required): this is an internal event caused by the service logic when there is no armed EDP but a need to send SendComponent operation to the CUSF. It caused one or more of the SendComponent operation to be issued to the CUSF. This event causes a transition back to state N2.1 Preparing CUSF Instructions.

•
(Ne2.3) Request_Send_Component (monitor required): this is an internal event caused by the service logic when there is(are) an armed EDP(s) and a need to send SendComponent operation to the CUSF. It caused one SendComponent operation to be issued to the CUSF. This resumes the call un-related processing in the CUSF. This event causes a transition to state N2.2 Waiting for Notification or Request.

•
(Ne2.8) Request_Processing_Resume (monitor required): this is an internal event caused by the service logic when there is(are) an armed EDP(s) and a need to send ContinueAssociation or ConnectAssociation operation to the CUSF. It causes one ContinueAssociation or ConnectAssociation operation to be issued to the CUSF. This also resumes the call un-related processing in the CUSF. This event causes a transition to state N2.2 Waiting for Notification or Request.

•
(Ne2.4) Request_Release_Association: this is an internal event caused by the service logic when it needs to release the association between the user and the network. It caused the ReleaseAssociation operation to be issued to the CUSF. This event maps into the FSM for CUSF in the SCSM event (Ne4).

8.3.2.2 State N2.2: "Waiting for Notification or Request"

In this state, FSM for CUSF waits for a notification or a request from the CUSF.

The following events are considered in this state:

•
(NE2.5) EDP-R: this is an external event caused by the reception of the following operation(s):

- ComponentReceived (for EDP-R)

- AssociationReleaseRequested (for EDP-R).

- EventReportBCUSM (for EDP-R).

This event causes a transition to state N2.1 Preparing CUSF Instructions.

•
(NE2.6) Not_Last_EDP-N: this is an external event caused by the reception of the following operation(s)

- ComponentReceived (for EDP-N)
- AssociationReleaseRequested (for EDP-N).

- EventReportBCUSM (for EDP-N),
In this case, there is still an outstanding armed EDP. This event causes a transition back to State N2.2 Waiting for Notification or Request.

•
(NE2. 7) Last_EDP-N: this is an external event caused by the reception of the following operation(s)

- ComponentReceived (for EDP-N)

- AssociationReleaseRequested (for EDP-N).

- EventReportBCUSM (for EDP-N),
This event maps into the FSM for CUSF in the SCSM event (Ne4).

[image: image7.wmf]T1188400-97

(NE3) Notification_from_CUSF

N1 Idle

(Ne4) Processing_

Completed

N2 Preparing CUSF

instructions

(Ne1) CUSF Initiate_Control_Request

(NE2)Query_from_CUSF

Figure 7/Q.1238.7 – SCSM: FSM for CUSF

[image: image8.wmf]T1188410-97

N2 Preparing CUSF

Instructions (iv)

(Ne2.4) Request_

Release_Association

N2.1 Preparing CUSF

Instructions

Request_to_CUSF

(Ne2.1) Event_

Request

(Ne2.2)

(Ne2.3)

Send_Component_

to_CUSF

Response to

CUSF

(NE2.5) EDP-R

N2.2 Waiting for

Notification or Request

(NE2.6)

Not_Last_EDP-N

(NE2.7) Last_EDP-N

(Ne4)

NOTE - (Ne2.2) Request_Send_Component (monitor not required)

 (Ne2.3) Request_Send_Component (monitor required)

(NE2.8)

 Request_

 Processing_Resume

Ne1 and NE2

Figure 8/Q.1238.7 – SCSM: Sub-states of state N2
9. FSM for USI

9.1 Overview

A generic transport mechanism (transparent at the CUSF level) for the exchange of information between the User and the Service Logic is supported based on IEs, respectively STUI in the "SCF-to-User" direction and UTSI in the "User to SCF" direction. These IEs are composed of two sub-IEs which are USIServiceIndicator and USIInformation. The first IE identifies the IN Service Logic invoked while the second carries useful information between the User and the Service Logic. Refer to Q.1238.1 for a definition of the term “User” in the context of the Out-Channel Call-Unrelated User Interaction (OCCUUI) mechanism. A User to Service Information (USI) IE refers to either a UTSI IE or an STUI IE.

In the "SCF-to-User" direction, once the CUSF receives an STUI IE from the SCF within the sendSTUI operation, the CUSF forwards it to the appropriate user application in the network, e.g. an ISDN user. This User is clearly and easily defined by the Association Reference (indicated by the down-lower protocols) and the legID parameter (indicated by the INAP protocol).

In the "User-to-SCF" direction, the OCCUUI mechanism seems to be more complicated. In order to define how the CUSF decides whether it forwards the OCCUUI information it receives from a User to the succeeding/preceding exchange or it passes it to a specific IN service, it seems necessary to distinguish two cases:

Case 1)
The OCCUUI information is considered as a "notification event" previously requested by the SCF. In this case, there is already a CUSF-SCF relationship.

Case 2)
The OCCUUI information is an additional information. In this case, it is only an optional information.

The CUSF addresses the appropriate SCF thanks to the ServiceIndicator parameter which is received within the USI IE. The ServiceIndicator value is indicated by the User (e.g. ISDN User) or by the Service Logic:

–
If the SCF has initiated the USI dialogue, the User sets the ServiceIndicator value of the USI IE to the ServiceIndicator value of the initial STUI IE. This scenario corresponds to the first case.

–
If the user sends a USI IE without having previously received an STUI IE from the SCF, then it initialises the ServiceIndicator value of the USI IE with a predefined value. This scenario corresponds to the second case.

9.1.1.1 Case 1
In this case, the CUSF communicates with the SCF during an already existing SCF-CUSF relationship; the SCF initiates the “Out-Channel” dialogue with the User sending an STUI IE within the sendSTUI operation. Both SCF and CUSF behavior can be described as above:

–
Thanks to an operation, independently from the BCUSM processing, one SCF tells the CUSF with the requestReportUTSI operation to report to it all the USI IE with a given ServiceIndicator value.

–
Then, once it receives a USI IE, the CUSF compares the ServiceIndicator value of this IE with the previously indicated ServiceIndicator value. If they coincide, then the CUSF reports the USI IE to the SCF with the reportUTSI operation.

In this case, the required ServiceIndicator value is explicitly indicated by the SCF and stored at the CUSF level; this data is in a table associated with the CUSF USI FSM.

NOTE - The STUI/UTSI IE is conveyed in the appropriate signaling message (Basic Call Unrelated Control signaling message or Facility message) depending on the phase of the association on the dedicated leg (e.g. on the BCUSM processing).

9.1.1.2 Case 2
The OCCUUI information does not impact the usual DP processing. The USI IE is only an optional parameter that the CUSF introduces in the following operations after analysing the corresponding ServiceIndicator value to make sure that the received USI IE is targeted to this particular Service Logic.

· InitialAssociationDP.
· DP Specific operations.

The CUSF checks if the ServiceIndicator value of the USI IE coincides with the ServiceIndicator value contained within the Service related data table (trigger table).
NOTE - The STUI/UTSI IE is conveyed in the appropriate signaling message (Basic Call Unrelated Control signaling message or Facility message) depending on the phase of the call on the dedicated leg (e.g. on the BCUSM processing).

9.1.1.3 Synthesis

Table 4/Q.1238.7 – Synthesis of OCCUUI conditions
Scenario
OCCUUI FSM
Service Indicator indicated by the User
Service Indicator value of reference
operation sent to the SCF

USI dialogue
Monitoring USI IE
Indicated in the STUI IE

Dynamic
Stored in the data table associated with the CUSF USI FSM
reportUTSI

USI = additional information
Idle
Predefined
Explicitly indicated in the IN related data table of the IN service

Static in the CUSF
- InitialAssociationDP

- DP specific operations

[image: image9.wmf]From the User

USI

"Monitoring

USI IE"

No

Normal DP processing

(

e.g. scenario 2)

Yes

Scenario 1

Figure 9/Q.1238.7 – SDL for OCCUUI processing in CUSF

9.2 SCF USI FSM for CUSF

The SCF USI FSM in this section specifies USI related state transitions in SCF in a CUSF-SCF relationship. The SCF USI FSM instance exists only in any state except when the FSM instance for CUSF in SCSM-CUSF (refer to clause 8.3) is in the Idle state.

The SCF USI FSM is depicted in Figure 10.

[image: image10.wmf]Idle

Monitoring

USI

Information

(Neo3)

(Neo2)

(Neo1)

Figure 10/Q.1238.7 – SCF USI FSM

The SCF USI FSM transitions are defined as follows:

-
(Neo1) : the SCF requests the CUSF to monitor the receipt of a USI IE with a given USIServiceIndicator value by sending a RequestReportUTSI operation.

-
(Neo2) : the SCF is no longer interested in the receipt of a USI IE with the given USIServiceIndicator value. The SCF sends a RequestReportUTSI operation with the uSImonitorMode parameter set to “monitoringInactive”.

-
(Neo3) : the SCF sends a SendSTUI operation to the User and/or receives a ReportUTSI operation from the User with the given USIServiceIndicator value.
9.3 CUSF USI FSM

The CUSF USI FSM specifies USI related state transitions in CUSF in a CUSF-SCF relationship. The CUSF USI FSM instance exists only in any state except when the FSM instance for CUSF (refer to clause 7.2) is in the Idle state.

The CUSF USI FSM is the same FSM as defined in Q.1238.2 (SSF USI FSM) by replacing “SSF” with “CUSF”.
10. Operation Procedures
10.1 ActivationReceivedAndAuthorized Procedure

10.1.1 General description

This operation is sent by the CUSF to the SCF after detecting a valid trigger condition at the BCUSM ActivationReceivedAndAuthorized DP.. This operation can be available in the following three cases.

Case1: TDP is detected by receiving a FACILITY information element (a ROSE APDU) from the user (refer to subclause 5.4.1.1.5 for modelling). In this case, component related parameters (componentType, component, and componentCorrelationID) are sent with this operation. The service ASE is located in the SCF, and the CUSF acts as a relay function between the user and the SCF. The SCF may send ROSE APDU informations and receive further ROSE APDU informations.
Case2: TDP is detected by receiving a USI information. In this case, USI related parameters (uSIServiceIndicator and uSIInformation) are sent with this operation. The service ASE is located in the SCF, and the CUSF acts as a relay function between the user and the SCF. The SCF may send USI informations and receive further USI informations.
Case3: TDP is detected by requesting from a service ASE located in the CUSF for needing further information to establish a bearer independent association. In this case, cUApplicationInd parameter and other conection related parameters (calledPartyNumber, genericNumbers, etc.) are sent with this operation. The CUSF acts as a relay function between the service ASE and the SCF. The SCF provides additional information for the association processing.
10.1.2 Parameters

–
callUnrelatedDPSpecificCommonParameters

–

serviceAddressInformation
–

callingPartyNumber
–

locationNumber
–

terminalType
–

extensions

–

uSIServiceIndicator

–

uSIInformation

–
cUApplicationInd

–
calledPartyNumber

–
callingPartySubadress

–
highLayerCompatibility

–
bearerCapability

–
genericNumbers

–
componentType: this indicates the type of ROSE component that is received from a user and reported to the SCF. The value of “invoke” can only be available.
–
componentCorrelationID
–
extensions

–
component
10.1.3 Invoking Entity (CUSF)

10.1.3.1 Normal Procedure

CUSF Precondition (TDP):

(1)
CUSF-FSM is in the state a: Idle.

(2)
An event fulfilling the criteria for the TDP has been detected. The event is one of three cases in subclause 10.1.1.

CUSF Postcondition:

(1)
CUSF-FSM moves to the sate b: Waiting For Instructions if TDP-R.
(2)
CUSF-FSM remains in the state a: Idle if TDP-N.

10.1.3.2 Error Handling

Generic error handling for the operation related errors are described in section 12, and the TC service which are used for reporting operation errors are described in section 14.

10.1.4 Responding Entity (SCF)

10.1.4.1 Normal Procedure

SCF Precondition (TDP):

(1)
FSM for CUSF within the SCF is in the state N1: Idle.

SCF Postcondition (TDP-R):

(1)
FSM for CUSF within the SCF moves to the sate N2: Preparing CUSF Instructions.

(2)
Waiting for the request from the SLPI and CUSF instructions is being prepared.

SCF Postcondition (TDP-N):

(1)
FSM for CUSF within the SCF remains in state a: Idle

10.1.4.2 Error Handling

Generic error handling for the operation related errors are described in section 12, and the TC service which are used for reporting operation errors are described in section 14.

10.2 ActivityTest procedure

10.2.1 General description

This operation is used to check for the continued existence of a relationship between the SCF and the CUSF. If the relationship is still in existence, then the CUSF will respond. If no reply is received within a given time period, then the SCF which sent this operation will assume that the CUSF has failed in some way and will take the appropriate action.

10.2.2 Parameters

None.

10.2.3 Invoking entity (SCF)

10.2.3.1 Normal procedure

SCF Preconditions:

(1)
A relationship exists between the SCF and the CUSF.

(2)
The activity test timer (Tati) expires, after which the "ActivityTest" operation is sent to the remote entity.

(3)
The SCME is in state "Activity Test Idle".

SCF Postcondition:

(1)
The SCME is in the state "Waiting for Activity Test Response". If a Return Result "ActivityTest" is received, the SCME resets the activity test timer, returns to state "Activity Test Idle", and takes no further action.

10.2.3.2 Error handling

Refer to the error handling of the ActivityTest operation procedure in Q.1238.2.

10.2.4 Responding entity (CUSF)

10.2.4.1 Normal procedure

CUSF Precondition:

(1)
A relationship exists between the SCF and the CUSF.
CUSF Postconditions:

(1)
If the dialogue ID is active and if there is a -FSM for CUSF using the dialogue, the CUSME-Control sends a Return Result "ActivityTest" to the SCF; or

if the dialogue ID is not active, the TCAP in the CUSF will issue a P-Abort; the CUSME-Cotrol will in that case never receive the "ActivityTest" req.ind and thus will not be able to reply.

10.2.4.2 Error handling

Operation related error handling is not applicable, due to class 3 operation.

10.3 AssociationReleaseRequested Procedure

10.3.1 General description

This operation is sent by the CUSF to the SCF after detecting a valid trigger condition at the BCUSM AssociationReleaseRequested DP (reported as TDP) or after detecting a previously requested event with RequestReportBCUSMEvent operation (reported as EDP). This operation can be available in the following three cases.

Case1: TDP/EDP is detected by receiving a FACILITY information element (a ROSE APDU) from the user (refer to subclause 5.4.1.1.5 for modelling). In this case, component related parameters (componentType, component, and componentCorrelationID) are sent with this operation. The service ASE is located in the SCF, and the CUSF acts as a relay function between the user and the SCF. The SCF may send ROSE APDU informations and receive further ROSE APDU informations.
Case2: TDP is detected by receiving a USI information. In this case, USI related parameters (uSIServiceIndicator and uSIInformation) are sent with this operation. The service ASE is located in the SCF, and the CUSF acts as a relay function between the user and the SCF. The SCF may send USI informations and receive further USI informations.
Case3: TDP/EDP is detected by requesting from a service ASE located in the CUSF for needing further information to establish a bearer independent association. In this case, cUApplicationInd parameter and other conection related parameters (calledPartyNumber, genericNumbers, etc.) are sent with this operation. The CUSF acts as a relay function between the service ASE and the SCF. The SCF provides additional information for the association processing.
10.3.2 Parameters
–
callUnrelatedDPSpecificCommonParameters

–
serviceAddressInformation
–
callingPartyNumber
–
locationNumber
–
terminalType
–
extensions

–
uSIServiceIndicator
–
uSIInformation
–
cUApplicationInd

–
calledPartyNumber

–
callingPartySubadress

–
highLayerCompatibility

–
bearerCapability

–
genericNumbers

–
componentType this parameter indicates the type of ROSE component that is received from a user and reported to the SCF. For example, the “invoke” is used to report the invocation of an operation from the user, and the “returnResult” is used to report the return result to the previously issued operation to the user by using a SendComponent operation from the SCF.
–
componentCorrelationID
–
extensions

–
component
–
legID

10.3.3 Invoking entity (CUSF)

10.3.3.1 Normal procedure

CUSF Precondition (TDP):

(1)
CUSF-FSM is in the state a: Idle.

(2)
The association establishment request is received from the user, and the component portion of the FACILITY IE meets the triggering criteria (optional).

CUSF Precondition (EDP):

(1)
CUSF-FSM is in the state c: Monitoring.

(2)
The operation invocation request is received from the user, and the component portion of the FACILITY IE meets the event report criteria (optional).

CUSF Post condition [(1) or (2)]:

(1)
CUSF-FSM moves to the sate b: Waiting For Instructions (TDP-R or EDP-R).

(2)
CUSF-FSM remains in or moves to the state a: idle (TDP-N or last EDP-N).

(3)
CUSF-FSM remains in state c: Monitoring (not last EDP-N).

10.3.3.2 Error handling

Generic error handling for the operation related errors are described in section 12, and the TC services which are used for reporting operation errors are described in section 14.

10.3.4 Responding entity (SCF)

10.3.4.1 Normal procedure

SCF Precondition (TDP):

(1)
FSM for CUSF (SCSM-CUSF) is in the state N1: Idle.

SCF Precondition (EDP):

 (1)
FSM for CUSF (SCSM-CUSF) is in the state N2.2: Waiting for Notification of Request.

SCF Postcondition:

(1)
FSM for CUSF (SCSM-CUSF) moves to the sate N2: Preparing CUSF Instructions (TDP‑R or EDP-R).

(2)
FSM for CUSF (SCSM-CUSF) remains in or moves to state a: Idle (TDP-N or last EDP-N).

(3)
FSM for CUSF (SCSM-CUSF) remains in state c: Waiting for Notification or Request (not last EDP-N).

(4)
Waiting for the request from the SLPI and CUSF instructions is being prepared.

10.3.4.2 Error handling

Generic error handling for the operation related errors are described in section 12, and the TC services which are operation errors are described in section 14.
10.4 ComponentReceived Procedure

10.4.1 General description

This operation is sent by the CUSF to the SCF after detecting a valid trigger conditions at the BCUSM ComponentReceived DP (reported as TDP) or after detecting a previously requested event with RequestReportBCUSMEvent operation (reported as EDP). This operation can be available in the three cases described in sublcause 10.3.1.

10.4.2 Parameters
–
callUnrelatedDPSpecificCommonParameters

–
serviceAddressInformation
–
callingPartyNumber
–
locationNumber
–
terminalType
–
extensions

–
uSIServiceIndicator

–
uSIInformation
–
cUApplicationInd

–
calledPartyNumber

–
callingPartySubadress

–
highLayerCompatibility

–
bearerCapability

–
genericNumbers

–
componentType: refer to the componentType parameter description in AssociationReleaseRequested operation procedure.
–
componentCorrelationID
–
extensions

–
component
–
legID

10.4.3 Invoking Entity (CUSF)

10.4.3.1 Normal Procedure

CUSF Precondition (TDP):

(1)
CUSF-FSM is in the state a: Idle.

(2)
The association has been established between the user and the network.

(3)
The operation invocation request is received from the user, and the component portion of the FACILITY IE meets the triggering criteria (optional).

CUSF Precondition (EDP):

(1)
CUSF-FSM is in the state c: Monitoring.

(2)
The operation invocation request is received from the user, and the component portion of the FACILITY IE meets the event report criteria (optional).

CUSF Post condition [(1) or (2)]:

(1)
CUSF-FSM moves to the sate b: Waiting For Instructions (TDP-R or EDP-R).

(2)
CUSF-FSM remains in or moves to the state a: Idle (TDP-N or last EDP-N).

(3)
CUSF-FSM remains in state c: Monitoring (not last EDP-N).

10.4.3.2 Error Handling

Generic error handling for the operation related errors are described in section 12, and the TC service which are used for reporting operation errors are described in section 14.

10.4.4 Responding Entity (SCF)

10.4.4.1 Normal Procedure

SCF Precondition (TDP):

(1)
FSM for CUSF (SCSM-CUSF) is in the state N1: Idle.

SCF Precondition (EDP):

(1)
FSM for CUSF (SCSM-CUSF) is in the state N2.2: Waiting for Notification of Request.

SCF Post condition:

(1)
FSM for CUSF (SCSM-CUSF) moves to the sate N2.1: Preparing CUSF Instructions (TDP/EDP-R).

(2)
FSM for CUSF (SCSM-CUSF) remains in or moves to state N1: Idle (TDP-N or last EDP-N).

(3)
FSM for CUSF (SCSM-CUSF) remains in state N2.2: Waiting for Notification or Request (not last EDP-N).

10.4.4.2 Error Handling

Generic error handling for the operation related errors are described in section 12, and the TC service which are used for reporting operation errors are described in section 14.

10.5 ConnectAssociation procedure

10.5.1 General description

This operation is used to request the CUSF to proceed with processing. Additional information which shall be used in further association establishment is provided by the SCF.

CUSF continues association establishment (connection oriented bearer independent transport) to the specified destination using the address information received from the SCF. A two party association between the originating user/network application and the terminating user/network application is established. The communication path toward each of the user/network applications is identified by leg ID. If the release request event is received from the terminating user/network, then a follow-on association establishment is allowed.

10.5.2 Parameters

-
address
-
genericNumbers

10.5.3 Invoking Entity (SCF)

10.5.3.1 Normal Procedure

SCF Precondition

(1)
FSM for CUSF (SCSM-CUSF) is in the state N2: Preparing CUSF Instructions.

(2)
The SLPI has determined that a 'ConnectAssociation' has to be sent by the SCF.

SCF Postcondition

(1)
FSM for CUSF (SCSM-CUSF) moves to the state N1: Idle, if monitoring is not required, or moves to the state N2.2: Waiting for Notification or Request, if monitoring is required.

Note:
The information provided by the SCF depends on the service ASE located in the CUSF.

10.5.3.2 Error Handling

Geniric error handling for the operation related errors are described in section 12, and the TC service which are used for reporting operation errors are described in section 14.

10.5.4 Responding Entity (CUSF)

10.5.4.1 Normal Procedure

CUSF Precondition

(1)
Bearer unrelated association processing has been suspended at a DP.

(2)
CUSF-FSM is in the state b: Waiting For Instructions

CUSF Postcondition

(1)
CUSF continues association establishment (connection oriented bearer independent transport) to the specified destination using additional information from the SCF. A two -party association is established.

(2) CUSF-FSM moves to the state a: Idle, if monitoring is not required, or
to the state c: Monitoring, if monitoring of BCUSM events was requested in a previous operation.
(3) CUSF-FSM processing is resumed.

On receipt of this operation in the CUSF FSM state b: Waiting For Instructions, the CUSF performs following actions:

-
The CUSF cancels TCUSF.

10.5.4.2 Error Handling

Generic error handling for the operation related errors are described in section 12, and the TC service which are used for reporting operation errors are described in section 14.
10.6 ContinueAssociation procedure

10.6.1 General description

This operation is used to request the CUSF to proceed with processing. Additional information which is not related to further association establishment may be provided by the SCF. The SCF shall send either a SendComponent or a ContinueAssociation operation to request the CUSF to continue the call un-related processing from the suspended DP.

CUSF continues association establishment (connection oriented bearer independent transport) for the implied destination using any address information available in the BCUSM. A two party or a one party association between an originating user/network application and a terminating user/network application is established depending on the location of the termination point for the concerned service application. For example a one-party association may be established between the SCF representing the terminating ASE and a user/application in the network representing the originating ASE. The communication path toward user/network application is identified by leg ID.
10.6.2 Parameters

-
extensions
10.6.3 Invoking Entity (SCF)

10.6.3.1 Normal Procedure

SCF Precondition

(1)
FSM for CUSF (SCSM-CUSF) is in the state N2: Preparing CUSF Instructions.

(2)
The SLPI has determined that a 'ContinueAssociation' has to be sent by the SCF.

SCF Postcondition

(1) FSM for CUSF (SCSM-CUSF) moves to the state N1: Idle, if monitoring is not required, or moves to state N2.2: Waiting for Notification or Request, if monitoring is required.

(2)
FSM for CUSF (SCSM-CUSF) resumes processing from the current DP where processing was suspended.

(3)
If address information is available in the BCUSM to be used in further association establishment a two party association is set up, otherwise a one party association set-up applies.
Note:
The information provided by the SCF depends on the service ASE located in the CUSF.

10.6.3.2 Error Handling

Generic error handling for the operation related errors are described in section 12, and the TC service which are used for reporting operation errors are described in section 14.

10.6.4 Responding Entity (CUSF)

10.6.4.1 Normal Procedure

CUSF Precondition

(1)
Bearer unrelated association processing has been suspended at a DP.

(2)
CUSF-FSM is in the state b: Waiting For Instructions

CUSF Postcondition

(1)
CUSF continues association establishment (connection oriented bearer independent transport).

(2)
CUSF-FSM moves to the state a: Idle, if monitoring is not required, or
to the state c: Monitoring, if monitoring of BCUSM events was requested in a previous operation.

On receipt of this operation in the CUSF FSM state b: Waiting For Instructions, the CUSF performs following actions:

-
The CUSF cancels TCUSF.

10.6.4.2 Error Handling

Generic error handling for the operation related errors are described in section 12, and the TC service which are used for reporting operation errors are described in section 14.

10.7 EventReportBCUSM procedure

10.7.1 General description

This operation is used to notify the SCF of a call unrelated event previously requested by the SCF in an 'RequestReportBCUSMEvent' operation. The monitoring of more than one event could be requested with a 'RequestReportBCUSMEvent' operation, but each of these requested events is reported in a separate 'EventReportBCUSM' operation. This operation can be available in the following two cases.

Case1: EDP is detected by receiving a FACILITY information element (a ROSE APDU) from the user (refer to subclause 5.4.1.1.5 for modelling). In this case, component related parameters (componentType, component, and componentCorrelationID) are sent with this operation. The service ASE is located in the SCF, and the CUSF acts as a relay function between the user and the SCF. The SCF may send ROSE APDU informations and receive further ROSE APDU informations.
Case3: EDP is detected by requesting from a service ASE located in the CUSF for needing further information to establish a bearer independent association. The CUSF acts as a relay function between the service ASE and the SCF. The SCF provides additional information for the association processing.
10.7.2 Parameters

-
eventTypeBCUSM

-
eventSpecificInformationBCUSM
-
miscCallInfo
-
cUApplicationInd

-
legID
–
extensions

–
componentType: refer to the componentType parameter description in AssociationReleaseRequested operation procedure.
–
componentCorrelationID
–
component
10.7.3 Invoking entity (CUSF)

10.7.3.1 Normal procedure

CUSF Preconditions:

(1)
The CUSF FSM is in the state c: Monitoring.

(2)
The BCUSM proceeds to an EDP that is armed.

CUSF Postconditions:

(1)
The CUSF FSM stays in the state c: Monitoring, if the message type was notification and there are still EDPs armed.

(2)
The CUSF FSM moves to the state a: Idle, if the message type was notification and there are no more EDPs armed.

(3)
The CUSF FSM moves to the state b: Waiting for Instructions, if the message type was request. Bearer independent association processing is interrupted.

10.7.3.2 Error handling

In case the message type is request, on expiration of TCUSF before receiving any operation, the CUSF aborts the interaction with the SCF.

Operation related error handling is not applicable, due to class 4 operation.

10.7.4 Responding entity (SCF)

10.7.4.1 Normal procedure

SCF Preconditions:

(1)
FSM for CUSF (SCSM-CUSF) is in the state N2: Preparing CUSF Instructions, substate N2.2: Waiting for Notification or Request.

SCF Postconditions:

(1)
FSM for CUSF (SCSM-CUSF) remains in the substate N2.2: Waiting for Notification or Request, if the message type was notification and there are still EDPs armed, or

FSM for CUSF (SCSM-CUSF) moves to the state N1: Idle, if the message type was notification and there are no more EDPs armed, or

FSM for CUSF (SCSM-CUSF) moves to the substate N2.1: Preparing CUSF Instructions, if the message type was request.

(2)
The event is reported to a SLPI, based on the dialogue ID. The SCF will prepare CUSF instructions in accordance with the SLPI.

10.7.4.2 Error handling

Operation related error handling is not applicable, due to class 4 operation.

10.8 InitialAssociationDP procedure

10.8.1 General description

This operation is sent by the CUSF to the SCF after detecting a valid trigger condition at a BCUSM DP (reported as TDP). This operation can be available in the three cases described in subclause 10.1.1.

10.8.2 Parameters

-
serviceKey

-
cUApplicationInd: if this parameter exists, both uSIServiceIndicator and uSIInformation parameters shall not be used.
-
miscCallInfo
-
eventTypeBCUSM
-
calledPartyNumber

-
callingPartyNumber

-
callingPartySubaddress

-
highlayerCompatibility

-
bearerCapability

-
uSIServiceIndicator: if this parameter exists, the cUApplicationInd parameter shall not be used.
-
uSIInformation: if this parameter exists, the cUApplicationInd parameter shall not be used.

-
extensions

-
genericNumbers

-
componentType: refer to the componentType parameter description in ActivationReceivedAndAuthorized procedure when the ActivationReceivedAndAuthorized TDP is detected and in AssociationReleaseRequested operation procedure when the other TDP is detected..
-
componentCorrelationID
-
component
10.8.3 Invoking Entity (CUSF)

10.8.3.1 Normal Procedure

CUSF Precondition

(1)
CUSF-FSM is in the state a: Idle

(2)
The association has been established between the user and the network.

(3)
An event fulfilling the criteria for the DP being executed has been detected.

CUSF Postcondition

(1)
CUSF-FSM moves to the state b: Waiting For Instructions (TDP-R),

(2)
CUSF-FSM remains in or moves to the state a: Idle (TDP-N)

Note:
The information provided to the SCF depends on the service ASE located in the CUSF (case 1).

If the DP was armed as a TDP-R a control relationship is established to the SCF. The CUSF application timer TCUSF is set when the CUSF sends 'InitialAssociationDP' for requesting instructions from the SCF. It is used to prevent excessive call suspension time.

10.8.3.2 Error Handling

Generic error handling for the operation related errors are described in section 12, and the TC service which are used for reporting operation errors are described in section 14.

10.8.4 Responding Entity (SCF)

10.8.4.1 Normal Procedure

SCF Precondition

(1)
FSM for CUSF (SCSM-CUSF) is in the state N1: Idle

SCF Postcondition

(1)
FSM for CUSF (SCSM-CUSF) moves to the state N2.1: Preparing CUSF Instructions (TDP-R)

(2)
FSM for CUSF (SCSM-CUSF) remains in state N1: Idle (TDP-N)

(3)
Waiting for the request from the SLPI and CUSF instructions are being prepared.

10.8.4.2 Error Handling

Generic error handling for the operation related errors are described in section 12, and the TC service which are used for reporting operation errors are described in section 14.

10.9 InitiateAssociation Procedure

10.9.1 General description

This operation is used to allow the SCF to initiate a call unrelated association with the user.

10.9.2 Parameters

–
calledPartyNumber
–
uSIServiceIndicator
–
uSIInformation
–
genericNumbers

 Result parameters:

None.

10.9.3 Invoking entity (SCF)

10.9.3.1 Normal procedure

SCF Precondition:

(1)
FSM for CUSF (SCSM-CUSF) is in the state N1: Idle.

(2)
SLPI requests to initiate a call unrelated association with the user.

SCF Postcondition:

(1)
FSM for CUSF (SCSM-CUSF) prepares to send a component or USI information to the user and goes to the state N2: Preparing CUSF Instructions.
The SLPI shall send either a "SendComponent" or a "ContinueAssociation" operation to request the CUSF to continue the call unrelated processing from the suspended DP.
10.9.3.2 Error handling

Generic error handling for the operation related errors are described in section 12, and the TC service which are used for reporting operation errors are described in section 14.

10.9.4 Responding entity (CUSF)

10.9.4.1 Normal procedure

CUSF Precondition:

(1)
CUSF-FSM is in the state a: Idle.

CUSF Postcondition:

(1)
CUSF-FSM goes to the state b: Waiting For Instructions.
(2)
A Return Result is sent.

The BCUSM is instantiated and suspended at the ActivationReceivedAndAuthorized DP. The CUSF is waiting for subsequent instructions from the SCF.

10.9.4.2 Error handling

Generic error handling for the operation related errors are described in section 12, and the TC service which are used for reporting operation errors are described in section 14.

10.10 ReleaseAssociation procedure

10.10.1 General description

This operation is used to release an existing association between the user and the network by the SCF at the phase of preparing CUSF instructions the call unrelated interaction.

10.10.2 Parameters

–
Cause: this parameter indicates the reason why the SCF releases the association and may be used by CUSF to fill in the 'cause' in the association releasing message.
10.10.3 Invoking entity (SCF)

10.10.3.1 Normal procedure

SCF Precondition:

(1)
FSM for CUSF (SCSM-CUSF) is in the state N2: Preparing CUSF Instructions.

(2)
SLPI requests to release the association between the user and the network.

SCF Postcondition:

(1)
FSM for CUSF (SCSM-CUSF) moves to the state N1: Idle.

10.10.3.2 Error handling

Operation related error handling is not applicable, due to class 4 operation.

10.10.4 Responding entity (CUSF)

10.10.4.1 Normal procedure

CUSF Precondition:

(1)
CUSF-FSM is in the state b: Waiting for Instructions.

CUSF Postcondition:

(1)
CUSF releases the association with association release message which may contain previously specified component (by SendComponent) to the user.

(2)
CUSF-FSM moves to the state a: Idle.

10.10.4.2 Error handling

Operation related error handling is not applicable, due to class 4 operation.

10.11 ReportUTSI procedure

10.11.1 General description

This operation is used to notify the SCF of a USI previously requested by the SCF in a RequestReportUTSI operation.
Note: Refer to Q.1238.1 for a definition of the term “User” in the context of the OCCUUI mechanism.
A User to Service Information (USI) refers to either a UTSI or an STUI.
10.11.2 Parameters

–
uSIServiceIndicator
· legID
–
uSIInformation

· extensions
10.11.3 Invoking entity (CUSF)

10.11.3.1 Normal procedure

CUSF preconditions:

(1)
The CUSF FSM is in any state except "Idle".

(2)
The CUSF_USI FSM is in the state "Monitoring USI IE".

CUSF Postconditions:

(1)
The CUSF FSM remains in the same state.

(2)
The CUSF_USI FSM remains in the same state.

10.11.3.2 Error handling

Operation related error handling is not applicable, due to Class 4 operation.

10.11.4 Responding entity (SCF)

10.11.4.1 Normal procedure

The procedure is same as that of the corresponding operation procedure in Q.1238.2 by replacing the “SSF” with the “CUSF”.
10.11.4.2 Error handling

Operation related error handling is not applicable, due to Class 4 operation.
10.12 RequestReportBCUSMEvent Procedure

10.12.1 General description

This operation requests the CUSF to report the reception of the ROSE APDU from the user (optionally a ROSE APDU information pattern, e.g. FACILITY IE pattern, is specified as a DP criteria) or requests the CUSF to monitor for call unrelated events matching the requested criteria.
Table 5/Q.1238.7 – DP Arming Table for BCUSM
Nomenclature:

X = Arming applicable

- = Not Applicable
BCUSM
Controlling
leg
Passive
leg
Default
Leg ID

Activation_Received_And_Authorized DP 1)
-
-
-

Component_Received DP 2)
X
X
-

Association_Release_Requested DP 2)
X
X
-

1) Only applicable as TDP, because first DP that can be encountered cannot be armed as EDP.

2) The „legID“ parameter shall be included

10.12.2 Parameters

–
bCUSMEvents
–
componentTypes : this parameter indicates the one or more types of component that will be monitored. For example, “return result” is used to request the CUSF reporting the result of the previous invocation of an operation from the SCF.

–
componentCorrelationID
–
monitorDuration
–
cUDPCriteria
–
legID
10.12.3 Invoking Entity (SCF)

10.12.3.1 Normal Procedure

SCF Precondition:

(1)
FSM for CUSF (SCSM-CUSF) is in the state N2.1: preparing CUSF instructions.

(2)
SLPI requests to monitor the reception of a component form the user or requests to monitor for call unrelated events matching the requested criteria.

SCF Postcondition:

(1)
FSM for CUSF (SCSM-CUSF) remains in the same state N2.1: preparing CUSF instructions.

10.12.3.2 Error Handling

Generic error handling for the operation related errors are described in section 12, and the TC service which are used for reporting operation errors are described in section 14.

10.12.4 Responding Entity (CUSF)

10.12.4.1 Normal Procedure

CUSF Precondition:

(1)
CUSF-FSM is in the state b: Waiting for instructions.

CUSF Postcondition:

(1)
CUSF starts the monitoring process for the specified event(s) or clears the armed EDP(s).

(2)
CUSF-FSM remains in the same state.
(3)
Requested events are monitored until the EDPs are detected or until the monitor duration is elapsed.
10.12.4.2 Error Handling

Generic error handling for the operation related errors are described in section 12, and the TC service which are used for reporting operation errors are described in section 14.

10.13 RequestReportUTSI Procedure

10.13.1 General Description

This operation is used to request the CUSF to monitor for the receipt of a USI IE with a given ServiceIndicator value, then send this USI IE back to the SCF when this IE is received.

Note: Refer to Q.1238.1 for a definition of the term “User” in the context of the OCCUUI mechanism.
A User to Service Information (USI) IE reffers to either a UTSI IE or an STUI IE.

10.13.2 Parameters

· requestedUTSIList

· extensions

· legID

10.13.3 Invoking entity (SCF)

10.13.3.1 Normal procedure

The procedure is same as that of the corresponding operation procedure in Q.1238.2 by replacing the “SSF” with the “CUSF”.
10.13.3.2 Error handling

Generic error handling for the operation related errors are described in section 12, and the TC service which are used for reporting operation errors are described in section 14.

10.13.4 Responding entity (SSF)

10.13.4.1 Normal procedure

CUSF Preconditions:

(1)
The CUSF FSM is any state except "Idle".

(2)
The CUSF_USI FSM is in any state.

CUSF Postconditions:

(1)
The CUSF FSM remains in the same state.

(2)
The CUSF_USI FSM moves to the state "Monitoring USI" (if the USIMonitorMode is "monitoringActive") or to the state "Idle" (if the USIMonitorMode is "monitoringInactive").

10.13.4.2 Error handling

Generic error handling for the operation related errors are described in section 12, and the TC service which are used for reporting operation errors are described in section 14.

10.14 SendComponent Procedure

10.14.1 General description

This operation requests the CUSF to send the specified FACILITY information to the user.

10.14.2 Parameters

–
componentType: this parameter indicates the type of component that will be delivered to the user. For example, “return result” is used to report the result of the previous invocation of an operation from a user.

–
componentCorrelationID
–
message
–
monitorDuration
–
extensions

–
component : this parameter indicates the component that will be delivered to the user.

10.14.3 Invoking Entity (SCF)

10.14.3.1 Normal Procedure

SCF Precondition:

(1)
FSM for CUSF (SCSM-CUSF) is in the state N2: Preparing CUSF Instructions.

(2)
SLPI requests to send the component to the user.

SCF Postcondition:

(1)
FSM for CUSF (SCSM-CUSF) remains in the sate N2: Preparing CUSF Instructions if monitoring is not required or moves to state N2.2: Waiting for Notification or Request if monitoring is required.

10.14.3.2 Error Handling

Generic error handling for the operation related errors are described in section 12, and the TC service which are used for reporting operation errors are described in section 14.

10.14.4 Responding Entity (CUSF)

10.14.4.1 Normal Procedure

CUSF Precondition:

(1)
CUSF-FSM is in the state b: Waiting For Instructions.

CUSF Postcondition:

(1)
CUSF send specified component to the user with appropriate message, but if the association release message is specified to send the component, it will be cued until the association release request received.

(2)
CUSF-FSM remains in the state b: Waiting For Instructions if an EDP is armed or moves to the state c: Monitoring..

10.14.4.2 Error Handling

Generic error handling for the operation related errors are described in section 12, and the TC service which are used for reporting operation errors are described in section 14.
10.15 SendSTUI procedure

10.15.1 General description

This operation is used to request the CUSF to forward an STUI with a given ServiceIndicator value to the User (indicated by leg ID).
Note: Refer to Q.1238.1 for a definition of the term “User” in the context of the OCCUUI mechanism.

10.15.2 Parameters

–
uSIServiceIndicator

–
legID
–
uSIInformation

–
extensions

10.15.3 Invoking entity (SCF)

10.15.3.1 Normal procedure

The procedure is same as that of the corresponding operation procedure in Q.1238.2 by replacing the “SSF” with the “CUSF”.
10.15.3.2 Error handling

Generic error handling for the operation related errors are described in section 12, and the TC service which are used for reporting operation errors are described in section 14.
10.15.4 Responding entity (SSF)

10.15.4.1 Normal procedure

CUSF Preconditions:

(1)
The CUSF FSM is any state except "Idle".

(2)
The CUSF_USI FSM is in any state.

CUSF Postconditions:

(1)
The CUSF FSM remains in the same state.

(2)
The CUSF_USI FSM remains in the same state.

On receipt of this operation, the CUSF will forward the STUI IE to the User (identified by the LegID).

10.15.4.2 Error handling

Generic error handling for the operation related errors are described in section 12, and the TC service which are used for reporting operation errors are described in section 14.
11. Parameters
11.1 Address
This parameter contains the called party number to be used in the further association establishment (connection oriented bearer independent transport). See Q.762.
11.2 BCUSMEvents

This parameter indicates how and which DP should be reported (DP name and report mode, Notify, Interrupt, or transparent). This parameter consists of one or more BCUSM events. Respective BCUSM events are a sequence of

· eventTypeBCUSM: see clause 11.16.

· monitorMode: see clause 11.24.

11.3 BearerCapability

This parameter indicates the type of the bearer capability connection or the transmission medium requirements to the user. It is a network option to select one of the two parameters to be used:

-
bearerCap:
This parameter contains the value of the DSS.1 Bearer Capability parameter (Q.931) in case the CUSF is at local exchange level or the value received in a TC message.

The parameter 'bearerCapability' is included in an 'InitialAssociationDP' or a DP specific operation in case the Bearer Capability parameter is available.

If two values for bearer capability are available at the CUSF or if User Service Information and User Service Information Prime are available at the CUSF, the 'bearerCap' shall contain the value of the preferred bearer capability or the value of the User Service Information Prime parameter respectively.

-
tmr:
Refer to Q.1238.2.

Depending on the parameters of the feature specific operation, the BearerCapability can be retrieved from the operation, which builds up the association (in case of CCBS the BearerCapability is a mandatory part of the CCBS request).

11.4 CalledPartyNumber

This parameter contains the number used to identify the called party in the forward direction, i.e. see Q.762.

The CalledPartyNumber is available in the respective DSS1 IE (local exchange only) and/or in the feature specific operation, which builds up the association (e.g. in case of CCBS CalledNumber is a mandatory part of the CCBS request).

11.5 CallingPartyNumber

This parameter contains the address of the calling party. See Q.762 Calling Party Number signalling information.

The CallingPartyNumber is available in the respective DSS1 IE (local exchange only) and/or can be retrieved from the feature specific operation, which builds up the association (e.g. in case of CCBS CallingPartyNumber is an optional part of the CCBS request).
11.6 CallingPartySubaddress

The information contained in this parameter is available either as a result of DSS.1 or bearer unrelated (TC) signalling.

The CallingPartySubaddress is available in the respective DSS1 IE (local exchange only) and/or can be retrieved from the feature specific operation, which builds up the association (e.g. in case of CCBS CallingPartySubaddress is part of the optional parameter AccessTransport of the CCBS request)

This parameter contains information that may not have been checked by the network for coding errors.

11.7 CallUnrelatedDpSpecificCommonParameters

This parameter contains a list of subparameters valid for the DP specific operations.

- ServiceAddressInformation

- CallingPartyNumber

- LocationNumber

- TerminalType

- USIServiceIndicator
- USIInformation
- CUApplicationInd

- CalledPartyNumber

- CallingPartySubadress

- HighLayerCompatibility

- BearerCapability

- GenericNumbers
For details of the parameters refer to the parameter description in this section.
11.8 Cause

This parameter indicates the reason of releasing the specific association.

A number giving an indication to the CUSF about the reason of releasing this specific association. This may be used by CUSF to fill in the 'cause' in the association releasing message.
11.9 Component

This parameter is derived from the UNI APDU or mapped to the UNI APDU depending on the transfering direction of this parameter (CUSF to SCF for the formaer and SCF to CUSF for the latter. Two alternatives are possible according to the data type and one of which should be chosen.

Case1:
component data type is chosen as OCTETSTRING, it contains the operation value (object identifier) error value etc. within the UNI APDU, in addition also contains the parameter set/sequence for the operation invocation/return result or return error/reject on UNI. See Q.932 for encoding.

Case2:
component data type is chosen as EMBEDDED-PDV, in this case componentType and componentCorrelationID shall not be used.

11.10 ComponentCorrelationID

This parameter links the invoke ID that is used by the CUSF and the SCF with the invoke ID assigned between the user and the network locally. The value indicated in this parameter is used to correlate the response from the SCF (which will be done by SendComponent) within the CUSF.

11.11 ComponentType

This parameter indicates the type of ROSE component (invoke, return result, return error, and reject). This is derived from/to the UNI APDU or used for indicating the monitor condition.
11.12 ComponentTypes

This parameter indicates one or more component types. Refer to the clause 11.11 as for the component type.
11.13 CUApplicationInd

This parameter identifies the triggered application (case service ASE located in the CUSF). It is derived CUSF internally. This parameter shall indicate the operation code of the triggered application specific operation. Two type of values shall be supported: global values for standardised applications and local values for non-standardised applications.
11.14 CUDPCriteria
This parameter identifies the EDP criteria for the requested DP. This EDP criteria may correspond to the parameter component or cUApplicationInd in the 'InitialAssociationDP' or DP specific operations.
When this parameter is provided, ComponentType and ComponentCorrelationID may not be used
11.15 EventSpecificInformationBCUSM

This parameter indicates the call unrelated information according to the detected EDP. It is derived CUSF internally based on the armed EDP.
- componentReceivedSpecificInfo

- componentReceivedInfo: this parameter indicates additional information about the component, but not the component itself.
- associationReleaseRequestedSpecificInfo

- associationReleaseInfo: this parameter indicates additional information about the component, but not the component itself.
- releaseCause: this parameter indicates the reason why the association is released.

11.16 EventTypeBCUSM

This parameter specifies the type of BCUSM DP event that is reported. It is derived CUSF internally based on the armed TDP or EDP.

11.17 GenericNumbers

This parameter indicates one or more additional numbers. Refer to Q.762.

Depending on the parameters of the feature specific operation the GenericNumber can be retrieved from the operation, which builds up the association.
11.18 HighLayerCompatibility

This parameter indicates the type of the high layer compatibility, which will be used to determine the ISDN - teleservice of a connected ISDN terminal. For encoding DSS.1 (Q.931) is used.
The HighLayerCompatibility is available in the respective DSS1 IE (local exchange only) and/or can be retrieved from the feature specific operation, which builds up the association (e.g. in case of CCBS the HighLayerCompatibility is part of the optional parameter AccessTransport of the CCBS request).

11.19 LegId

This parameter indicates the party in the association for which the event is reported. CUSF will use the option 'receivingSideID' only. SCF will use the option 'sendingSideID' only. The "LegID" parameter shall always be included for the events ComponentReceived and AssociationReleaseRequested.
The leg numbering is based on the following principles:

· When TDP is detected, legID = 1 is the side that has initiated the association (controlling leg) and legID = 2 is the other side (passive leg). The other side association is initiated by a ContinueAssociation or ConnectAssociation operation.
· When an InitiateAssociation operation is used, legID =2 is the side that has initiated the association specified by this operation (passive leg).
11.20 LocationNumber

This parameter indicates the Location Number for the calling party, refer to Q.762.
11.21 Message

This parameter distinguishes the message to be used for delivering the component to the user. (REL, RELCOMP, FACILITY)
11.22 MiscCallInfo

This parameter indicates the DP related information. This is derived in CUSF and consists of a sequence of

· messageType: this parameter indicates whether the message is a ‘request’ or a ‘notification’.
The ‘request’ is used if resulting from a TDP/EDP which needs call unrelated processing suspension for the SCF instructions. In this case, the EDP is requested by the RequestReportBCUSMEvent with “monitorMode” = ‘interrupted’.

The ‘notification’ is used if resulting from a TDP/EDP which does not need call unrelated processing suspension for the SCF instructions. In this case, the EDP is requested by the RequestReportBCUSMEvent with “monitorMode” = ‘notifyAndContinue’.

· dPAssignment: this parameter shall be omitted in an EDP report case.
11.23 MonitorDuration
This parameter indicates how long the CUSF should monitor the component transmission result.
11.24 MonitorMode

See Q.1238.2.

11.25 RequestedUTSIList

This parameter indicates the USI related Information list which the SCF requests CUSF to monitor. This consists of one or more sequence of uSIServiceIndicator (refer to the clause 11.30) and uSIMonitorMode (monitoring active or inactive)..

11.26 ServiceAddressInformation

This parameter indicates the trigger related information. It is derived in CUSF. This parameter consists of a sequence of

- serviceKey: see clause 11.27,

- miscCallInfo: see clause 11.22, and

- triggerType: this parameter indicates to the SCF the particular event which caused the detection of a valid trigger condition.

11.27 ServiceKey

See Q.1238.2.

11.28 TerminalType

See Q.1238.2. The absence of this parameter means that the terminal type is “ISDN”.

11.29 USIInformation

This parameter conveys information provided by the User dedicated to the Service Logic or Service Logic dedicated to the User. It is transparent at the CUSF level.
11.30 USIServiceIndicator

This parameter indicates a destination of the accompanied USI information (UTSI and STUI information).
12. Error Procedures
This clause defines the error procedures for the CUSF-SCF interface. Error descriptions are provided in Part 1 of this Recommendation and the following sub-clauses provide operation related error procedures and when relevant, error procedures related to error conditions which are not directly related to the failure of an operation.

12.1 Operation related error procedures

The following sub-clauses define the generic error handling for the operation related error procedures on the CUSF-SCF interface. The errors are defined as operation errors in the ASN.1 operations related description. The TC services which are used for reporting operations errors are described in section 14.

The following table provides the list of operations which may return each of the errors used on the CUSF-SCF interface.
Table 6/Q.1238.7 – Available errors for each operation

SCF->CUSF

CUSF->SCF

Errors
I

A
R

R

B
u

E
S
d

C
C

A

C
t

A
R

R

U

T

S

I
S

S

T

U

I

A

R

A
A

R

R
C

R
I

A

D

P

MissingCustomerRecord

X
X
X
X

MissingParameter
X
X
X
X
X
X
X

X
X
X
X

ParameterOutOfRange
X
X
X
X
X
X
X

X
X
X
X

SystemFailure
X
X
X
X
X
X
X

X
X
X
X

TaskRefused
X
X
X
X
X
X
X

X
X
X
X

UnexpectedComponentSequence
X
X
X
X
X
X
X

X
X
X
X

UnexpectedDataValue
X
X
X
X
X
X
X

X
X
X
X

UnexpectedParameter
X
X
X
X
X
X
X

X
X
X
X

UnknownLegID

X

X

X
X

Used abbreviations:
Operations SCF-> CUSF

IA
InitiateAssociation

RRBuE
RequestReportBCUSMEvent

SdC
SendComponent

CtA
ConnectAssociation

CA
ContinueAssociation

RRUTSI
RequestReportUTSI

SSTUI
SendSTUI

Operations CUSF -> SCF

ARA
ActivationReceivedAndAuthorized

ARR
AssociationReleaseRequested

CR
ComponentReceived

IADP
InitialAssociationDP

Note: If the inconsistency exists, ASN.1 definition takes precidence.

12.1.1 MissingCustomerRecord

The MissingCustomerRecord error is defined in Part 1 of Recommendation Q.1238.

12.1.1.1 CUSF -> SCF direction
This clause describes the procedure when the error for an operation invoked from the CUSF occurs in the SCF.

12.1.1.1.1 Procedures at the invoking entity (CUSF)

A) Sending Operation

Precondition:

CUSF FSM state a
Idle.

Postcondition:

CUSF FSM state b
Waiting for Instructions.

B) CUSF receives Error "MissingCustomerRecord"

Precondition:

CUSF FSM state b
Waiting for Instructions.

Postcondition:

CUSF FSM state a
Idle.

The CUSF continues to handle the association or terminate the association with default procedures (network operator specific).
12.1.1.1.2 Procedures at the responding entity (SCF)

Precondition:
(1) FSM for CUSF appropriate state (in State N1 Idle).

(2) FSM for CUSF Operation received, appropriate event occurred.

Postcondition:
(1) FSM for CUSF state N1
Idle.

The FSM for CUSF detects that the required Service Logic Program does not exist. This is the same situation as for the SSF-SCF case.

12.1.2 MissingParameter

The MissingParameter error is defined in Part 1 of Recommendation Q.1238.

12.1.2.1 SCF-> CUSF direction
This clause describes the procedure when the error for an operation invoked from the SCF occurs in the CUSF.

12.1.2.1.1 Procedures at the invoking entity (SCF)

A) Sending Operation

Precondition:

FSM for CUSF
state N1
Idle

or
FSM for CUSF
state N2.1
Preparing CUSF Instructions.

Postcondition:

FSM for CUSF
state N2.1
Preparing CUSF Instructions

or
FSM for CUSF
state N2.2
Waiting for Notification or Request.

B) SCF receives Error "MissingParameter"

Precondition:

FSM for CUSF
state N2.1
Preparing CUSF Instructions

or
FSM for CUSF
state N2.2
Waiting for Notification or Request.

Postcondition:

FSM for CUSF
transition to the initial state (i.e., before sending the erroneous operation).

The Service Logic and maintenance functions are informed. Further treatment of the call unrelated processing is dependent on Service Logic.

12.1.2.1.2 Procedures at the responding entity (CUSF)

Precondition:

(1) CUSF FSM
any appropriate state.

(2) CUSF FSM
an operation received, appropriate event occurred.

Postcondition:

(1) CUSF FSM
transition to the same state.

The CUSF FSM detects the error in the received operation. The Error parameter is returned to inform the SCF of this situation.

12.1.2.2 CUSF -> SCF direction
This clause describes the procedure when the error for an operation invoked from the CUSF occurs in the SCF.

12.1.2.2.1 Procedures at the invoking entity (CUSF)
A1) CUSF sends a TDP operation.

Precondition:

CUSF FSM
state a
Idle

Postcondition:

CUSF FSM
state a
Idle

or
CUSF FSM
state b
Waiting for Instructions

A2) CUSF sends an EDP operation.

Precondition:

CUSF FSM
state b
Waiting for Instructions

or
CUSF FSM
state c
Monitoring.

Postcondition:

CUSF FSM
state a
Idle

or
CUSF FSM
state b
Waiting for Instructions

or
CUSF FSM
state c
Monitoring.

B) CUSF receives the "MissingParameter" error.

Precondition:

CUSF FSM
state a
Idle

or
CUSF FSM
state b
Waiting for Instructions

or
CUSF FSM
state c
Monitoring.

Postcondition:

CUSF FSM
state a
Idle.

After receiving this Error, the CUSF FSM returns to the state Idle. The CUSF terminates the association if necessary. If the supplementary service is already active and ready for responding, the CUSF may maintain the association and continue service processing. The choice between these two options is network operator specific.

12.1.2.2.2 Procedures at the responding entity (SCF)

Precondition:
(1) FSM for CUSF
any appropriate state.

(2) FSM for CUSF
Operation received, appropriate event occurred.

Postcondition:
(1) FSM for CUSF
state N1
Idle; in case of any operation listed above.

The FSM for CUSF detects the erroneous situation. The Error parameter is used to inform the CUSF of this situation. The Service Logic and maintenance functions are informed.
12.1.3 ParameterOutOfRange

The ParameterOutOfRange error is defined in Part 1 of Recommendation Q.1238.
This error procedure is same as the MissingParameter error procedure.
12.1.4 SystemFailure

The SystemFailure error is defined in Part 1 of Recommendation Q.1238.
This error procedure is same as the MissingParameter error procedure.
12.1.5 TaskRefused

The TaskRefused error is defined in Part 1 of Recommendation Q.1238.
This error procedure is same as the MissingParameter error procedure.
12.1.6 UnexpectedComponentSequence

The UnexpectedComponentSequence error is defined in Part 1 of Recommendation Q.1238.
This error procedure is same as the MissingParameter error procedure.
12.1.7 UnexpectedDataValue

The UnexpectedDataValue error is defined in Part 1 of Recommendation Q.1238.
This error procedure is same as the MissingParameter error procedure.
12.1.8 UnexpectedParameter

The UnexpectedParameter error is defined in Part 1 of Recommendation Q.1238.
This error procedure is same as the MissingParameter error procedure.
12.1.9 UnknownLegID

The UnknownLegID error is defined in Part 1 of Recommendation Q.1238.
This error procedure is same as the MissingParameter error procedure.
12.2 Entity related error procedures

The following subclauses define the error handling for the entity related errors. Since the error situations are not originated by the reception of an operation, the invoking entity is denoted here as the entity at which the error situation is detected. The responding entity is the entity which receives the error report.

The TCAP services used for reporting errors are described in Q.1238.1.

12.2.1 Expiration of Tcusf
12.2.1.1 Error description

This error occurs in the CUSF because of an expiration of an application timer Tcusf

12.2.1.2 Procedures at the invoking entity (CUSF)

Timeout occurs in CUSF for Tcusf
Precondition:
CUSF FSM state b: Waiting for instructions.

Postcondition:
CUSF FSM state a: Idle.

The CUSF FSM aborts the dialogue and moves to the Idle state, and the CUSF terminates the association if necessary (e.g., default exception handling). The abort is reported to the maintenance functions.

12.2.1.3 Procedures at the responding entity (SCF)

SCF receives a dialogue abort

Precondition:
Any state.

Postcondition:
FSM for CUSF state N1: Idle.

The SCF releases all allocated resources and reports the abort to the maintenance functions.
13. ASN.1 definitions

13.1 Data types
This clause specifies the data type definitions of parameters used in CUSF-SCF relationship. Refer to the other parts of this Recommendation for the other data type definitions not specified in this clause.

IN-CS3-SCF-CUSF-Datatypes {ccitt recommendation q 1238 modules(1) in-cs3-scf-cusf-datatypes(24) version1(0)}

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

IMPORTS

ros-InformationObjects,

common-classes,

common-datatypes,

ssf-scf-classes,

scf-cusf-classes,

ssf-scf-datatypes

FROM IN-CS3-object-identifiers {ccitt recommendation q 1238 modules(1) in-cs3-object-identifiers (0) version1(0)}
COMMON-BOUNDS

FROM IN-CS3-common-classes common-classes

Extensions{}

FROM IN-CS3-common-datatypes common-datatypes

SCF-SSF-BOUNDS

FROM IN-CS3-SSF-SCF-Classes ssf-scf-classes

SCF-CUSF-BOUNDS

FROM IN-CS3-SCF-CUSF-Classes scf-cusf-classes

BearerCapability {},

CalledPartyNumber {},

CallingPartyNumber {},

CallingPartySubaddress {},

Cause {},

GenericNumbers {},

HighLayerCompatibility,

LocationNumber {},

MiscCallInfo,

MonitorMode,

ServiceAddressInformation,

TerminalType,

USIInformation {},

USIServiceIndicator {}
FROM IN-CS3-ssf-scf-datatypes ssf-scf-datatypes

;

-- The following three definitions are local short-hand notation for convenience.

B1 ::= COMMON-BOUNDS

B2 ::= SCF-CUSF-BOUNDS

B3 ::= SCF-SSF-BOUNDS

BCUSMEvent ::= SEQUENCE{

eventType
[0] EventTypeBCUSM,

monitorMode
[1] MonitorMode,

...

}
CallUnrelatedDpSpecificCommonParameters {B1 : b1, B3:b3} ::= SEQUENCE {

serviceAddressInformation
[0] ServiceAddressInformation,

callingPartyNumber
[1] CallingPartyNumber {b3}
OPTIONAL,

locationNumber
[2] LocationNumber {b3}
OPTIONAL,

terminalType
[3] TerminalType
DEFAULT isdn,

extensions
[4] Extensions {b1}
OPTIONAL,

uSIServiceIndicator
[5] USIServiceIndicator {b3}

OPTIONAL,

uSIInformation
[6] USIInformation {b3}
OPTIONAL,

cUApplicationInd
[7] CUApplicationInd
OPTIONAL,

calledPartyNumber
[8] CalledPartyNumber{b3}
OPTIONAL,

callingPartySubadress
[9] CallingPartySubaddress{b3}
OPTIONAL,

highLayerCompatibility
[10] HighLayerCompatibility
OPTIONAL,

bearerCapability
[11] BearerCapability{b3}
OPTIONAL,

genericNumbers
[12] GenericNumbers {b3}
OPTIONAL,

...

}

CUApplicationInd ::= CHOICE{

localValue
[0] INTEGER,

globalValue
[1] OBJECT IDENTIFIER

}

EventSpecificInformationBCUSM {B2:b2, B3:b3} ::= CHOICE{

componentReceivedSpecificInfo [0] SEQUENCE{

componentReceivedInfo
[0] OCTET STRING (SIZE(b2.&minCompReceivedInfoLen

 ..b2.&maxCompReceivedInfoLen))
OPTIONAL,

...

},

associationReleaseRequestedSpecificInfo [1] SEQUENCE{

associationReleaseInfo
[0] OCTET STRING (SIZE(b2.&minAssReleaseInfoLen

 ..b2.&maxAssReleaseInfoLen)
OPTIONAL,

releaseCause
 [1] Cause {b3}
OPTIONAL,

...

}

}
--For the OCTET STRING type parameters (componentReceivedInfo and associationReleaseInfo),

--its content is network operator specific. The internal coding of this parameter can be defined using ASN.1 and
-- the related Basic Encoding Rules (BER). In such a case the value of this parameter (after the first tag and length
--information) is the BER encoding of the defined ASN.1 internal structure. The tag of this parameter as defined by
--ITU-T is never replaced.
EventTypeBCUSM ::= ENUMERATED{

componentReceived(127),

associationReleaseRequested(126),

activationReceivedAndAuthorized(125)

}

Message ::= ENUMERATED{

rELease(77),

rELeaseCOMPlete(90),

fACility(98)

}

-- Specifies the message to be used for sending the component.
END

13.2 Class definition

This clause specifies the class definitions and the class type definitions used in CUSF-SCF relationship.

IN-CS3-SCF-CUSF-Classes {ccitt recommendation q 1238 modules(1) in-cs3-scf-cusf-classes(25) version1(0)}

DEFINITIONS ::=

BEGIN

IMPORTS

common-classes,

ssf-scf-classes

FROM IN-CS3-object-identifiers {ccitt recommendation q 1238 modules(1) in-cs3-object-identifiers (0) version1(0)}

COMMON-BOUNDS

FROM IN-CS3-common-classes common-classes

SCF-SSF-BOUNDS

FROM IN-CS3-SSF-SCF-Classes ssf-scf-classes

;

SCF-CUSF-BOUNDS ::= CLASS

{

&minAssReleaseInfoLen
INTEGER
OPTIONAL,

&maxAssReleaseInfoLen
INTEGER
OPTIONAL,

&minCompReceivedInfoLen
INTEGER
OPTIONAL,

&maxCompReceivedInfoLen
INTEGER
OPTIONAL,

&numOfBCUSMEvents
INTEGER
OPTIONAL

}

WITH SYNTAX

{

[MINIMUM-FOR-ASS-RELEASE-INFO-LENGTH
&minAssReleaseInfoLen]

[MAXIMUM-FOR-ASS-RELEASE-INFO-LENGTH
&maxAssReleaseInfoLen]

[MINIMUM-FOR-COMP-RECEIVED-INFO-LENGTH
&minCompReceivedInfoLen]

[MAXIMUM-FOR-COMP-RECEIVED-INFO-LENGTH
&miaxCompReceivedInfoLen]

[NUM-OF-BCUSM-EVENTS
&numOfBCUSMEvents]

}

-- The following definitions of the parameter bounds are an example.

-- Appropriate values will be defined as network specific.

sCFCUSFBoundSet SCF-CUSF-BOUNDS ::=

{

MINIMUM-FOR-ASS-RELEASE-INFO-LENGTH
5

MAXIMUM-FOR-ASS-RELEASE-INFO-LENGTH
10

MINIMUM-FOR-COMP-RECEIVED-INFO-LENGTH
5

MAXIMUM-FOR-COMP-RECEIVED-INFO-LENGTH
10

NUM-OF-BCUSM-EVENTS
2

}
sCFSSFBoundSetforCUSF SCF-SSF-BOUNDS ::=

{

MAXIMUM-FOR-BEARER-CAPABILITY
5

MINIMUM-FOR-CALLED-PARTY-NUMBER
2

MAXIMUM-FOR-CALLED-PARTY-NUMBER
10

MINIMUM-FOR-CALLING-PARTY-NUMBER
2

MAXIMUM-FOR-CALLING-PARTY-NUMBER
10

MINIMUM-FOR-CALLING-PARTY-SUBADDRESS
 2

MAXIMUM-FOR-CALLING-PARTY-SUBADDRESS
5

MAXIMUM-FOR-CAUSE

10

MINIMUM-FOR-GENERIC-NUMBER

3

MAXIMUM-FOR-GENERIC-NUMBER

10

MINIMUM-FOR-LOCATION-NUMBER
2

MAXIMUM-FOR-LOCATION-NUMBER
10

MINIMUM-FOR-REQUESTED-UTSI-NUM
1

MAXIMUM-FOR-REQUESTED-UTSI-NUM
5

MINIMUM-FOR-USI-INFORMATION

1

MAXIMUM-FOR-USI-INFORMATION

20

MINIMUM-FOR-USI-SERVICE-INDICATOR
1

MAXIMUM-FOR-USI-SERVICE-INDICATOR
10

NUM-OF-GENERIC-NUMBERS

5
}
commonBoundSetforCUSF COMMON-BOUNDS ::=

{

NUM-OF-EXTENSIONS
1

}
END

13.3 Operations and arguments

This clause specifies the operation definitions and the argument definitions used in CUSF-SCF relationship. Refer to the other parts of this Recommendation for the other operation definitions and the argument type definitions not specified in this clause.

IN-CS3-SCF-CUSF-Operations {ccitt recommendation q 1238 modules(1) in-cs3-scf-cusf-ops-args (26) version1(0)}

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

IMPORTS

ros-InformationObjects,

common-classes,

common-datatypes

scf-cusf-classes,

scf-cusf-datatypes,

ssf-scf-datatypes,

ssf-scf-Operations,

ssf-scf-classes,

errortypes,

operationcodes

FROM IN-CS3-object-identifiers {ccitt recommendation q 1238 modules(1) in-cs3-object-identifiers (0) version1(0)}

OPERATION
FROM Remote-Operations-Information-Objects ros-InformationObjects

COMMON-BOUNDS

FROM IN-CS3-common-classes common-classes

Extensions{}

FROM IN-CS3-common-datatypes common-datatypes

SCF-SSF-BOUNDS

FROM IN-CS3-SSF-SCF-Classes ssf-scf-classes

SCF-CUSF-BOUNDS

FROM IN-CS3-SCF-CUSF-Classes scf-cusf-classes

BCUSMEvent,

CallUnrelatedDpSpecificCommonParameters,

CUApplicationInd,

EventSpecificInformationBCUSM,

EventTypeBCUSM,

Message
FROM IN-CS3-SCF-CUSF-Datatypes scf-cusf-datatypes

BearerCapability {},

CalledPartyNumber {},

CallingPartyNumber {},

CallingPartySubaddress {},

Cause {},

Component,

ComponentType,

ComponentCorrelationID,

Duration,

GenericNumbers {},

HighLayerCompatibility,

LocationNumber {},

MiscCallInfo,

MonitorMode,

ServiceAddressInformation,

TerminalType,

USIInformation {},

USIServiceIndicator {},
FROM IN-CS3-SSF-SCF-Datatypes ssf-scf-datatypes

missingCustomerRecord,

missingParameter,

parameterOutOfRange,

systemFailure,

taskRefused,

unexpectedComponentSequence,

unexpectedDataValue,

unexpectedParameter,

unknownLegID

FROM IN-CS3-Errortypes errortypes

opcode-activationReceivedAndAuthorized,

opcode-initiateAssociation,

opcode-associationReleaseRequested,

opcode-componentReceived,

opcode-releaseAssociation,

opcode-requestReportBCUSMEvent,

opcode-sendComponent,

opcode-initialAssociationDP,

opcode-connectAssociation,

opcode-continueAssociation,

opcode-eventReportBCUSM

FROM IN-CS3-operationcodes operationcodes

activityTest,

-- Direction: SCF -> CUSF, Timer: Tat

-- This operation is used to check for the continued existence of a relationship between the SCF and CUSF.

-- If the relationship is still in existence, then the CUSF will respond. If no reply is received, then the SCF will assume

-- that the CUSF has failed in some way and will take the appropriate action.

reportUTSI {},

-- Direction: CUSF -> SCF, Timer: Tru

-- This operation is issued by the CUSF in the context of the USI feature. It is used to report the receipt

-- of a User to Service Information (UTSI) information element to the SCF.

requestReportUTSI {},

-- Direction: SCF -> CUSF, Timer: Trru

-- This operation is used by the SCF in the context of the USI feature to request the CUSF to monitor

-- a User-to-Service Information (UTSI) information element, which is received from a user.

sendSTUI {}

-- Direction: SCF -> CUSF, Timer: Tss

-- This operation is issued by the SCF in the context of the USI feature. It is used to request the CUSF

-- to send a Service-to-User Information (UTSI) information element to the indicated user.

FROM IN-CS3-SSF-SCF-Operations ssf-scf-Operations

;

-- The following three definitions are local short-hand notation for convenience.

B1 ::= COMMON-BOUNDS

B2 ::= SCF-CUSF-BOUNDS

B3 ::= SCF-SSF-BOUNDS

activationReceivedAndAuthorized {B1:b1, B3:b3} OPERATION ::= {

ARGUMENT
ActivationReceivedAndAuthorizedArg {b1, b3}

RETURN RESULT
FALSE

ERRORS
{missingCustomerRecord |

missingParameter |

parameterOutOfRange |

systemFailure |

taskRefused |

unexpectedComponentSequence |

unexpectedDataValue |

unexpectedParameter

}

ALWAYS RESPONDS
FALSE

CODE
opcode-activationReceivedAndAuthorized

}

-- Direction: CUSF->SCF, Timer: Tara

--
This operation is used to indicate the desire from an end user to establish an association between the end user

--
and a network (e.g., Q.932 REGISTER message), and the authority/ability to establish the association is

--
verified (BCUSM DP - Activation Received And Authorized). As the association request can have a request to

--
invoke an operation between the user and the network, this operation optionally indicates the component of

--
the operation to the SCF.

ActivationReceivedAndAuthorizedArg {B1:b1, B3:b3} ::= SEQUENCE{

callUnrelatedDpSpecificCommonParameters [0] CallUnrelatedDpSpecificCommonParameters {b1, b3},

componentType
[1] ComponentType
OPTIONAL,

componentCorrelationID
[3] ComponentCorrelationID
OPTIONAL,

extensions
[4] Extensions {b1}
OPTIONAL,

component
[5] Component
OPTIONAL,

...

}

associationReleaseRequested {B1:b1, B3:b3} OPERATION ::= {

ARGUMENT
AssociationReleaseRequestedArg {b1, b3}

RETURN RESULT
FALSE

ERRORS
{missingCustomerRecord |

missingParameter |

parameterOutOfRange |

systemFailure |

taskRefused |

unexpectedComponentSequence |

unexpectedDataValue |

unexpectedParameter |

unknownLegID

}

ALWAYS RESPONDS
FALSE

CODE
opcode-associationReleaseRequested

}

-- Direction: CUSF -> SCF, Timer: Tarr

-- This operation is issued by the CUSF for reporting the TDP/EDP event to the SCF that a

-- request of association release

-- with optionally an operation invocation request or an response/error has been received, and criteria for the

-- Association Released Requested DP were met.

AssociationReleaseRequestedArg {B1:b1, B3:b3} ::= SEQUENCE {

callUnrelatedDpSpecificCommonParameters [0] CallUnrelatedDpSpecificCommonParameters {b1, b3},

componentType
[1] ComponentType
OPTIONAL,

componentCorrelationID
[3] ComponentCorrelationID
OPTIONAL,

extensions
[4] Extensions {b1}
OPTIONAL,

component
[5] Component
OPTIONAL,

legID
[6] legID
OPTIONAL,

...

}
componentReceived {B1:b1, B3:b3} OPERATION ::= {

ARGUMENT
ComponentReceivedArg {b1, b3}

RETURN RESULT
FALSE

ERRORS
{missingCustomerRecord |

missingParameter |

parameterOutOfRange |

systemFailure |

taskRefused |

unexpectedComponentSequence |

unexpectedDataValue |

unexpectedParameter |

unknownLegID

}

ALWAYS RESPONDS
FALSE

CODE
opcode-componentReceived

}

-- Direction: CUSF -> SCF, Timer: Tcre

-- This operation is used to indicate the reception of invocation of an operation or return result / return error / reject

- -from an end user to the network. This event is the previously requested EDP with RequestReportBCUSMEvent

-- operation for all cases or the TDP if the new invocation meets the criteria for the ComponentReceived DP.

-- The received result may be correlated with previously delivered invocation/result to the user with

-- the RequestReportBNCSMEvent and SendComponent operation.

-- Note that the multiple points of control is not allowed for the bearer un-unrelated interaction, and TDP is allowed

-- if there is no control relationship between the SCF and the CUSF. This is the same as the SCF-SSF case.

ComponentReceivedArg {B1:b1, B3:b3} ::= SEQUENCE {

callUnrelatedDpSpecificCommonParameters [0] CallUnrelatedDpSpecificCommonParameters {b1, b3},

componentType
[1] ComponentType
OPTIONAL,

componentCorrelationID
[3] ComponentCorrelationID
OPTIONAL,

extensions
[4] Extensions {b1}
OPTIONAL,

component
[5] Component
OPTIONAL,

legID
[6] LegID
OPTIONAL,

...

}

connectAssociation {B1:b1, B3:b3} OPERATION
::= {

ARGUMENT
ConnectAssociationArg {b1, b3}

RETURN RESULT
FALSE

ERRORS
{missingParameter |

parameterOutOfRange |

systemFailure |

taskRefused |

unexpectedComponentSequence |

unexpectedDataValue |

unexpectedParameter

}

ALWAYS RESPONDS
FALSE

CODE
opcode-connectAssociation

}

-- Direction: SCF->CUSF, Timer: Tcoa

-- This operation is used to request the CUSF to proceed with processing. Additional information
-- which shall be used in further association establishment is provided by the SCF.

ConnectAssociationArg {B1:b1, B3:b3} ::= SEQUENCE {

address
[0]
CalledPartyNumber {b3},

extensions
[1] Extensions {b1}
OPTIONAL,

genericNumbers
[2] GenericNumbers {b3}
OPTIONAL,

...

}

continueAssociation {B1:b1} OPERATION
::= {

ARGUMENT
ContinueAssociationArg {b1}
OPTIONAL TRUE

RETURN RESULT
FALSE

ERRORS
{missingParameter |

parameterOutOfRange |

systemFailure |

taskRefused |

unexpectedComponentSequence |

unexpectedDataValue |

unexpectedParameter

}

ALWAYS RESPONDS
FALSE

CODE
opcode-continueAssociation

}

-- Direction: SCF->CUSF, Timer: Tcona

-- This operation is used to request the CUSF to proceed with processing. Additional information
-- which is not related to further processing or association establishment may be provided by the SCF.

ContinueAssociationArg {B1:b1} ::= SEQUENCE {

extensions
[0] Extensions {b1}
OPTIONAL,

...

}

eventReportBCUSM {B1:b1, B2:b2, B3:b3} OPERATION ::= {

ARGUMENT
EventReportBCUSMArg {b1, b2, b3}

RETURN RESULT
FALSE

ALWAYS RESPONDS
FALSE

CODE
opcode-eventReportBCUSM

}

-- Direction: CUSF -> SCF, Timer: Terbce

-- This operation is used to notify the SCF of a call unrelated event previously requested by the SCF
-- in a RequestReportBCUSMEvent operation.

EventReportBCUSMArg {B1:b1, B2:b2, B3:b3} ::= SEQUENCE{

eventTypeBCUSM
[0] EventTypeBCUSM
OPTIONAL,

eventSpecificInformationBCUSM
[1] EventSpecificInformationBCUSM {b2, b3} OPTIONAL,

miscCallInfo
[2] MiscCallInfo
DEFAULT {messageType request},

cUApplicationInd
[3] CUApplicationInd
OPTIONAL,

legID
[4] LegID
OPTIONAL,

extensions
[5] Extensions {b1}
OPTIONAL,

componentType
[6] ComponentType
OPTIONAL,

componentCorrelationID
[7] ComponentCorrelationID
OPTIONAL,

component
[8] Component
OPTIONAL,

...

}

initialAssociationDP {B1:b1, B3:b3} OPERATION ::= {

ARGUMENT
InitialAssociationDPArg {b1, b3}

RETURN RESULT
FALSE

ERRORS
{missingCustomerRecord |

missingParameter |

parameterOutOfRange |

systemFailure |

taskRefused |

unexpectedComponentSequence |

unexpectedDataValue |

unexpectedParameter

}

ALWAYS RESPONDS
FALSE

CODE
opcode- initialAssociationDP

}

-- Direction: CUSF->SCF, Timer: Tiadp

-- This operation is used after detection of a TDP to initiate a call unrelated association with the SCF.

InitialAssociationDPArg {B1:b1, B3:b3}
::= SEQUENCE{

serviceKey
[0] ServiceKey,

cUApplicationInd
[1] CUApplicationInd
OPTIONAL,

miscCallInfo
[2] MiscCallInfo
OPTIONAL,

eventTypeBCUSM
[3] EventTypeBCUSM
OPTIONAL,

calledPartyNumber
[4] CalledPartyNumber {b3}
OPTIONAL,

callingPartyNumber
[5] CallingPartyNumber {b3}
OPTIONAL,

callingPartySubaddress
[6] CallingPartySubaddress {b3}
OPTIONAL,

highLayerCompatibility
[7] HighLayerCompatibility
OPTIONAL,

bearerCapability
[8] BearerCapability {b3}
OPTIONAL,

uSIServiceIndicator
[9] USIServiceIndicator {b3}
OPTIONAL,

uSIInformation
[10] USIInformation {b3}
OPTIONAL,

extensions
[11] Extensions {b1}
OPTIONAL,

genericNumbers
[12] GenericNumbers {b3}
OPTIONAL,

componentType
[13] ComponentType

OPTIONAL,

componentCorrelationID
[14] ComponentCorrelationID

OPTIONAL,

component
[15] Component

OPTIONAL,

...

}

initiateAssociation {B1:b1, B3:b3} OPERATION
::= {

ARGUMENT
InitiateAssociationArg {b1}

RETURN RESULT
InitiateAssociationResultArg

ERRORS
{missingParameter |

parameterOutOfRange |

systemFailure |

taskRefused |

unexpectedComponentSequence |

unexpectedDataValue |

unexpectedParameter

}

ALWAYS RESPONDS
TRUE

CODE
opcode-initiateAssociation

}

-- Direction: SCF->CUSF, Timer: Tia

-- This operation is used for allowing the SCF to initiate a call unrelated association with the user.

-- The subsequent operations can be sent in the same TCAP message in the following order :

--
- the RequestReportBCUSMEvent operation if an answer from the CUSF is expected

--
- the SendComponent operation

InitiateAssociationArg {B1:b1, B3:b3} ::= SEQUENCE {

calledPartyNumber
[0] CalledPartyNumber {b3},

extensions
[1] Extensions {b1}
OPTIONAL,

uSIServiceIndicator
[2] USIServiceIndicator {b3}
OPTIONAL,

uSIInformation
[3] USIInformation {b3}
OPTIONAL,

genericNumbers
[4] GenericNumbers {b3}
OPTIONAL,

...

}

InitiateAssociationResultArg ::= NULL

releaseAssociation {B3:b3} OPERATION ::= {

ARGUMENT
ReleaseAssociationArg {b3}

RETURN RESULT
FALSE

ALWAYS RESPONDS
FALSE

CODE
opcode-releaseAssociation

}

-- Direction: SCF->CUSF, Timer: Trel

-- This operation is used to indicate to the CUSF to release the existing association between the user and the

-- network, during the BCUSM suspended at a DP.

ReleaseAssociationArg {B3:b3} ::= Cause {b3}

requestReportBCUSMEvent {B1:b1, B2:b2} OPERATION ::= {

ARGUMENT
RequestReportBCUSMEventArg {b1, b2}

RETURN RESULT
FALSE

ERRORS
{missingParameter |

parameterOutOfRange |

systemFailure |

taskRefused |

unexpectedComponentSequence |

unexpectedDataValue |

unexpectedParameter |

unknownLegID

}

ALWAYS RESPONDS
FALSE

CODE
opcode-requestReportBCUSMEvent

}

-- Direction: SCF -> CUSF, Timer: Trrbce

-- This operation is used to request the CUSF to monitor a BCUSM DP.

-- In case a specific componentType is provided, this operation is used to request the CUSF to report the

-- reception of invocation of an operation or return

-- result / reject from the end user to the SCF. The requesting event can be ether the result, return error / reject

-- from the end user as the response for the SCF specified invocation / result with the SendComponent operation

-- or the independent invocation / result error from the end user.

RequestReportBCUSMEventArg {B1:b1, B2:b2} ::= SEQUENCE{

bcusmEvents
[0] SEQUENCE SIZE(1..b2.&numOfBCUSMEvents) OF BCUSMEvent,

componentTypes
[1] SEQUENCE SIZE(1..3) OF ComponentType DEFAULT {any},

componentCorrelationID
[2] ComponentCorrelationID
OPTIONAL,

monitorDuration
[3] Duration
OPTIONAL,

extensions
[4] Extensions {b1}
OPTIONAL,

cUDPCriteria
[5] CUApplicationInd
OPTIONAL,

legID
[6] LegID
OPTIONAL,

...

}

sendComponent {B1:b1} OPERATION ::= {

ARGUMENT
SendComponentArg {b1}

RETURN RESULT
FALSE

ERRORS
{missingParameter |

parameterOutOfRange |

systemFailure |

taskRefused |

unexpectedComponentSequence |

unexpectedDataValue |

unexpectedParameter

}

ALWAYS RESPONDS
FALSE

CODE
opcode-sendComponent

}

--
Direction: SCF -> CUSF, Timer: Tsdc

--
This operation is used to send a component to the user during the BCUSM suspended at a DP.

SendComponentArg {B1:b1} ::= SEQUENCE{

componentType
[0] ComponentType,

componentCorrelationID
[2] ComponentCorrelationID
OPTIONAL,

message
[3] Message
DEFAULT rELeaseCOMPlete,

monitorDuration
[4] Duration
OPTIONAL,

extensions
[5] Extensions {b1}
OPTIONAL,

component
[6] Component
OPTIONAL,

...

}

END

The table below lists all operation timers invoked in SCF-CUSF relationship and the value range for each timer. The definitive value for each operation timer may be network specific and has to be defined by the network operator.

The following value ranges do apply for operation specific timers:

short:
1 - 10 seconds

medium:
1 - 60 seconds

long:
1 second - 30 minutes.

Table 7/Q.1238.7 – Operation timers and their value range

Operation Name
Timer
value range

activityTest
Tat
short

activationReceivedAndAuthorized
Tara
short

associationReleaseRequested
Tarr
short

componentReceived
Tcre
short

connectAssociation
Tcoa
short

continueAssociation
Tcona
short

eventReportBCUSM
Terbce
short

initialAssociationDP
Tiadp
short

initiateAssociation
Tia
short

releaseAssociation
Trel
short

requestReportBCUSMEvent
Trrbce
short

requestReportUTSI
Trru
short

reportUTSI
Tru
short

sendSTUI
Tss
short

sendComponent
Tsdc
short

13.4 Packages, contracts, application contexts and abstract syntaxes
This clause specifies the operation packaes, the contracts, the application contexts, and the abstract syntaxes definitons used in CUSF-SCF relationship. Refer to the other parts of this Recommendation for the other operation packages definitions not specified in this clause.

Contracts:

The cs3scfcusfDPSpecificContract expresses the form of the service in which the SCF, a ROS-object of class scf, initiates the DP specific approach contract by using an InitiateAssociation operation. A ROS-object of class cusf responds in this contract.
The cs3cusfscfDPSpecificContract expresses the form of the service in which the CUSF, a ROS-object of class cusf, initiates the DP specific approach contract by using a DP specific operation. A ROS-object of class scf responds in this contract.

The cs3scfcusfGenericContract expresses the form of the service in which the SCF, a ROS-object of class scf, initiates the generic approach contract by using an InitiateAssociation operation. A ROS-object of class cusf responds in this contract.
The cs3cusfscfGenericContract expresses the form of the service in which the CUSF, a ROS-object of class cusf, initiates the generic approach contract by using an InitialAssociationDP operation. A ROS-object of class scf responds in this contract.

Abstract Syntax:
General description for Abstract Syntax is in Q.1238.1.

The CUSF-SCF INAP ASEs that realize the operation packages specified as the below ASN.1 share the four abstract syntaxes:

· cs3scfcusfDPSpecificAS,

· cs3cusfscfDPSpecificAS,
· cs3scfcusfGenericAS, and

· cs3cusfscfGenericAS.
IN-CS3-SCF-CUSF-Protocol {ccitt recommendation q 1238 modules(1) in-cs3-scf-cusf-pkgs-contracts-acs(27) version1(0)}

DEFINITIONS ::=

BEGIN

IMPORTS

ros-InformationObjects,

tc-Messages,

tc-NotationExtensions,

common-classes,

ssf-scf-classes,

scf-cusf-classes,

ssf-scf-Protocol,

ssf-scf-Operations,

scf-cusf-Operations,

id-ac-cs3scfcusfDPSpecific,

id-ac-cs3cusfscfDPSpecific,

id-ac-cs3scfcusfGeneric,

id-ac-cs3cusfscfGeneric,

id-contract-cs3scfcusfDPSpecific,

id-contract-cs3cusfscfDPSpecific,

id-contract-cs3scfcusfGeneric,

id-contract-cs3cusfscfGeneric,

id-package-cusfTDPSpecificInvocation,

id-package-cusfTDPGenericInvocation,

id-package-cusfDPSpecificEventHandling,

id-package-cusfGenericEventHandling,

id-package-cusfComponentHandling,

id-package-cusfSCFInitiation,

id-package-cusfContinue,

id-package-cusfConnect,

id-package-cusfRelease,

id-as-cs3scfcusfDPSpecific,

id-as-cs3cusfscfDPSpecific,

id-as-cs3scfcusfGeneric,

id-as-cs3cusfscfGeneric

FROM IN-CS3-object-identifiers {ccitt recommendation q 1238 modules(1) in-cs3-object-identifiers (0) version1(0)}

CONTRACT,

OPERATION-PACKAGE,

OPERATION

FROM Remote-Operations-Information-Objects ros-InformationObjects

TCMessage{}

FROM TC-Messages tc-Messages

APPLICATION-CONTEXT,

dialogue-abstract-syntax

FROM TC-Notation-Extensions tc-NotationExtensions

COMMON-BOUNDS

FROM IN-CS3-common-classes common-classes

SCF-SSF-BOUNDS

FROM IN-CS3-SSF-SCF-Classes ssf-scf-classes

SCF-CUSF-BOUNDS,

sCFCUSFBoundSet,

sCFSSFBoundSetforCUSF,

commonBoundSetforCUSF

FROM IN-CS3-SCF-CUSF-Classes scf-cusf-classes

activityTestPackage,

uSIHandlingPackage{},

FROM IN-CS3-SSF-SCF-Protocol ssf-scf-Protocol

activityTest,

reportUTSI {},

requestReportUTSI {},

sendSTUI {}

FROM IN-CS3-SSF-SCF-Operations ssf-scf-Operations

activationReceivedAndAuthorized{},

initiateAssociation{},

associationReleaseRequested{},

componentReceived{},

releaseAssociation{},

requestReportBCUSMEvent{},

sendComponent{},

initialAssociationDP{},

connectAssociation{},

continueAssociation{},

eventReportBCUSM{}

FROM IN-CS3-SCF-CUSF-Operations scf-cusf-Operations

;

-- The following three definitions are local short-hand notation for convenience.

B1 ::= COMMON-BOUNDS

B2 ::= SCF-CUSF-BOUNDS

B3 ::= SCF-SSF-BOUNDS

-- Operation package definition

cusfTDPSpecificInvocationPackage {B1:b1, B3:b3} OPERATION-PACKAGE ::= {

CONSUMER INVOKES
{activationReceivedAndAuthorized{b1, b3} |

componentReceived{b1, b3} |

associationReleaseRequested{b1, b3} }

ID
id-package-cusfTDPSpecificInvocation}
cusfTDPGenericInvocationPackage {B1:b1, B3:b3} OPERATION-PACKAGE ::= {

CONSUMER INVOKES
{initialAssociationDP{b1, b3}}

ID
id-package-cusfTDPGenericInvocation}
cusfDPSpecificEventHandlingPackage {B1:b1, B2:b2, B3:b3} OPERATION-PACKAGE ::= {

CONSUMER INVOKES
{requestReportBCUSMEvent{b1,b2}}
SUPPLIER INVOKES
{componentReceived{b1, b3} |

associationReleaseRequested{b1, b3} }
ID
id-package-cusfDPSpecificEventHandling}
cusfGenericEventHandlingPackage {B1:b1, B2:b2, B3:b3} OPERATION-PACKAGE ::= {

CONSUMER INVOKES
{requestReportBCUSMEvent {b1, b2}}
SUPPLIER INVOKES
{eventReportBCUSM {b1, b2, b3}}
ID
id-package-cusfGenericEventHandling}
cusfComponentHandlingPackage {B1:b1} OPERATION-PACKAGE ::= {

CONSUMER INVOKES
{sendComponent {b1}}

ID
id-package-cusfComponentHandling}
cusfSCFInitiationPackage {B1:b1, B3:b3} OPERATION-PACKAGE ::= {

CONSUMER INVOKES
{initiateAssociation{b1, b3}}

ID
id-package-cusfSCFInitiation}
cusfContinuePackage {B1:b1} OPERATION-PACKAGE ::= {

CONSUMER INVOKES
{continueAssociation{b1}}

ID
id-package-cusfContinue}
cusfConnectPackage {B1:b1, B3:b3} OPERATION-PACKAGE ::= {

CONSUMER INVOKES
{connectAssociation{b1, b3}}

ID
id-package-cusfConnect}
cusfReleasePackage {B3:b3} OPERATION-PACKAGE ::= {

CONSUMER INVOKES
{releaseAssociation{b3}}

ID
id-package-cusfRelease}
-- Contracts definition
cs3scfcusfDPSpecificContract
CONTRACT ::= {

INITIATOR CONSUMER OF
{

cusfSCFInitiationPackage{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} |

activityTestPackage |

cusfDPSpecificEventHandlingPackage{commonBoundSetforCUSF, sCFCUSFBoundSet, sCFSSFBoundSetforCUSF } |

cusfComponentHandlingPackage{commonBoundSetforCUSF} |

cusfContinuePackage{commonBoundSetforCUSF} |

cusfConnectPackage{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

cusfReleasePackage{sCFSSFBoundSetforCUSF} |

uSIHandlingPackage{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} }

ID
id-contract-cs3scfcusfDPSpecific}
cs3cusfscfDPSpecificContract CONTRACT ::= {

INITIATOR CONSUMER OF
{

cusfTDPSpecificInvocationPackage{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF }}

RESPONDER CONSUMER OF
{

activityTestPackage |

cusfDPSpecificEventHandlingPackage{commonBoundSetforCUSF, sCFCUSFBoundSet, sCFSSFBoundSetforCUSF } |

cusfComponentHandlingPackage{commonBoundSetforCUSF} |

cusfContinuePackage{commonBoundSetforCUSF} |

cusfConnectPackage{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

cusfReleasePackage{sCFSSFBoundSetforCUSF} |

uSIHandlingPackage{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF }}

ID
id-contract-cs3cusfscfDPSpecific}
cs3scfcusfGenericContract
CONTRACT ::= {

INITIATOR CONSUMER OF
{

cusfSCFInitiationPackage{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

activityTestPackage |

cusfGenericEventHandlingPackage{commonBoundSetforCUSF, sCFCUSFBoundSet, sCFSSFBoundSetforCUSF } |

cusfComponentHandlingPackage{commonBoundSetforCUSF} |

cusfContinuePackage{commonBoundSetforCUSF} |

cusfConnectPackage{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

cusfReleasePackage{sCFSSFBoundSetforCUSF} |

uSIHandlingPackage{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} }

ID
id-contract-cs3scfcusfGeneric}
cs3cusfscfGenericContract CONTRACT ::= {

INITIATOR CONSUMER OF
{

cusfTDPGenericInvocationPackage{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF }}

RESPONDER CONSUMER OF
{

activityTestPackage|

cusfGenericEventHandlingPackage {commonBoundSetforCUSF, sCFCUSFBoundSet, sCFSSFBoundSetforCUSF } |

cusfComponentHandlingPackage{commonBoundSetforCUSF} |

cusfContinuePackage{commonBoundSetforCUSF} |

cusfConnectPackage{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

cusfReleasePackage{sCFSSFBoundSetforCUSF} |

uSIHandlingPackage{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF }}

ID
id-contract-cs3cusfscfGeneric}
-- Application Contexts deifinition

cs3scfcusfDPSpecificAC
APPLICATION-CONTEXT ::= {

CONTRACT
cs3scfcusfDPSpecificContract

DIALOGUE MODE
structured

TERMINATION
basic

ABSTRACT SYNTAXES
{dialogue-abstract-syntax |

cs3scfcusfDPSpecificAS }

APPLICATION CONTEXT NAME
id-ac-cs3scfcusfDPSpecific }

cs3cusf-scfDPSpecificAC
APPLICATION-CONTEXT ::= {

CONTRACT
cs3cusfscfDPSpecificContract

DIALOGUE MODE
structured

TERMINATION
basic

ABSTRACT SYNTAXES
{dialogue-abstract-syntax |

cs3scfcusfDPSpecificAS }

APPLICATION CONTEXT NAME
id-ac-cs3cusfscfDPSpecific }

cs3scfcusfGenericAC
APPLICATION-CONTEXT ::= {

CONTRACT
cs3scfcusfGenericContract

DIALOGUE MODE
structured

TERMINATION
basic

ABSTRACT SYNTAXES
{dialogue-abstract-syntax |

cs3scfcusfGenericAS }

APPLICATION CONTEXT NAME
id-ac-cs3scfcusfGeneric }

cs3cusf-scfGenericAC
APPLICATION-CONTEXT ::= {

CONTRACT
cs3cusfscfGenericContract

DIALOGUE MODE
structured

TERMINATION
basic

ABSTRACT SYNTAXES
{dialogue-abstract-syntax |

cs3scfcusfGenericAS }

APPLICATION CONTEXT NAME
id-ac-cs3cusfscfGeneric }

-- Abstract Syntax definition

cs3scfcusfDPSpecificAS ABSTRACT-SYNTAX ::= {

CS3SCFCUSFDPSpecificPDUs

IDENTIFIED BY
id-as-cs3scfcusfDPSpecific}

CS3SCFCUSFDPSpecificPDUs ::= TCMessage {{SCFCUSFDPSpecific-Invokable}, {SCFCUSFDPSpecific-Returnable}}

SCFCUSFDPSpecific-Invokable OPERATION ::= {

initiateAssociation{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} |

activationReceivedAndAuthorized{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} |

activityTest |

componentReceived{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

releaseAssocation{sCFSSFBoundSetforCUSF} |

requestReportBCUSMEvent{commonBoundSetforCUSF, sCFCUSFBoundSet} |

sendComponent{commonBoundSetforCUSF} |

associationReleaseRequested{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} |

continueAssociation{commonBoundSetforCUSF} |

connectAssociation{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} |

sendSTUI{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} |

requestReportUTSI{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

reportUTSI{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } }

SCFCUSFDPSpecific-Returnable OPERATION ::= {

initiateAssociation{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

activationReceivedAndAuthorized{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

activityTest |

componentReceived{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

requestReportBCUSMEvent{commonBoundSetforCUSF, sCFCUSFBoundSet } |

sendComponent{commonBoundSetforCUSF} |

associationReleaseRequested{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

continueAssociation{commonBoundSetforCUSF} |

connectAssociation{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

sendSTUI{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} |

requestReportUTSI{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} }

cs3cusfscfDPSpecificAS ABSTRACT-SYNTAX ::= {

CS3CUSFSCFDPSpecificPDUs

IDENTIFIED BY
id-as-cs3cusfscfDPSpecific}

CS3CUSFSCFDPSpecificPDUs ::= TCMessage {{CUSFSCFDPSpecific-Invokable}, {CUSFSCFDPSpecific-Returnable}}

CUSFSCFDPSpecific-Invokable OPERATION ::= {

activationReceivedAndAuthorized{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

activityTest |

componentReceived{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

releaseAssocation{sCFSSFBoundSetforCUSF} |

requestReportBCUSMEvent{commonBoundSetforCUSF, sCFCUSFBoundSet } |

sendComponent{commonBoundSetforCUSF} |

associationReleaseRequested{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

continueAssociation{commonBoundSetforCUSF} |

connectAssociation{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

sendSTUI{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} |

requestReportUTSI{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} |

reportUTSI{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} }

CUSFSCFDPSpecific-Returnable OPERATION ::= {

activationReceivedAndAuthorized{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

activityTest |

componentReceived{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

requestReportBCUSMEvent{commonBoundSetforCUSF, sCFCUSFBoundSet } |

sendComponent{commonBoundSetforCUSF} |

associationReleaseRequested{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

continueAssociation{commonBoundSetforCUSF} |

connectAssociation{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

sendSTUI{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} |

requestReportUTSI{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} }

cs3scfcusfGenericAS ABSTRACT-SYNTAX ::= {

CS3SCFCUSFGenericPDUs

IDENTIFIED BY
id-as-cs3scfcusfGeneric}

CS3SCFCUSFGenericPDUs ::= TCMessage {{SCFCUSFGeneric-Invokable}, {SCFCUSFGeneric-Returnable}}

SCFCUSFGeneric-Invokable OPERATION ::= {

initiateAssociation{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

activityTest |

eventReportBCUSM{commonBoundSetforCUSF, sCFCUSFBoundSet, sCFSSFBoundSetforCUSF } |

releaseAssocation{sCFSSFBoundSetforCUSF} |

requestReportBCUSMEvent{commonBoundSetforCUSF, sCFCUSFBoundSet } |

continueAssociation{commonBoundSetforCUSF} |

connectAssociation{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

sendComponent{commonBoundSetforCUSF} |

sendSTUI{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} |

requestReportUTSI{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} |

reportUTSI{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} }

SCFCUSFGeneric-Returnable OPERATION ::= {

initiateAssociation{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

activityTest |

requestReportBCUSMEvent{commonBoundSetforCUSF, sCFCUSFBoundSet } |

continueAssociation{commonBoundSetforCUSF} |

connectAssociation{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

sendComponent{commonBoundSetforCUSF} |

sendSTUI{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} |

requestReportUTSI{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} }

cs3cusfscfGenericAS ABSTRACT-SYNTAX ::= {

CS3CUSFSCFGenericPDUs

IDENTIFIED BY
id-as-cs3cusfscfGeneric}

CS3CUSFSCFGenericPDUs ::= TCMessage {{CUSFSCFGeneric-Invokable}, {CUSFSCFGeneric-Returnable}}

CUSFSCFGeneric-Invokable OPERATION ::= {

initialAssociationDP{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

activityTest |

eventReportBCUSM{commonBoundSetforCUSF, sCFCUSFBoundSet, sCFSSFBoundSetforCUSF } |

releaseAssocation{sCFSSFBoundSetforCUSF} |

requestReportBCUSMEvent{commonBoundSetforCUSF, sCFCUSFBoundSet } |

continueAssociation{commonBoundSetforCUSF} |

connectAssociation{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

sendComponent{commonBoundSetforCUSF} |

sendSTUI{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} |

requestReportUTSI{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} |

reportUTSI{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} }

CUSFSCFGeneric-Returnable OPERATION ::= {

initialAssociationDP{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

activityTest |

requestReportBCUSMEvent{commonBoundSetforCUSF, sCFCUSFBoundSet } |

continueAssociation{commonBoundSetforCUSF} |

connectAssociation{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF } |

sendComponent{commonBoundSetforCUSF} |

sendSTUI{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} |

requestReportUTSI{commonBoundSetforCUSF, sCFSSFBoundSetforCUSF} }

END

14. Service assumed by TCAP

14.1 Normal Procedures

14.1.1 CUSF-to-SCF messages

14.1.1.1 CUSF-FSM related messages

A dialogue shall be established when the CUSF-FSM moves from the state Idle to the state Waiting for Instructions. The relevant INAP operation, which is a DP specific operation or an InitialAssociationDP for TDP-R or an InitiateAssociation operation, shall be transmitted in the same message.

No dialogue shall be established when the CUSF-FSM moves from the state Idle and back to the state Idle on the detection of TDP-N. The relevant INAP operation, which is a DP specific operation or an InitialAssociationDP for TDP-N, shall be sent with a TC-BEGIN request primitive and the dialogue is locally ended by means of TC-END request primitive with prearranged end.

For all other operations sent from the CUSF-FSM, the dialogue shall be maintained except for the following cases.

When the CUSF sends the last event report operation, the dialogue may be ended from the CUSF by a TC-END request primitive with basic end.
In the case that there is no pending operation and TCAP dialogue is established, TCAP dialogue can be terminated by TC-END primitive with zero component or prearranged end. When the CUSF‑FSM makes a non-error case state transition to the state Idle and there is no operation to be sent, the dialogue is ended by means of a TC-END request primitive (basic) with zero components, or the dialogue is locally ended by means of a TC-END request primitive with prearranged end. The CUSF can end a dialogue with a TC-END request primitive with zero component or prearranged end depending on that TCAP dialogue is established or not, in the case association release between the user and the network is initiated by any other entity.

When the CUSF has sent the last event report operation, the dialogue may be ended from the SCF by a TC-END request primitive with basic end.
14.1.1.2 CUSME related messages

The dialogue shall be maintained when the ActivityTest Return Result is sent.

14.1.2 SCF-to-CUSF messages

14.1.2.1 SCSM-FSM related messages

No dialogue shall be established when the SCSM-FSM moves from state Idle to state Idle upon receipt of a DP specific operation or an InitialAssociationDP operation for TDP-N. The operation is received with a TC-BEGIN indication primitive and the dialogue is locally terminated by means of a TC-END request primitive with prearranged end.

A dialogue shall be established when the SCSM-FSM moves from state Idle to state Preparing CUSF Instructions upon the receipt of a DP specific operation or an InitialAssociationDP operation for TDP-R, or upon the sending of an InitiateAssociation operation.

For subsequent operations sent from the SCSM-FSM, the dialogue shall be maintained except for the following cases, i.e. all other operations are sent after a dialogue was established from the CUSF (the SCF has previously received a TC-BEGIN indication primitive with one of operations for TDP‑R).

The dialogue shall no longer be maintained when the prearranged end condition is met in the SCF. When the SCF does not expect any messages other than possibly REJECT or ERROR messages for the operations sent and when the last associated operation timer expires, the dialogue is locally ended by means of a TC-END request primitive with prearranged end.

Alternatively, the sending of operations, leading to the termination of the relationship, by means of a TC-END request primitive (basic end) is possible.

14.1.2.2 SCME-FSM related messages

The operation(s) sent from the SCME-FSM shall be issued according to the following procedure(s):

–
The dialogue shall be maintained when the ActivityTest operation is sent.

14.2 Abnormal Procedures
The procedures for SCF-CUSF is the same as that for SCF-SSF. Refer to Q.1238.2.
14.2.1 Dialogue Handling
Refer to the general descriptions in Q.1238.1.

14.2.1.1 Dialogue Establishment
Refer to the general descriptions in Q.1238.1.

14.2.1.2 Dialogue Continuation
Refer to the general descriptions in Q.1238.1.

14.2.1.3 Dialogue Termination
Refer to the general descriptions in Q.1238.1.

14.2.1.4 User Abort
Refer to the general descriptions in Q.1238.1.

14.2.1.5 Provider Abort
Refer to the general descriptions in Q.1238.1.

14.2.1.6 Mapping to TC Dialogue Primitives

The CUSF-SCF IN services can be mapped onto TC services. This subclause defines the mapping of the CUSF-SCF IN services onto the services of the TC dialogue handling services defined in ITU-T Recommendation Q.771.

The mapping of the parameters onto the TC-BEGIN primitive is defined in Q.1238.1 with the following qualifications:

–
The Application Context Name parameter shall take the value of the application-context-name field of the cs3cusfscfDPSpecificAC or cs3cusfscfGenericAC object if the originating AE is a CUSF, or the cs3scfcusfDPSpecificAC or cs3scfcusfGenericAC object if the originating AE is an SCF.

14.2.2 Component Handling

14.2.2.1 Procedures for INAP Operations
Refer to the general descriptions in Q.1238.1.

14.2.2.2 Mapping to TC Component Parameters

The mapping of parameters for the TC component services is defined in Q.1238.1 with the following qualifications.

The Timeout Parameter of the TC-INVOKE service is set according to the requirements set out in the SCF-CUSF interface section.

1 (Q.1238.7)

ii (Q.1238.7)

_980965233.doc

FEAM

FSM

CUSF

FSM

CUSF

CUSME-Control

SCF

SCUAF

_983897087.doc

SLPI A

SCF

<INAP operations>

< INAP operations >

CUSF

SSF

FE Access Manager

FE Access Manager

IN Local Resource

Data Manager

IN Local Resource

Data

IN-Non-Switching Manager

IN-Non-Switching

State Model Instance

<IN-NSSM events

<IN-NSSM>

 processing >

IN-Switching Manager

Feature Interaction

Manager/

Non-Call Manager

Feature Interaction Manager/

Call Manager

Non-IN Feature

Manager

Basic Call Manager

SMF

 processing >

 processing >

<BCSM>

Bearer Control

Basic Call

Resource Data

Manager

Basic Call

Resource Data

SRF

CCAF

SCUAF

CCAF

Interaction which may be

vender-specific

Functional Grouping/Entity

Data to be managed

Functional Grouping

Not addressed in this capability set

Basic Non-Call Manager

<BCUSM>

<Basic non-call triggers

<Basic non-call events

CCF

<xxx> Subjects Identified

_983900389.doc

 (Ne2.3) Request_Send_Component (monitor required)

NOTE - (Ne2.2) Request_Send_Component (monitor not required)

Not_Last_EDP-N

Request

Release_Association

T1188410-97

(Ne2.1) Event_

Request_to_CUSF

Response to

(Ne2.4) Request_

(Ne4)

(NE2.7) Last_EDP-N

(NE2.6)

Notification or Request

N2.2 Waiting for

(NE2.5) EDP-R

CUSF

to_CUSF

Send_Component_

(Ne2.3)

(Ne2.2)

Instructions

N2.1 Preparing CUSF

N2 Preparing CUSF Instructions (iv)

(NE2.8) Request_

 Processing_Resume

Ne1 and NE2

_983901381.doc

er2

er5

er6

er3

er8

er7

er10

er1

Monitoring

State c

Instructions

Waiting For

State b

Idle

State a

er4

T1188730-97

_983900217.doc

(Ne4) Processing_

Completed

T1188400-97

(NE2)Query_from_CUSF

(Ne1) CUSF Initiate_Control_Request

instructions

N2 Preparing CUSF

N1 Idle

(NE3) Notification_from_CUSF

_982767388.doc

SCME-Control

SRF

SDF

SSF

SCF

FEAM

…

SCSM-CUSF

SCSM-SDF

CUSF

SCME-FSM

SMF

SCSM-SCF

SCSM-SSF/SRF

SCF

…

…

…

…

_981302769.doc

(Neo2)

(Neo3)

(Neo1)

Information

USI

Monitoring

Idle

_980866289.unknown

_980952110.doc

From the User

USI

"Monitoring

USI IE"

No

Normal DP processing

(e.g. scenario 2)

Yes

Scenario 1

