Page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030075

Meeting #22, Bangkok, THAILAND, 27 – 31 January 2003

	CR-Form-v7

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	073
	(

rev
	-
	(

Current version:
	4.6.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Add Initial Load Notification report for Framework Integrity Management Load Notification model

	
	

	Source:
(

	N5

	
	

	Work item code:
(

	OSA1
	
	Date: (

	14/02/2003

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-4

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	When load notifications are enabled or resumed, currently there is no initial load report. Changes in load subsequently result in load reports in which the current load is reported. In the absence of an initial load report it is not possible to determine whether the load condition is improving or worsening.

	
	

	Summary of change:
(

	For all methods that enable or resume load notifications modify behaviour to ensure that an initial load report is produced

	
	

	Consequences if
(

not approved:
	Load Level Notification is incomplete and cannot be used as intended.

	
	

	Clauses affected:
(

	7.1.2.1, 7.1.2.5, 7.3.3.7, 7.3.3.8, 7.4.3.1, 8.1.4.1, 8.3.4.7, 8.3.4.8, 8.4.4.1

	
	

	
	Y
	N
	
	

	Other specs
(

	
	(
	 Other core specifications
(

	

	affected:
	
	(
	 Test specifications
	

	
	
	(
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

************ Start of change # 1 *****************

7.1.2.1 Load Management: Suspend/resume notification from application

This sequence diagram shows the scenario of suspending or resuming notifications from the application based on the evaluation of the load balancing policy as a result of the detection of a change in load level of the framework.

[image: image2.wmf] :

IpAppLoadManager

 :

IpLoadManager

1: load change detection

and policy evaluation

This is

implementation

detail

2:

suspendNotification

()

4:

resumeNotification

()

Load balancing service

makes a decision based

on pre-defined policy

3: load change detection and policy evaluation

5:

reportLoad

()

Application provides

initial load report on

notification resumption

************ End of change # 1 *****************

************ Start of change # 2 *****************

7.1.2.5 Load Management: Application callback registration and load control

This sequence diagram shows how an application registers itself and the framework invokes load management function based on policy.

[image: image4.wmf] :

IpAppLoadManager

 :

IpLoadManager

1:

createLoadLevelNotification

()

Framework detects its

load condition change

and initiates load control

action

4:

loadLevelNotification

()

3: load change detection & policy evaluation

This is the

implementation detail

6:

loadLevelNotification

()

7:

destroyLoadLevelNotification

()

5: load change detection & policy evaluation

This is the

implementation detail

2:

loadLevelNotification

()

Framework reports its

initial load condition

on notification creation

************ End of change # 2 *****************

************ Start of change # 3 *****************

7.3.3.7 Interface Class IpAppLoadManager

Inherits from: IpInterface.
The client application developer supplies the load manager application interface to handle requests, reports and other responses from the framework load manager function. The application supplies the identity of this callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess interface.

	<<Interface>>

IpAppLoadManager

	

	queryAppLoadReq (timeInterval : in TpTimeInterval) : void

queryLoadRes (loadStatistics : in TpLoadStatisticList) : void

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

createLoadLevelNotification() : void

destroyLoadLevelNotification() : void

resumeNotification () : void

suspendNotification () : void

Method

queryAppLoadReq()

The framework uses this method to request the application to provide load statistics records for the application.

Parameters

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Method

queryLoadRes()

The framework uses this method to send load statistic records back to the application that requested the information; i.e. in response to an invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics
Method

queryLoadErr()

The framework uses this method to return an error response to the application that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
Method

loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the SCFs or framework which have been registered for load level notifications) this method is invoked on the application. In addition this method shall be invoked on the application in order to provide a notification of current load status, when load notifications are first requested, or resumed after suspension.
Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Method

createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the application. Upon receipt of this method the client application shall inform the framework of the current load using the reportLoad method on the corresponding IpLoadManager.

Parameters

No Parameters were identified for this method

Method

destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the application.

Parameters

No Parameters were identified for this method

Method

resumeNotification()

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of suspension during which the framework handled a temporary overload condition. Upon receipt of this method the client application shall inform the framework of the current load using the reportLoad method on the corresponding IpLoadManager.

Parameters

No Parameters were identified for this method

Method

suspendNotification()

The framework uses this method to request the application to suspend sending it any notifications: e.g. while the framework handles a temporary overload condition.

Parameters

No Parameters were identified for this method

************ End of change # 3 *****************
************ Start of change # 4 *****************
7.3.3.8 Interface Class IpLoadManager

Inherits from: IpInterface.
The framework API should allow the load to be distributed across multiple machines and across multiple component processes, according to a load management policy. The separation of the load management mechanism and load management policy ensures the flexibility of the load management services. The load management policy identifies what load management rules the framework should follow for the specific client application. It might specify what action the framework should take as the congestion level changes. For example, some real-time critical applications will want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is related to the QoS level to which the application is subscribed. The framework load management function is represented by the IpLoadManager interface. Most methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. To handle responses and reports, the client application developer must implement the IpAppLoadManager interface to provide the callback mechanism. The application supplies the identity of this callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

	<<Interface>>

IpLoadManager

	

	reportLoad (loadLevel : in TpLoadLevel) : void

queryLoadReq (serviceIDs : in TpServiceIDList, timeInterval : in TpTimeInterval) : void

queryAppLoadRes (loadStatistics : in TpLoadStatisticList) : void

queryAppLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

createLoadLevelNotification (serviceIDs : in TpServiceIDList) : void

destroyLoadLevelNotification (serviceIDs : in TpServiceIDList) : void

resumeNotification (serviceIDs : in TpServiceIDList) : void

suspendNotification (serviceIDs : in TpServiceIDList) : void

Method

reportLoad()

The client application uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load level on the application has changed. In addition this method shall be called by the application in order to report current load status, when load notifications are first requested, or resumed after suspension.
At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At level 1 load, the application is overloaded. At level 2 load, the application is severely overloaded.

Parameters

loadLevel : in TpLoadLevel

Specifies the application's load level.
Raises

TpCommonExceptions
Method

queryLoadReq()

The client application uses this method to request the framework to provide load statistic records for the framework or for its instances of the individual services. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load statistics record of the framework is returned.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED, P_UNAUTHORISED_PARAMETER_VALUE
Method

queryAppLoadRes()

The client application uses this method to send load statistic records back to the framework that requested the information; i.e. in response to an invocation of the queryAppLoadReq method on the IpAppLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the application-supplied load statistics.
Raises

TpCommonExceptions
Method

queryAppLoadErr()

The client application uses this method to return an error response to the framework that requested the application's load statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryAppLoadReq method on the IpAppLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the application's load statistics.
Raises

TpCommonExceptions
Method

createLoadLevelNotification()

The client application uses this method to register to receive notifications of load level changes associated with either the framework or with its instances of the individual services used by the application. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID. Upon receipt of this method the framework shall inform the client application of the current framework or service instance load using the loadLevelNotification method on the corresponding IpAppLoadManager.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or SCFs to be registered for load control. To register for framework load control, the serviceIDs parameter must be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
Method

destroyLoadLevelNotification()

The client application uses this method to unregister for notifications of load level changes associated with either the framework or with its instances of the individual services used by the application. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which load level changes should no longer be reported. To unregister for framework load control, the serviceIDs parameter must be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
Method

resumeNotification()

The client application uses this method to request the framework to resume sending it load management notifications associated with either the framework or with its instances of the individual services used by the application; e.g. after a period of suspension during which the application handled a temporary overload condition. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID. Upon receipt of this method the framework shall inform the client application of the current framework or service instance load using the loadLevelNotification method on the corresponding IpAppLoadManager.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which the sending of notifications of load level changes by the framework should be resumed. To resume notifications for the framework, the serviceIDs parameter must be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED, P_UNAUTHORISED_PARAMETER_VALUE
Method

suspendNotification()

The client application uses this method to request the framework to suspend sending it load management notifications associated with either the framework or with its instances of the individual services used by the application; e.g. while the application handles a temporary overload condition. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which the sending of notifications by the framework should be suspended. To suspend notifications for the framework, the serviceIDs parameter must be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED, P_UNAUTHORISED_PARAMETER_VALUE
************ End of change # 4 *****************

************ Start of change # 5 *****************

7.4.3.1 State Transition Diagrams for IpLoadManager

[image: image5.wmf]Idle

Notification

Suspended

Active

IpAccess.obtainInterface

reportLoad

querySvcLoadRes[load statistics requested by

LoadManager]

querySvcLoadErr[load statistics requested by

LoadManager]

reportLoad

querySvcLoadRes[load statistics requested by

LoadManager]

querySvcLoadErr[load statistics requested by

LoadManager]

IpAccess.obtainInterfaceWithCallback

All States

IpAccess.endAccess

destroyLoadLevelNotification

createLoadLevelNotification ^

loadLevelNotification

destroyLoadLevelNotification

suspendNotification

[all notifications suspended]

resumeNotification

^

loadLevelNotification

queryLoadReq

queryLoadReq

"

load change" ^

loadLevelNotification

Figure : State Transition Diagram for IpLoadManager

7.4.3.1.1 Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.
7.4.3.1.2 Notification Suspended State

Due to e.g. a temporary load condition, the application has requested the LoadManager to suspend sending the load level notification information.
7.4.3.1.3 Active State

In this state the application has indicated its interest in notifications by performing a createLoadLevelNotification() invocation on the IpLoadManager. The load manager can now request the application to supply load statistics information (by invoking queryAppLoadReq()). Furthermore the LoadManager can request the application to control its load (by invoking loadLevelNotification(), resumeNotification() or suspendNotification() on the application side of interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the method reportLoad().
7.4.3.2 State Transition Diagrams for LoadManagerInternal

[image: image7.wmf]Normal load

Application Overload

...

A necessary action can

be suspending the load

notifictions to the

application or enabling

load control mechanisms

on certain services.

Internal overload

...

A necessary action can be

suspending the load

notifictions from the

application by invoking

suspendNotification or

enabling load control

mechanisms on the

application by invoking

enableLoadControl.

Internal and Application Overload

...

reportLoad[loadlevel != 0]

reportLoad[loadlevel = 0]

"internal load change detection"

"internal load change to non overloaded"

"internal load change to non overload"

reportLoad[loadlevel = 0]

reportLoad[loadlevel != 0]

"internal load change detection"

registerLoadController

ALL

STATES

unregisterLoadControler

Figure : State Transition Diagram for LoadManagerInternal

************ End of change # 5 *****************

************ Start of change # 6 *****************

8.1.4.1 Load Management: Service callback registration and load control

This sequence diagram shows how a service registers itself and the framework invokes load management function based on policy

[image: image8.wmf] :

IpSvcLoadManager

 :

IpFwLoadManager

1:

createLoadLevelNotification

()

3: load change detection & policy evaluation

4:

loadLevelNotification

()

5: load change detection & policy evaluation

6:

loadLevelNotification

()

7:

destroyLoadLevelNotification

()

This is the

implementation detail

This is the

implementation detail

Framework detects its

load condition change

and initiates load control

action

2:

loadLevelNotification

()

Framework reports its

initial load condition

on notification creation

************ End of change # 6 *****************

************ Start of change # 7 *****************
8.3.4.7 Interface Class IpFwLoadManager

Inherits from: IpInterface.
The framework API should allow the load to be distributed across multiple machines and across multiple component processes, according to a load management policy. The separation of the load management mechanism and load management policy ensures the flexibility of the load management services. The load management policy identifies what load management rules the framework should follow for the specific service. It might specify what action the framework should take as the congestion level changes. For example, some real-time critical applications will want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is related to the QoS level to which the application is subscribed. The framework load management function is represented by the IpFwLoadManager interface. To handle responses and reports, the service developer must implement the IpSvcLoadManager interface to provide the callback mechanism.

	<<Interface>>

IpFwLoadManager

	

	reportLoad (loadLevel : in TpLoadLevel) : void

queryLoadReq (querySubject : in TpSubjectType, timeInterval : in TpTimeInterval) : void

querySvcLoadRes (loadStatistics : in TpLoadStatisticList) : void

querySvcLoadErr (loadStatisticError : in TpLoadStatisticError) : void

createLoadLevelNotification (notificationSubject : in TpSubjectType) : void

destroyLoadLevelNotification (notificationSubject : in TpSubjectType) : void

suspendNotification (notificationSubject : in TpSubjectType) : void

resumeNotification (notificationSubject : in TpSubjectType) : void

Method

reportLoad()

The service instance uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load level on the service instance has changed. In addition this method shall be called by the service instance in order to report current load status, when load notifications are first requested, or resumed after suspension.
At level 0 load, the service instance is performing within its load specifications (i.e. it is not congested or overloaded). At level 1 load, the service instance is overloaded. At level 2 load, the service instance is severely overloaded.

Parameters

loadLevel : in TpLoadLevel

Specifies the service instance's load level.
Raises

TpCommonExceptions
Method

queryLoadReq()

The service instance uses this method to request the framework to provide load statistics records for the framework or for the application that uses the service instance.

Parameters

querySubject : in TpSubjectType

Specifies the entity (framework or application) for which load statistics records should be reported.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.
Raises

TpCommonExceptions
Method

querySvcLoadRes()

The service instance uses this method to send load statistic records back to the framework that requested the information; i.e. in response to an invocation of the querySvcLoadReq method on the IpSvcLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the service-supplied load statistics.
Raises

TpCommonExceptions
Method

querySvcLoadErr()

The service instance uses this method to return an error response to the framework that requested the service instance's load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the querySvcLoadReq method on the IpSvcLoadManager interface.

Parameters

loadStatisticError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the service instance's load statistics.
Raises

TpCommonExceptions
Method

createLoadLevelNotification()

The service instance uses this method to register to receive notifications of load level changes associated with the framework or with the application that uses the service instance. Upon receipt of this method the framework shall inform the service instance of the current framework or application load using the loadLevelNotification method on the corresponding IpSvcLoadManager.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should be reported.
Raises

TpCommonExceptions
Method

destroyLoadLevelNotification()

The service instance uses this method to unregister for notifications of load level changes associated with the framework or with the application that uses the service instance.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should no longer be reported.
Raises

TpCommonExceptions

Method

suspendNotification()

The service instance uses this method to request the framework to suspend sending it notifications associated with the framework or with the application that uses the service instance; e.g. while the service instance handles a temporary overload condition.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications by the framework should be suspended.
Raises

TpCommonExceptions
Method

resumeNotification()

The service instance uses this method to request the framework to resume sending it notifications associated with the framework or with the application that uses the service instance; e.g. after a period of suspension during which the service instance handled a temporary overload condition. Upon receipt of this method the framework shall inform the service instance of the current framework or application load using the loadLevelNotification method on the corresponding IpSvcLoadManager.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications of load level changes by the framework should be resumed.
Raises

TpCommonExceptions
************ End of change # 7 *****************

************ Start of change # 8 *****************

8.3.4.8 Interface Class IpSvcLoadManager

Inherits from: IpInterface.
The service developer supplies the load manager service interface to handle requests, reports and other responses from the framework load manager function. The service instance supplies the identity of its callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess interface.

	<<Interface>>

IpSvcLoadManager

	

	querySvcLoadReq (timeInterval : in TpTimeInterval) : void

queryLoadRes (loadStatistics : in TpLoadStatisticList) : void

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

createLoadLevelNotification () : void

destroyLoadLevelNotification () : void

suspendNotification () : void

resumeNotification () : void

Method

querySvcLoadReq()

The framework uses this method to request the service instance to provide its load statistic records.

Parameters

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Raises

TpCommonExceptions
Method

queryLoadRes()

The framework uses this method to send load statistic records back to the service instance that requested the information; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics
Raises

TpCommonExceptions
Method

queryLoadErr()

The framework uses this method to return an error response to the service that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
Raises

TpCommonExceptions
Method

loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the application or framework which has been registered for load level notifications) this method is invoked on the SCF. In addition this method shall be invoked on the SCF in order to provide a notification of current load status, when load notifications are first requested, or resumed after suspension.
Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Raises

TpCommonExceptions
 Method

createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the service instance. Upon receipt of this method the service instance shall inform the framework of the current load using the reportLoad method on the corresponding IpFwLoadManager.
Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
Method

destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the service instance.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
Method

suspendNotification()

The framework uses this method to request the service instance to suspend sending it any notifications: e.g. while the framework handles a temporary overload condition.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
Method

resumeNotification()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of suspension during which the framework handled a temporary overload condition. Upon receipt of this method the service instance shall inform the framework of the current load using the reportLoad method on the corresponding IpFwLoadManager.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
************ End of change # 8 *****************

************ Start of change # 9 *****************

8.4.4.1 State Transition Diagrams for IpFwLoadManager

[image: image10.wmf]Idle

Notification

Suspended

Active

All States

reportLoad

queryAppLoadRes[load statistics requested by

LoadManager]

queryAppLoadErr[load statistics requested by

LoadManager]

destroyLoadLevelNotification

queryLoadReq

reportLoad

queryAppLoadRes[load statistics requested by

LoadManager]

queryAppLoadErr[load statistics requested by

LoadManager]

createLoadLevelNotification ^

loadLevelNotification

destroyLoadLevelNotification

suspendNotification

[all notifications suspended]

resumeNotification

 ^

loadLevelNotification

queryLoadReq

"

load change" ^

loadLevelNotification

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

IpAccess.endAccess

Figure : State Transition Diagram for IpFwLoadManager

************ Start of change # 9 *****************

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

_1106072484.doc

 : IpAppLoadManager

 : IpLoadManager

1: createLoadLevelNotification()

Framework detects its

load condition change

and initiates load control

action

4: loadLevelNotification()

3: load change detection & policy evaluation

This is the

implementation detail

6: loadLevelNotification()

7: destroyLoadLevelNotification()

5: load change detection & policy evaluation

This is the

implementation detail

2: loadLevelNotification()

on notification creation

initial load condition

Framework reports its

_1106073201.doc

 : IpSvcLoadManager

 : IpFwLoadManager

1: createLoadLevelNotification()

3: load change detection & policy evaluation

4: loadLevelNotification()

5: load change detection & policy evaluation

6: loadLevelNotification()

7: destroyLoadLevelNotification()

This is the

implementation detail

This is the

implementation detail

Framework detects its

load condition change

and initiates load control

action

2: loadLevelNotification()

on notification creation

initial load condition

Framework reports its

_1106073334.doc

Idle

Notification

Suspended

Active

All States

reportLoad

queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

destroyLoadLevelNotification

queryLoadReq

reportLoad

queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

createLoadLevelNotification ^loadLevelNotification

destroyLoadLevelNotification

suspendNotification

[all notifications suspended]

resumeNotification

 ^ loadLevelNotification

queryLoadReq

"load change" ^loadLevelNotification

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

IpAccess.endAccess

_1106072781.doc

Idle

Notification

Suspended

Active

IpAccess.obtainInterface

reportLoad

querySvcLoadRes[load statistics requested by LoadManager]

querySvcLoadErr[load statistics requested by LoadManager]

reportLoad

querySvcLoadRes[load statistics requested by LoadManager]

querySvcLoadErr[load statistics requested by LoadManager]

IpAccess.obtainInterfaceWithCallback

All States

IpAccess.endAccess

destroyLoadLevelNotification

createLoadLevelNotification ^loadLevelNotification

destroyLoadLevelNotification

suspendNotification

[all notifications suspended]

resumeNotification

^loadLevelNotification

queryLoadReq

queryLoadReq

"load change" ^loadLevelNotification

_1106071682.doc

 : IpAppLoadManager

 : IpLoadManager

1: load change detection and policy evaluation

This is

implementation

detail

2: suspendNotification()

4: resumeNotification()

Load balancing service

makes a decision based

on pre-defined policy

3: load change detection and policy evaluation

5: reportLoad()

notification resumption

initial load report on

Application provides

