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Current Situation

A service instance is brought into existence when the Application invokes signServiceAgreement on the Framework. The Framework uses a Service Factory to create the instance, and a reference to it is returned to the Application.

It could be considered then that a Session between the Application and Service instance has been started.

This Session is considered to be ended under the following conditions :-

The Application invokes IpAccess.terminateServiceAgreement()

The Application invokes IpFaultManager.svcUnavailableInd()

The Service instance invokes IpFwFaultManager.appUnavailableInd()

The Service instance invokes IpFwFaultManager.svcRemovalInd()

The Framework invokes IpSvcFaultManager.svcUnavailableInd() – as a result of item 2 above

The Framework invokes IpSvcFaultManager.appRemovalInd() – possibly as a result of  item 2 above

(If the service instance invokes either of the above IpFwFaultManager methods the Framework needs to pass that information on to the application, which can then decide whether to end the service agreement or not.  Currently, the IpAppFaultManager interface is lacking an appRemovalInd method so this cannot be done.  Likewise, the IpFaultManager is lacking a svcUnavailableInd which the application could invoke to inform the framework that it is having trouble with the service. )

Issue

There is currently no method that the Framework can invoke on the Service instance to indicate that the Session has been terminated unless the Service implements the IpSvcFaultManager interface. Even if that interface is supported the Framework shouldn’t be using those methods if, for example, the Service Agreement should be terminated because the contract governing its terms expires.  There needs to be a method that the framework can invoke to terminate the service instance.

Proposal

The original proposal in N5-010577 is superceded as a result of discussions held at the meeting in Sophia Antipolis. The new proposal follows.

It is proposed that a new interface, IpServiceInstanceLifecycleManager, is introduced. This interface will replace the IpSvcFactory interface.

The existing method on IpSvcFactory (createServiceManager) is carried over to the new interface. In addition a new method - destroyServiceManager – is supported.

When an Application wants to end the session it has with a Service it invokes terminateServiceAgreement()  on the Framework’s IpAccess interface and the Framework will invoke destroyServiceManager() on the Service’s Service Instance Lifecycle manager.

Resultant Changes

· New IpServiceInstanceLifecycleManager interface

· IpSvcFactory interface removed

· The announceServiceAvailability method must be updated

In addition numerous sequence diagrams, class diagrams and text which include the IpSvcFactory interface or refer to the service factory need to be updated.

Note: The service factory is referenced in the sequence diagram in section 10.2.1.  This has been changed in this contribution to reference the service instance lifecycle manager, but the change will not show up properly.

Note that N5-010697 introduces the service instance id to the createServiceManager method of IpSvcFactory so this should be carried over into the new IpServiceInstanceLifecycleManager. 



	


	

	















12.2 Service Instance Lifecycle Manager Interface Classes
The IpServiceInstanceLifecycleManager interface allows the framework to get access to a service manager interface of a service. It is used during the signServiceAgreement, in order to return a service manager interface reference to the application. Each service has a service manager interface that is the initial point of contact for the service. E.g., the generic call control service uses the IpCallControlManager interface.

12.2.1 Interface Class IpServiceInstanceLifecycleManager

Inherits from: IpInterface.

The IpServiceInstanceLifecycleManager interface allows the Framework to create and destroy Service Manager Instances.

	<<Interface>>

IpServiceInstanceLifecycleManager

	

	createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList, serviceInstanceID : in TpServiceInstanceID, serviceManager : out IpServiceRefRef) : TpResult

destroyServiceManager (serviceInstanceID : in TpServiceInstanceID) : TpResult




Method

createServiceManager()

This method returns a new service manager interface reference for the specified application.  The service instance will be configured for the client application using the properties agreed in the service level agreement. 

Parameters

application : in TpClientAppID

Specifies the application for which the service manager interface is requested.
serviceProperties : in TpServicePropertyList

Specifies the service properties and their values that are to be used to configure the service instance.  These properties form a part of the service level agreement.  An example of these properties is a list of methods that the client application is allowed to invoke on the service interfaces.

serviceInstanceID : in TpServiceInstanceID

Specifies the Service Instance ID that the new Service Manager is to be identified by.

serviceManager : out IpServiceRefRef

Specifies the service manager interface reference for the specified application ID.
Raises

TpCommonExceptions,P_INVALID_PROPERTY
Method

destroyServiceManager()

This method destroys an existing service manager interface reference. This will result in the client application being unable to use the service manager any more. 

Parameters

serviceInstance : in TpServiceInstanceID

Identifies the Service Instance to be destroyed.

Raises

TpCommonExceptions
6.4
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6.4.1
Service Selection

The following figure shows the process of selecting an SCF.

After discovery the Application gets a list of one or more SCF versions that match its required description. It now needs to decide which service it is going to use; it also needs to actually get a way to use it. 

This is achieved by the following two steps:
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1:
Service Selection: first step - selectService

In this first step the Application identifies the SCF version it has finally decided to use. This is done by means of the serviceID, which is the agreed identifier for SCF versions. The Framework acknowledges this selection by returning to the Application a new identifier for the service chosen: a service token, that is a private identifier for this service between this Application and this network, and is used for the process of signing the service agreement.

Input is:

·
in serviceID

This identifies the SCF required.

And output:

·
out serviceToken

This is a free format text token returned by the framework, which can be signed as part of a service agreement. It contains operator specific information relating to the service level agreement. 

2:
Service Selection: second step - signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once this contractual details have been agreed, then the Application can be given the means to actually use it. The means are a reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By calling the createServiceManager operation on the lifecycle manager the Framework retrieves this interface and returns it to the Application. The service properties suitable for this application are also fed to the SCF (via the lifecycle manager interface) in order for the SCS to instantiate an SCF version that is suitable for this application.

Input:

·
in serviceToken

This is the identifier that the network and Application have agreed to privately use for a certain version of SCF. 

·
in agreementText

This is the agreement text that is to be signed by the Framework using the private key of the Framework.

·
in signingAlgorithm 

This is the algorithm used to compute the digital signature.

Output:

·
out signatureAndServiceMgr 

This is a reference to a structure containing the digital signature of the Framework for the service agreement, and a reference to the manager interface of the SCF.

10.1 Service Registration Sequence Diagrams

10.1.1 New SCF Registration

The following figure shows the process of registering a new Service Capability Feature in the Framework.  Service Registration is a two step process: 
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1:
Registration: first step - register service

The purpose of this first step in the process of registration is to agree, within the network, on a name to call, internally, a newly installed SCF version. It is necessary because the OSA Framework and SCF in the same network may come from different vendors. The goal is to make an association between the new SCF version, as characterized by a list of properties, and an identifier called serviceID.

This service ID will be the name used in that network (that is, between that network's Framework and its SCSs), whenever it is necessary to refer to this newly installed version of SCF (for example for announcing its availability, or for withdrawing it later).

The following input parameters are given from the SCS to the Framework in this first registration step:

·
in serviceTypeName

This is a string with the name of the SCF, among a list of standard names (e.g. "P_MPCC").

·
in servicePropertyList

This is a list of types TpServiceProperty; each TpServiceProperty is a triplet (ServicePropertyName, ServicePropertyValueList, ServicePropertyMode).

·
ServicePropertyName is a string that defines a valid SFC property name (valid SCF property names are listed in the SCF data definition).

·
ServicePropertyValueList is a numbered set of types TpServicePropertyValue; TpServicePropertyValue is a string that describes a valid value of a SCF property (valid SCF property values are listed in the SCF data definition).

·
ServicePropertyMode is the value of the property modes (e.g. "mandatory", meaning that all properties of this SCF must be given values at service registration time).

The following output parameter results from service registration:

·
out serviceID

This is a string, automatically generated by the Framework of this network, based on the following:

·
a string that contains a unique number, generated by the Framework; 

·
a string that identifies the SCF name (e.g. "P_MPCC");

·
a concatenation of strings that identify the SCF specialization, if any.

This is the name by which the newly installed version of SCF, described by the list of properties above, is going to be identified internally in this network.

2:
Registration: second step - announce service availability

At this point the network's Framework is aware of the existence of a new SCF, and could let applications know - but they would have no way to use it. Installing the SCS logic and assigning a name to it does not make this SCF available. In order to make the SCF available an "entry point", called lifecycle manager, is used. The role of the lifecycle manager is to control the life cycle of an interface, or set of interfaces, and provide clients with the references that are necessary to invoke the methods offered by these interfaces. The starting point for a client to use an SCF is to obtain an interface reference to a lifecycle manager of the desired SCF.

A Network Operator, upon completion of the first registration phase, and once it has an identifier to the new SCF version, will instantiate a lifecycle manager for it that will allow client to use it.  Then it will inform the Framework of the value of the interface associated to the new SCF. After the receipt of this information, the Framework makes the new SCF (identified by the pair [serviceID, serviceInstanceLifecycleManagerRef]) discoverable.

The following input parameters are given from the SCS to the Framework in this second registration step:

·
in serviceID

This is the identifier that has been agreed in the network for the new SCF; any interaction related to the SCF needs to include the serviceID, to know which SCF it is.

·
in serviceInstanceLifecycleManagerRef
This is the interface reference at which the lifecycle manager of the new SCF is available. Note that the Framework will have to invoke the method createServiceManager() in this interface, any time between now and when it accepts the first application requests for discovery, so that it can get the service manager interface necessary for applications as an entry point to any SCF.
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10.2.1
Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the signing of the service agreement and the corresponding actions towards the service. For more information on accessing the framework, authentication and discovery of services, see the corresponding sections.
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1:
The application selects the service, using a serviceID for the generic call control service. The serviceID could have been obtained via the discovery interface. A ServiceToken is returned to the application.

2:
The framework signs the service agreement.

3:
The client application signs the service agreement. As a result a service manager interface reference (in this case of type IpCallControlManager) is returned to the application.

4:
Provided the signature information is correct and all conditions have been fulfilled, the framework will request the service identified by the serviceID to return a service manager interface reference. The service manager is the initial point of contact to the service.

5:
The lifecycle manager creates a new manager interface instance (a call control manager) for the specified application. It should be noted that this is an implementation detail. The service implementation may use other mechanism to get a service manager interface instance.

6:
The application creates a new IpAppCallControlManager interface to be used for callbacks.

7:
The Application sets the callback interface to the interface created with the previous message.
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There are no State Transition Diagrams defined for the Service Instance Lifecycle Manager.
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