3GPP TSG-CN1 Meeting #31
Tdoc N1-031169

Sophia-Antipolis, France, 25 – 29 August 2003
was Tdoc N1-030899
Source:
Lucent Technologies

Title:
Discussion document on PDU parameter documentation in profile tables

Agenda item:
7.6

Document for:
DISCUSSION

Introduction

There has been substantial discussion about the status and positioning of PDU parameters in 24.229.

The methodology documents lay down no particular way of covering the parameters beyond:

8.5.5
PDU parametersXE "PDU parameters"
PICS proforma items may be used to list, for each PDU type, the parameters for which implementation flexibility exists in regard to support for the full functionality (i.e. semantics) associated with those parameters. Such items are recommended whenever relevant. If no such implementation flexibility exists, then support for a PDU implies support for the full functionality of its parameters.

A statement of support for a PDU parameter in the PICS does not in itself imply anything about the presence or absence of that parameter on a particular instance of the relevant PDU. Such questions of dynamic behaviour should not be discussed in the PICS, but rather determined by the dynamic conformance requirements in the protocol specification. Profile specifications may add requirements concerning the presence or absence of particular parameters on particular PDUs, in which case support for these should be checked by questions in the profile specific ICS proforma, rather than the base specification PICS proforma.

For each documented parameter, the PICS proforma should provide:

a)
its status, based on the value of a specified predicate in each role (e.g. sender, receiver and relay);

b)
space to indicate whether or not it is supported in each role;

c)
the lengths, ranges of values and/or data types permitted in each role by the relevant protocol, abstract syntax and encoding rule specifications;

d)
space to indicate the values supported in each direction.

See Figure III.3.

If there is no implementation flexibility in regard to the parameter values allowed, only one question need be asked by the PICS proforma. If there is implementation flexibility in regard to the parameter values allowed, additional questions shall be asked in the PICS proforma. For example, an ‘unlimited’ PDU parameter calls for a question in the PICS proforma asking what is the maximum size implemented. It may also be appropriate to add a separate parameter values table to check more precisely the support of particular values (see the example given in Figure III.4).

The proforma should give a clear indication of the preferred data types to be used for specifying the supported values (e.g. number bases, string types, octets, bits, seconds, etc.)

Other categories of PICS item may also be used to cover the implementation flexibility regarding encoding rules.

For a protocol using a transfer syntax that does not strictly define the size of the parameters transferred (e.g. ASN.1 Basic Encoding Rules), it should be made clear whether or not the sizes defined include the encoding.

Note that the example tables have been omitted from the above extract from X.296 / ISO 9646-7.

Use of the PDU parameters table

Within the use of the ICS proforma tables, and therefore the corresponding profile, this detail is probably needed for two reasons.

1. Some of the options supported in an implementation are most easily recognized by the presence or absence of a PDU parameter. Therefore a list of the PDU parameters supported provides a convenient means of recognizing this, and is therefore useful for summarizing the capabilities of an implementation. It is accepted that detail of which parameters are supported in which methods is probably not significant in this use.

2. For the implementation of test suites, the tester needs to be able to build valid stimulus PDUs for testing a particular implementation. This relies on detailed PDU parameter tables of the level of detail provided. If we do not do this then other groups will eventually have to do it. This is the level of use of this type of information, rather than for test case selection.

Possible ways of displaying PDU parameters

A number of options exists for the display of the PDU parameter tables (there are other options, but these seem to be the more realisable ones):

1. Separate tables for each method, with separate tables within each method for requests, and for individual response.

The style used prior to the amendments made a few meetings ago.

Lots of PDU parameter tables, with duplication of a large number of headers between response tables within a single method. Complexity of conditionals identitical between 1) and 2).

a. Information on which headers apply in a particular method: Obtained by inspection of a single table.

b. Information on which method a header is allowed in: Need to look in all tables across all methods

c. Information on which response codes are allowed for a particular method: Obtained from presence or absence of individual response tables in a method.

2. Separate tables for each method, with separate tables within each method for requests, with responses dealt with by a common table and a separate table for each reponse where the response has an impact.

The currently documented style. Lots of PDU parameter tables. Note that 100 responses are treated separately as these use a very limited set of headers. Complexity of conditionals identitical between 1) and 2).

a. Information on which headers apply in a particular method: Obtained by inspection of a single table.

b. Information on which method a header is allowed in: Need to look in all tables across all methods

c. Information on which response codes are allowed for a particular method: Obtained from Response code tables (this still needs to be completed)

3. Separate tables for each method, with separate tables within each method for requests and reponses.

Fewer PDU parameter tables (roughly 20% of current total). Increased number complexity of conditionals (would probably double current length of conditionals in response table).

a. Information on which headers apply in a particular method. Obtained by inspection of conditionals within a single table.

b. Information on which method a header is allowed in: Need to look in all tables across all methods

c. Information on which response codes are allowed for a particular method: Obtained from Response code tables (this still needs to be completed)

4. A single table for requests covering all methods and a single table for responses covering all methods.

2 PDU parameter tables for each role (4 in total). Increased number complexity of conditionals (possibly 5 or 6 pages of conditionals in each table).

a. Information on which headers apply in a particular method: Obtained by inspection of conditionals within a single table.

b. Information on which method a header is allowed in: Obtained by inspection of conditionals within a single table.

c. Information on which response codes are allowed for a particular method: Obtained from Response code tables (this still needs to be completed)

