Page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-020440

Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

	CR-Form-v5

	CHANGE REQUEST

	

	(

	29.198-01
	CR
	006
	(

rev
	-
	(

Current version:
	4.3.1
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	x

	

	Title:
(

	Addition of support for WSDL realisation

	
	

	Source:
(

	CN5

	
	

	Work item code:
(

	OSA2
	
	Date: (

	17/05/2002

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	REL-5

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	It has been acknowledged that OSA can be realised using different distribution technologies. One of these proposed distribution technologies is SOAP/HTTP.

In order to realise OSA using SOAP, a definition of the OSA SCFs for SOAP is required. The chosen definition for SOAP/HTTP in OSA is WSDL.

In order to acknowledge WSDL, it is proposed that the following changes be made to the OSA Overview (29.198-01).

	
	

	Summary of change:
(

	These changes include:

· Indicating that OSA is realised though both IDL and WSDL.

· Providing an Informative Annex which specifies how the WSDL is created based on provided mapping from UML.

	
	

	Consequences if
(

not approved:
	Lack of interoperability between OSA gateways which include SOAP as a transportation mechanism.

	
	

	Clauses affected:
(

	2, 3.2, 5

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "3G Vocabulary".

[2]
3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA) (Release 4)".

[3]
3GPP TS 23.127: "Virtual Home Environment (Release 4)".

[4]
3GPP TS 23.078: "CAMEL Phase 3, stage 2".

[5]
3GPP TS 22.101: "Universal Mobile Telecommunications System (UMTS): Service Aspects; Service Principles".

[6]
World Wide Web Consortium Composite Capability/Preference Profiles (CC/PP): A user side framework for content negotiation (www.w3.org).

[7]
3GPP TS 29.002: "Mobile Application Part (MAP)".

[8]
3GPP TS 29.078: "CAMEL Phase 3, , CAMEL Application Part (CAP) Specification".

[9]
Wireless Application Protocol (WAP), Version 1.2, UAProf Specification (www.wapforum.org).

[10]
Wireless Application Protocol (WAP), version 1.2, WAP Service Indication specification, (www.wapforum.org).

[11]
Wireless Application Protocol (WAP), version 1.2, WAP Push Architecture Overview (www.wapforum.org).

[12]
Wireless Application Protocol (WAP), version 1.2, WAP Architecture (www.wapforum.org).

[13]
SUN IDL Compiler (www.javasoft.com/products/jdk/idl/index.html).

[14]
UML Unified Modelling Language (www.rational.com/uml).

[15]
Object Management Group (www.omg.org).

[16]
3GPP TS 22.002: "Circuit Bearer Services supported by a PLMN".

[17]
3GPP TS 22.003: "Circuit Teleservices supported by a PLMN".

[18]
3GPP TS 24.002: "Public Land Mobile Network (PLMN) Access Reference Configuration".

[19]
ITU-T Q.763: "Signalling System No. 7 – ISDN user part formats and codes".

[20]
ITU-T Q.931: "ISDN user-network interface layer 3 specification for basic call control".

[21]
ISO 8601: "Data elements and interchange formats -- Information interchange -- Representation of dates and times".

[22]
ISO 4217: "Codes for the representation of currencies and funds".

[23]
3GPP TS 22.121: "Service aspects; The Virtual Home Environment (Release 4)".

[24]
http://www.parlay.org
[25]
http://www.java.sun.com/products/jain
[26]
3GPP TS 23.057: "Mobile Station Application Execution Environment (MExE)".
[27]
http://www.w3c.org
3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TS 22.101 [5] and the following apply.

Applications: Services, which are designed using Service Capability Features (SCFs).

Gateway: Synonym for Service Capability Server (SCS). From the viewpoint of applications, an SCS can be seen as a gateway to the core network.

HE-VASP: Home Environment Value Added Service Provider. This is a VASP that has an agreement with the Home Environment to provide services.
Home Environment: responsible for overall provision of services to users.

Local Service: A service, which can be exclusively provided in the current serving network by a Value Added Service Provider.

OSA Interface: Standardised Interface used by application to access service capability features.
Personal Service Environment (PSE): contains personalised information defining how subscribed services are provided and presented towards the user. The Personal Service Environment is defined in terms of one or more User Profiles.

Service Capabilities: Bearers defined by parameters, and/or mechanisms needed to realise services. These are within networks and under network control.

Service Capability Feature (SCF): Functionality offered by service capabilities that are accessible via the standardised OSA interface.

Service Capability Server (SCS): Functional Entity providing OSA interfaces towards an application.

Service: term used as an alternative for Service Capability Feature in this specification.

User Interface Profile: Contains information to present the personalised user interface within the capabilities of the terminal and serving network.

User Profile: This is a label identifying a combination of one user interface profile, and one user services profile.

User Services Profile: Contains identification of subscriber services, their status and reference to service preferences.

Value Added Service Provider: provides services other than basic telecommunications service for which additional charges may be incurred.

Virtual Home Environment: A concept for personal service environment portability across network boundaries and between terminals.

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply.

API
Application Programming Interface

CAMEL
Customised Application for Mobile network Enhanced Logic

CAP
CAMEL Application Part

CSE
CAMEL Service Environment

FW
Framework

HE
Home Environment

HE-VASP
Home Environment - Value Added Service Provider

HLR
Home Location Register

INAP
Intelligent Networks Application Part

IDL
Interface Description Language

MAP
Mobile Application Part

ME
Mobile Equipment

MExE
Mobile Station (Application) Execution Environment

MS
Mobile Station

MSC
Mobile Switching Centre

OSA
Open Service Access

PLMN
Public Land Mobile Network

PSE
Personal Service Environment

SAT
SIM Application Tool-Kit

SCF
Service Capability Feature

SCP
Service Control Point

SCS
Service Capability Server

SIM
Subscriber Identity Module

SMS
Short Message Service

SMTP
Simple Mail Transfer Protocol

UE
User Equipment

USIM
Universal Subscriber Identity Module

VLR
Visited Location Register

VASP
Value Added Service Provider

VHE
Virtual Home Environment

WAP
Wireless Application Protocol

WGP
Wireless Gateway Proxy

WPP
Wireless Push Proxy
WSDL
Web Services Definition Language
4
Open Service Access APIs

The OSA-specifications define an architecture that enables service application developers to make use of network functionality through an open standardised interface, i.e. the OSA APIs. The network functionality is describes as Service Capability Features (SCFs) or Services. The OSA Framework is a general component in support of Services (Service Capabilities) and Applications. The concepts and the functional architecture for the OSA are contained in 3GPP TS 23.127 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The OSA API is split into three types of interface classes, Service and Framework (FW).

-
Interface classes between the Applications and the Framework (FW), that provide applications with basic mechanisms (e.g. Authentication) that enable them to make use of the service capabilities in the network.

-
Interface classes between Applications and SCFs, which are individual services that may be required by the client to enable the running of third party applications over the interface e.g. Messaging type service.

-
Interface classes between the Framework (FW) and the SCFs, that provide the mechanisms necessary for a multi-vendor environment.

These interfaces represent interfaces 1, 2 and 3 in Figure 1 below. The other interfaces are not yet part of the scope of the work.

[image: image1.wmf]Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool

1

1

4

4

3

3

5

5

Not in the scope

of the present API

version

Not in the scope

of the present API

version

Telecom Network

Not in the scope

of the present API

version

Not in the scope

of the present API

version

2

2

6

6

Client

Application

Not in the scope

of the present API

version

Figure 1:

Within the OSA concept a set of Service Capability Features (SCFs) has been specified. The OSA documentation is structured in parts. The first Part (the present document) contains an overview, the second Part contains common data definitions, the third Part the Framework interfaces and the following Parts contain the description of the SCFs.

NOTE:
The terms ‘Service’ and ‘Service Capability Feature’ are used as alternatives for the same concept in the present document. In the OSA API itself the SCFs as identified in the 3GPP requirements and architecture are reflected as ‘service’, in terms like serviceFactory, serviceDiscovery.

5
Structure of the OSA API (29.198) and Mapping (29.998) documents

The Open Service Access (OSA) Application Programming Interface (API) specifications consist of two sets of documents:

API specification (3GPP TS 29.198)
The Parts of 29.198 - apart from Part 1 (the present document) and Part 2 - define the interfaces, parameters and state models that belong to the API specification. UML (Unified Modelling Language) is used to specify the interface classes.
As such it provides a UML interface class description of the methods (API calls) supported by that interface and the relevant parameters and types. The interfaces are specified both in IDL (Interface Description Language) and WSDL (Web Services Definition Language).

Mapping specification of the OSA APIs and network protocols (3GPP TR 29.998)
The Parts of 29.998 contain a possible mapping from the APIs defined in 29.198 to various network protocols (i.e. MAP [7], CAP [8], etc.). It is an informative document, since this mapping is considered as implementation- / vendor-dependent. On the other hand this mapping will provide potential service designers with a better understanding of the relationship of the OSA API interface classes and the behaviour of the network associated to these interface classes.

The purpose of the OSA API is to shield the complexity of the network, its protocols and specific implementation from the applications. This means that applications do not have to be aware of the network nodes, a Service Capability Server interacts with, in order to provide the SCFs to the application. The specific underlying network and its protocols are transparent to the application.

The API specification (3GPP TS 29.198) is structured in the following Parts:

29.198-1
Part 1:

Overview

29.198-2
Part 2:

Common Data Definitions

29.198-3
Part 3:

Framework

29.198-4
Part 4:

Call Control SCF

29.198-5
Part 5:

User Interaction SCF

29.198-6
Part 6:

Mobility SCF

29.198-7
Part 7:

Terminal Capabilities SCF

29.198-8
Part 8:

Data Session Control SCF

29.198-9
Part 9:

Generic Messaging SCF

29.198-10
Part 10:

Connectivity Manager SCF

29.198-11
Part 11:

Account Management SCF

29.198-12
Part 12:

Charging SCF

The Mapping specification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above. A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

Structure of the Parts of 29.198
The Parts with API specification themselves are structured as follows:
-
The Sequence diagrams give the reader a practical idea of how each of the SCF is implemented.

-
The Class relationships clause shows how each of the interfaces applicable to the SCF, relate to one another.

-
The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part.

-
The State Transition Diagrams (STD) show the progression of internal processes either in the application, or Gateway.

-
The Data definitions clauses show a detailed expansion of each of the data types associated with the methods within the classes. It is to be noted that some data types are used in other methods and classes and are therefore defined within the Common Data types part of this specification.

-
IDL description of the interface (normative Annex).
-
WSDL description of the interfaces (informative Annex).
6
Methodology

Following is a description of the methodology used for the establishment of API specification for OSA.

6.1
Tools and Languages

The Unified Modelling Language (UML) [14] is used as the means to specify class and state transition diagrams.

6.2
Packaging

A hierarchical packaging scheme is used to avoid polluting the global name space. The root is defined as:

org.csapi

6.3
Colours

For clarity, class diagrams follow a certain colour scheme. Blue for application interface packages and yellow for all the others.

6.4
Naming scheme

The following naming scheme is used for documentation.
packages

lowercase.

Using the domain-based naming (For example, org.csapi)

classes, structures and types. Start with T

TpCapitalizedWithInternalWordsAlsoCapitalized

Exception class:

TpClassNameEndsWithException

Interface. Start with Ip:

IpThisIsAnInterface

constants:

P_UPPER_CASE_WITH_UNDERSCORES_AND_START_WITH_P

methods:

firstWordLowerCaseButInternalWordsCapitalized()

method’s parameters

firstWordLowerCaseButInternalWordsCapitalized

collections (set, array or list types)

TpCollectionEndsWithSet

class/structure members

FirstWordAndInternalWordsCapitalized

Spaces in-between words are not allowed.

6.5
State Transition Diagram text and text symbols

The descriptions of the State Transitions in the State Transition Diagrams follow the convention:

when_this_event_is_received [guard condition is true] /do_this_action ^send_this_message

Furthermore, text underneath a line through the middle of a State indicates an exit or entry event (normally specified which one).

6.6
Exception handling and passing results

OSA methods communicate errors in the form of exceptions. OSA methods themselves always use the return parameter to pass results. If no results are to be returned a void is used instead of the return parameter. In order to support mapping to as many languages as possible, no method out parameters are allowed.

6.7
References

In the interface specification whenever Interface parameters are to be passed as an in parameter, they are done so by reference, and the "Ref" suffix is appended to their corresponding type (e.g. IpAnInterfaceRef anInterface), a reference can also be viewed as a logical indirection.

	Original type
	IN parameter declaration
	

	IpInterface
	parm : IN IpInterfaceRef
	

6.8
Strings and Collections

For character strings, the String data type is used without regard to the maximum length of the string.

For homogeneous collections of instances of a particular data type the following naming scheme is used: <datatype>Set

6.9
Prefixes

OSA constants and data types are defined in the global name space: org.csapi.

Annex A (normative):
OMG IDL

A.1
Tools and Languages

The Object Management Group’s (OMG) [15] Interface Definition Language (IDL) is used as a means to programmatically define the interfaces. IDL files are either generated manually from class diagrams or by using a UML tool. In the case IDLs are manually written and/or being corrected manually, correctness has been verified using a CORBA2 (orbos/97-02-25) compliant IDL compiler, e.g. [13].

A.2
Strings and Collections

In IDL, the data type String is typedefed (see Note below) from the CORBA primitive string. This CORBA primitive is made up of a length and a variable array of byte.

NOTE:
A typedef is a type definition declaration in IDL.

In OMG IDL, this maps to a sequence of the data type. A CORBA sequence is implicitly made of a length and a variable array of elements of the same type.

Example 1:
typedef sequence<TpSessionID> TpSessionIDSet;
Collection types can be implemented (for example, in C++) as a structure containing an integer for the number part, and an array for the data part.
Example 2:
The TpAddressSet data type may be defined in C++ as:
typedef struct {

 short number;

 TpAddress address [];

} TpAddressSet;

The array "address" is allocated dynamically with the exact number of required TpAddress elements based on "number".
A.3
Naming space across CORBA modules

The following shows the naming space used in this specification.

module org {

module csapi {

/* The fully qualified name of the following constant is org::csapi::P_THIS_IS_AN_OSA_GLOBAL_CONST */

const long P_THIS_IS_AN_OSA_GLOBAL_CONST= 1999;

// Add other OSA global constants and types here

module fw {

/* no scoping required to access P_THIS_IS_AN_OSA_GLOBAL_CONST */

const long P_FW_CONST= P_THIS_IS_AN_OSA_GLOBAL_CONST;

};

module mm {

// scoping required to access P_FW_CONST

const long P_M_CONST= fw::P_FW_CONST;

};

};

};

Annex B (informative):
W3C WSDL

B.1 Tools and Languages

The W3C [27] WSDL (Web Services Definition Language) is an XML format for describing network services as a set of endpoints operating on messages containing either document-oriented or procedure-oriented information. WSDL files are generated from the UML model using scripts. The generated WSDL files are verified using WSDL compilers.. The WSDL is based on W3C WSDL 1.1

B.2Proposed Namespaces for the OSA WSDL

Namespaces are an important part of an XML Schema. They are used to qualify the source of a particular XML element.

There are several XML/SOAP/WSDL related Namespaces which are used within each of the WSDL documents. The Namespace Prefix and the Namespace are noted below.

xmlns:wsdl = ‘http://http://schemas.xmlsoap.org/wsdl/’

xmlns:soap=’http://schemas.xmlsoap.org/wsdl/soap/’

xmlns:SOAP-ENC=’http://schemas.xmlsoap.org/soap/encoding/’

xmlns:xsd:=’http://www.w3c.org/2001/XMLSchema’

There are also OSA specific namespaces which are used within the OSA WSDL documents. The OSA related namespaces present within each WSDL document depends on the WSDL document and which WSDL documents it imports. The guidelines used to derive these namespaces are:

· The root namespace for the OSA WSDL and XML schemas is http://www.csapi.org/

· There is one document generated for each component (Module) within the Analysis UML model. The document will have the name of the UML component with the extension ‘.wsdl’ For each wsdl document generated the following additional namespaces will be included:

· xmlns:<component name>=’http://www.csapi.org/<component name>/wsdl’

· xmlns:<component name>xsd=’http://www.csapi.org/<component name>/schema’

· For each OSA wsdl document which is referenced by an import statement within the current wsdl document then the following additional namespaces will be included.

· xmlns:<imported component name>=’http://www.csapi.org/<imported component name>/wsdl’

· xmlns:<imported component name>xsd=’http://www.csapi.org/<imported component name>/schema’

· Attributes which require a QName value shall use the appropriate Namespace Prefix (as defined in the definitions element of the wsdl file) to qualify the element being referenced.

The namespaces are defined within the ‘definitions’ element of a wsdl document. For example, the definitions element of the am.wsdl document would look like:

<definitions

 name='am'

 targetNamespace='http://www.csapi.org/am/wsdl'

 xmlns='http://schemas.xmlsoap.org/wsdl/'

 xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/'

 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'

 xmlns:SOAP-ENC='http://schemas.xmlsoap.org/soap/encoding/'

 xmlns:xsd='http://www.w3.org/2001/XMLSchema'

 xmlns:am='http://www.csapi.org/am/wsdl'

 xmlns:amxsd='http://www.csapi.org/am/schema'

 xmlns:osa='http://www.csapi.org/osa/wsdl'

 xmlns:osaxsd='http://www.csapi.org/osa/schema'>

<import namespace='http://www.csapi.org/osa/wsdl'

 location='osa.wsdl' />

B.3 Object References

Object references are used to identify an particular remote object instance. Object references are used in two ways:

1. Passed as a parameter within a method to a remote object.

2. Included within a message to identify the object for which the message is intended.

Within the context of SOAP, an object reference can be represented as a URL appended with a String. The String suffix identifies the particular remote object instance in the context of the URL.

An object reference will be represented by the new type ObjectRef. The ObjectRef type is defined within osa.wsdl as:

<xsd:simpleType name=’Objectref’>

 <xsd:restriction base=’xsd:anyURI’ />

</xsd:simpleType>

When an object reference is passed as a parameter, the parameter type is defined as a reference to an interface. Each interface will have a corresponding reference type associated with it. The interface reference will be defined as:

<xsd:simpleType name=’InterfaceNameRef’>

 <xsd:restriction base=’osaxsd:ObjectRef’ />

</xsd:simpleType>

where InterfaceName is the name of the particular interface.

When an object reference is used to identify the intended recipient of a message, then the object reference is included in the SOAP Header element as an ObjectRefHeader. The ObjectRefHeader is defined in the osa.wsdl document as follows:

<message name='ObjectRefHeader'>

 <part name='header' element='osaxsd:ObjectRef' />

</message>

Within each method, the ObjectRefHeader is bound to the message within the wsdl soap:header element of the input message of the binding element. For example:

<binding name='IpAccountManagerBinding' type='am:IpAccountManager'>

 <soap:binding style='rpc' transport='http://schemas.xmlsoap.org/soap/http' />

 <operation name='createNotification'>

 <soap:operation soapAction='http://www.csapi.org/am/IpAccountManager#createNotification' />

 <input>

 <soap:body

 encodingStyle='http://schemas/xmlsoap.org/soap/encoding/'

 namespace = 'http://www.csapi.org/am.wsdl'

 use='encoded' />

 <soap:header

 message='osaxsd:ObjectRefHeader' part='header' />
 </input>
B.4 Mapping UML Data Types (XML Schema

Data Types

<<Constant>>

The UML Constant data type contains the following attributes:

· Name

· Constant Value

This type would then map to the following XML Schema construct:

This mapping assumes that all constants are of type TpInt32

<xsd:simpletype name=”Name”>

<xsd:restriction base=”osaxsd:TpInt32”>

<xsd:minInclusive value=”Constant Value” />

<xsd:maxInclusive value=”Constant Value” />

</xsd:restriction>

</xs:simpleType>

 <<NameValuePair>>

The UML NameValuePair data type contains the following attributes:

· Name

· Attributes

· Name

This type would then map to the following XML Schema construct:

<xsd:simpleType base=”xsd:string” name=”Name”>

 <xsd:restriction base=”xsd:String”>

 <xsd:enumeration value=”Attribute-Name” />

 <xsd:enumeration value=”Attribute-Name” />

 …

 <xsd:enumeration value=”Attribute-Name” />

 </xsd:restriction>

</xsd:simpleType>

<<SequenceOfDataElements>>

The UML SequenceOfDataElements data type contains the following attributes:

· Name

· Roles

· Name

· Type

This type would then map to the following XML Schema construct:

<xsd:complexType name=”Name”

<xsd:sequence>

<xsd:element

Name=”Role-Name”

type=”Role–Type” />

<xsd:element

Name=”Role-Name”

type=”Role–Type” />

 …

<xsd:element

Name=”Role-Name”

type=”Role–Type” />

</xsd:sequence>

</xsd:complexType>

<<TypeDef>>

The UML TypeDef data type contains the following attributes:

· Name

· ImplementationType

If the Implementation type is a technology specific type, then the following mappings have been made:

TpBoolean – xsd:boolean

TpInt32 – xsd:float

TpFloat – xsd:float

TpLongString – xsd:string

TpString – xsd:string

TpOctet – xsd:hexBinary

This type would then map to the following XML Schema construct:

<complexType name=”Name” base=”ImplementationType” />

<<NumberedSetOfDataElements>>

The UML NumberedSetOfDataElements data type for sequences types contains the following attributes:

· Name

· ImplementationType

This type would then map to the following XML Schema construct:

<xsd:complexType name=”Name”>

 <xsd:sequence>

 <xsd:element

 name=”Name”

 type=”ImplementationType”

 minOccurs=”0”

 maxOccurs=”unbounded” />

 </xsd:sequence>

</xsd:complexType>

<<TaggedChoiceOfDataElements>>

The UML TaggedChoiceOfDataElements data type contains the following attributes:

· Name

· SwitchType

· Roles

· Name

· Type

This type would then map to the following XML Schema construct:

<xsd:complexType name=”Name”>

<xsd:element name=”SwitchName” type=”SwitchType” />

<xsd:choice>

<xsd:element name=”Role-Name” type=”Role-Type” />

<xsd:element name=”Role-Name” type=”Role-Type” />

…

<xsd:element name=”Role-Name” type=”Role-Type” />

</xsd:choice>

</complexType>

B.5 Mapping of UML SCF to WSDL

Mapping of Operations to WSDL message element
A UML Operation contains the following attributes:

· Name

· Module Name

· Return Type

· Parameter

· Name

· Type

This type would then map to the following XML Schema construct:

<message name="Name">

<part

name="Parameter-Name"

type="Parameter-Type"/>

…

<part

name="Parameter-Name"

type="Parameter-Type"/>

</message>

<message name="NameResponse">

<part name="return" type="ReturnType"/>

</message>

Note: If the ReturnType is void, then no ‘type’ attribute would be included in the Response message.

Mapping of Exception to WSDL message element

A UML Exception has the following attributes:

· Name

All exceptions (except for CommonException), contain a parameter called ExtraInformation which is of type TpString.

This type would then map to the following XML Schema Construct:

<message name=”Name”>

<part

name=”ExtraInformation”

type=”osaxsd:TpString”/>

</message>
Mapping of CommonExceptions to WSDL message element

The UML CommonExceptions type has the following attributes:

· Name (“CommonExceptions”)

The UML CommonException contains two parameters; ExceptionType which is of type osaxsd:TpInt32 and ExtraInformation which is of type osaxsd:TpString.

This type would then map to the following XML Schema Construct:

<message name=”CommonExceptions”>

<part

name=”ExceptionType”

type=”osaxsd:TpInt32” />

<part

name=”ExtraInformation”

type=”osaxsd:TpString” />

</message>
Mapping of Interface Class to WSDL portType and binding elements

A UML Interface Class contains the following attributes:

· Name

· Associated module (i.e. component)

· Operations

· Name

· Parameters

· Name

· Exceptions

· Name

This type would then map to the following WSDL portType element:

<portType name="Name">

<operation

name="Operation-Name"

<input message="Operation-Name"/>

<output message="Operation-NameResponse"/>

<fault message=”Operation–Exception– Name” />

…

<fault message=”Operation–Exception–Name” />

</operation>

…

<operation

name="Operation-Name"

<input message="Operation-Name"/>

<output message="Operation-NameResponse"/>

<fault name=”Operation-Exception-Name” message=”Operation–Exception–Name” />

…

<fault message=”Operation–Exception–Name” />

</operation>

</portType>

This type would also then map into the following WSDL binding element:

<binding

name="Interface-NameBinding"

type="Interface-Name">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="Operation-Name">

<soap:operation soapAction="http://www.csapi.org/am/Name#Operation-Name"/>

<input>

<soap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://www.csapi.org/Module-Name.wsdl"

use="encoded"/>

 <soap:header message=”osaxsd:ObjRefHeader” part=”header” />

</input>

<output>

<soap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace=" http://www.csapi.org/Module-Name.wsdl "

use="encoded"/>

</output>

 <fault>

 <soap:fault name=”Operation-Exception-Name”

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://www.csapi.org/Module-Name.wsdl"

use="encoded"/>

 </fault>

 … additional fault elements

</operation>

… additional operation elements

</binding>

Mapping of UML SCF to WSDL service element

A UML Module contains the following attributes:

· Name

· Interfaces

· Name

This type would then map to the following WSDL service element:
<service name="Name">

<port binding="Interface-NameBinding" name="Interface-Name">

<soap:address location="http://{Service Address}"/>

</port>

… additional port elements

</service>

</definitions>

Annex C (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Mar 2001
	CN_11
	NP-010134
	047
	--
	CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158)
	3.2.0
	4.0.0

	Jun 2001
	CN_12
	NP-010330
	001
	--
	Corrections to OSA API Rel4 (Correction to IDL namespace to align with that of ETSI and Parlay equivalent APIs: Change org.open_service_access root namespace to org.csapi) (N5-010267)
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010464
	002
	--
	Changing references to JAIN
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010594
	003
	--
	Replace Out Parameters with Return Types
	4.2.0
	4.3.0

	Dec 2001
	CN_14
	NP-010594
	004
	--
	Remove the perception that the OSA API only uses CORBA for its transport mechanism
	4.2.0
	4.3.0

	Mar 2002
	--
	--
	--
	--
	Editorial update (no CR) following Hong Kong CN5#16
	4.3.0
	4.3.1

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

_1046534283.ppt

Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool

1

4

3

5

Not in the scope

of the present API version

Telecom Network

Not in the scope

of the present API version

2

6

Client

Application

Not in the scope

of the present API version

