3GPP TSG_CN5 (Open Service Access – OSA)
N5-010708
Meeting #12, Sophia Antipolis, FRANCE, 16 – 19 July 2001

	CR-Form-v4

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	016
	(

rev
	-
	(

Current version:
	4.1.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Add support for multi-vendorship

	
	

	Source:
(

	CN5

	
	

	Work item code:
(

	OSA1
	
	Date: (

	30/08/2001

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-4

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	By having specified only the interfaces for registration and service factory, the 3GPP specification does not allow multi-vendorship as it is not possible for an SCS based on the TS 29.198 from one vendor to work with the FW implementation of another vendor. At this moment there is e.g. no support for obtaining access to the OSA framework, the integrity management, etc between an SCS and the FW in the TS 29.198. Therefore there is no way to fulfill multi-vendorship.

In addition, in order to support e.g. registration of new Service Capabilities that are within the same domain as the Framework it is required to unambigously specify on how trusted SCSs obtain access to the OSA Framework. At this moment, however, the specification is not clear on how trusted entities would gain access to the OSA Framework. Therefore, there is currently also no support for multi-vendorship within a single domain.

	
	

	Summary of change:
(

	The multi-vendorship requirement can be fulfilled when the complete set of interfaces between Framework and Services, as present in the scope of ETSI SPAN 12 and Parlay 3.0, is adopted in the TS 29.198. Therefore in this CR the complete set of interfaces between SCS and FW is introduced. This allows support for multi-vendorship (in multiple domains).

For the multi-vendorship within a single domain a new sequence in the Trust and Security Management is introduced (section 10.1.1) to show how trusted parties obtain access to the OSA Framework.

	
	

	Consequences if
(

not approved:
	No support for multi-vendorship.

	
	

	Clauses affected:
(

	10

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.
10 Framework-to-Service Sequence Diagrams

10.1 Trust and Security Management Sequence Diagrams

10.1.1 Initial Access for trusted parties

The following figure shows a trusted party (SCS), typically within the same domain as the Framework, accessing the OSA Framework for the first time. Trusted parties don’t need to be authenticated and after contacting the Initial interface the Framework will indicate that no further authentication is needed and that the SCS can immediately gain access to other framework interfaces. This is done by invoking the requestAccess method.
[image: image1.wmf] : IpSvcAPILevelAuthentication

Service

 : IpFwInitial

Framework

 : IpFwAPILevelAuthentication

1: initiateAuthentication()

2: authenticationSucceeded()

3: requestAccess()

1:
Initiate Authentication

The Application invokes initiateAuthentication on the Framework's "public" (initial contact) interface to initiate the authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a reference to its authentication interface.

2:
Authentication Succeeded

Based on the domainID information that was supplied in the Iniate Authentication step, the Framework knows it deals with a trusted party and no further authentication is needed. Therefore the Framework provides the authentication succeeded indication.

3:
Request Access

The Application invokes requestAccess on the Framework's API Level Authenticaiton interface, providing in turn a reference to its own access interface. The Framework returns a reference to its access interface.

10.2 Service Discovery Sequence Diagrams

No Sequence Diagrams exist for Service Discovery

10.3 Service Registration Sequence Diagrams

10.3.1 New SCF Registration

The following figure shows the process of registering a new Service Capability Feature in the Framework. Service Registration is a two step process:

[image: image2.wmf]SCS

 :

IpFwServiceRegistration

1: registerService()

2: announceServiceAvailability()

1:
Registration: first step - register service

The purpose of this first step in the process of registration is to agree, within the network, on a name to call, internally, a newly installed SCF version. It is necessary because the OSA Framework and SCF in the same network may come from different vendors. The goal is to make an association between the new SCF version, as characterized by a list of properties, and an identifier called serviceID.

This service ID will be the name used in that network (that is, between that network's Framework and its SCSs), whenever it is necessary to refer to this newly installed version of SCF (for example for announcing its availability, or for withdrawing it later).

The following input parameters are given from the SCS to the Framework in this first registration step:

·
in serviceTypeName

This is a string with the name of the SCF, among a list of standard names (e.g. "P_MPCC").

·
in servicePropertyList

This is a list of types TpServiceProperty; each TpServiceProperty is a triplet (ServicePropertyName, ServicePropertyValueList, ServicePropertyMode).

·
ServicePropertyName is a string that defines a valid SFC property name (valid SCF property names are listed in the SCF data definition).

·
ServicePropertyValueList is a numbered set of types TpServicePropertyValue; TpServicePropertyValue is a string that describes a valid value of a SCF property (valid SCF property values are listed in the SCF data definition).

·
ServicePropertyMode is the value of the property modes (e.g. "mandatory", meaning that all properties of this SCF must be given values at service registration time).

The following output parameter results from service registration:

·
out serviceID

This is a string, automatically generated by the Framework of this network, based on the following:

·
a string that contains a unique number, generated by the Framework;

·
a string that identifies the SCF name (e.g. "P_MPCC");

·
a concatenation of strings that identify the SCF specialization, if any.

This is the name by which the newly installed version of SCF, described by the list of properties above, is going to be identified internally in this network.

2:
Registration: second step - announce service availability

At this point the network's Framework is aware of the existence of a new SCF, and could let applications know - but they would have no way to use it. Installing the SCS logic and assigning a name to it does not make this SCF available. In order to make the SCF available an "entry point", called service factory, is used. The role of the service factory is to control the life cycle of an interface, or set of interfaces, and provide clients with the references that are necessary to invoke the methods offered by these interfaces. The starting point for a client to use an SCF is to obtain an interface reference to a factory of the desired SCF.

A Network Operator, upon completion of the first registration phase, and once it has an identifier to the new SCF version, will instantiate a factory for it that will allow client to use it. Then it will inform the Framework of the value of the interface associated to the new SCF. After the receipt of this information, the Framework makes the new SCF (identified by the pair [serviceID, serviceFactoryRef]) discoverable.

The following input parameters are given from the SCS to the Framework in this second registration step:

·
in serviceID

This is the identifier that has been agreed in the network for the new SCF; any interaction related to the SCF needs to include the serviceID, to know which SCF it is.

·
in serviceFactoryRef

This is the interface reference at which the service factory of the new SCF is available. Note that the Framework will have to invoke the method createServiceManager() in this interface, any time between now and when it accepts the first application requests for discovery, so that it can get the service manager interface necessary for applications as an entry point to any SCF.

10.4 Service Factory Sequence Diagrams

10.4.1 Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the signing of the service agreement and the corresponding actions towards the service. For more information on accessing the framework, authentication and discovery of services, see the corresponding sections.

[image: image3.wmf] : IpAppCallControlManager

AppLogic

 : IpInitial

 : IpAccess

 : IpCallControlManager

 : IpAppAccess

GenericCallControlService :

IpSvcFactory

1: selectService()

3: signServiceAgreement()

4: createServiceManager()

5: new()

6: new()

7: setCallback()

We assume that the application is already authenticated and discovered the service it wants to use

2: signServiceAgreement()

1:
The application selects the service, using a serviceID for the generic call control service. The serviceID could have been obtained via the discovery interface. A ServiceToken is returned to the application.

2:
The framework signs the service agreement.

3:
The client application signs the service agreement. As a result a service manager interface reference (in this case of type IpCallControlManager) is returned to the application.

4:
Provided the signature information is correct and all conditions have been fulfilled, the framework will request the service identified by the serviceID to return a service manager interface reference. The service manager is the initial point of contact to the service.

5:
The service factory creates a new manager interface instance (a call control manager) for the specified application. It should be noted that this is an implementation detail. The service implementation may use other mechanism to get a service manager interface instance.

6:
The application creates a new IpAppCallControlManager interface to be used for callbacks.

7:
The Application sets the callback interface to the interface created with the previous message.

10.5 Integrity Management Sequence Diagrams

10.5.1 Load Management: Client and Service Load Balancing

[image: image4.wmf]Application :

IpAppLoadManager

Framework :

IpLoadManager

Service :

IpSvcLoadManager

Framework :

IpLoadManager

1: queryAppLoadReq()

Framework checks

application load.

2: queryAppLoadRes()

Depending on the load, the

framework may chose to stop

sending notifications to the

application, to allow its load to

reduce.

3: suspendNotification()

The framework may then check

the load on the service, and take

action if (according to the load

balancing policy) if required.

4: querySvcLoadReq()

5: querySvcLoadRes()

10.5.2 Load Management: Service callback registration and load control

This sequence diagram shows how a service creates a load level notification request for itself and the framework invokes load management function based on policy.

[image: image5.wmf] :

IpSvcLoadManager

 :

IpFwLoadManager

1:

createLoadLevelNotification

()

Framework detects its

load condition change

and initiates load control

action

3:

loadLevelNotification

()

2: load change detection & policy evaluation

This is the

implementation detail

5:

loadLevelNotification

()

6:

destroyLoadLevelNotification

()

4: load change detection & policy evaluation

This is the

implementation detail

10.5.3 Fault Management: Service requests Framework activity test

[image: image6.wmf]Framework :

IpFwFaultManager

Service :

IpSvcFaultManager

The Service requests that the

Framework does an activity test.

The Framework is identified as the

target of the test by a NULL appId

parameter value.

1: activityTestReq()

2: activityTestRes()

1:
The service asks the framework to carry out its activity test. The service denotes that it requires the activity test done for the framework, rather than an application, by supplying a NULL value for the appID parameter.

2:
The framework carries out the test and returns the result to the service.

10.5.4 Fault Management: Service requests Application activity test

[image: image7.wmf]Service :

IpSvcFaultManager

Framework :

IpFwFaultManager

Application :

IpAppFaultManager

Framework :

IpFwFaultMa...

The Framework checks appId

parameter to identify which Application

the test is directed at, and

comunicates internally to Framework

interface to the Application.

The application

carries out the

activity test and

returns the result to

the Framework.

Internal Framework

Communications.

1: activityTestReq()

2: appActivityTestReq()

3: appActivityTestRes()

4: activityTestRes()

1:
The service asks the framework to invoke an activity test on a client application, the application is identified by the appId parameter.

2:
The framework asks the application to do the activity test. It is assumed that there is internal communication between the service facing part of the framework (i.e IpFwFaultManager interface) and the part that faces the client application.

3:
The application does the activity test and returns the result to the framework.

4:
The framework internally passes the result from its application facing interface (IpFaultManager) to its service facing side, and sends the result to the service.

10.5.5 Fault Management: Application requests Service activity test

[image: image8.wmf]Client Application :

IpAppFaultManager

Framework :

IpFaultManager

Service :

IpSvcFaultManager

Framework :

IpFaultManager

1: activityTestReq()

The client application asks the

framework to carry out the

activity test on a service.

The Framework identifies which

service the test is directed at by the

svcID parameter, and

communicates internally with the

appropriate framework interface.

Which invokes the call on the

service.

Service does test and

returns the result.

4: activityTestRes()

Framework passes result

internally from service facing

part to application facing part,

and sends the result to the

application.

2: svcActivityTestReq()

3: svcActivityTestRes()

1:
The client application asks the framework to invoke an activity test on a service, the service is identified by the svcId parameter.

2:
The framework asks the service to do the activity test. It is assumed that there is internal communication between the application facing part of the framework (i.e IpFaultManager interface) and the part that faces the service.

3:
The service does the activity test and returns the result to the framework.

4:
The framework internally passes the result from its service facing interface (IpFwFaultManager) to its application facing side, and sends the result to the client application.

10.5.6 Fault Management: Application detects service is unavailable

[image: image9.wmf]Client Application :

IpAppFaultManager

Framework :

IpFaultManager

Service :

IpSvcFaultManager

Framework :

IpFaultManager

1: svcUnavailableInd()

The application detects that

the service is not responding,

so it informs the framework via

the svcUnavailableInd method

and then ceases use of the

service.

The framework informs the

service that the application

is no longer using it.

2: appRemovalInd()

1:
The client application detects that the service instance is currently not available, i.e. the service instance is not responding to the client application in the normal way, so it informs the framework and takes action to stop using this service instance and change to a different one (via the usual mechanisms, such as discovery, selectService etc.). The client application should not need to re-authenticate in order to discover and use an alternative service instance.

2:
The framework informs the service instance that the client application was unable to get a response from it and has ceased to be one of its users. The framework and service instance must carry out the appropriate updates to remove the client application as one of the users of this service instance. The service or framework may then decide to carry out an activity test to see whether there is a general problem with the service instance that requires further action.

10.6 Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification

10.7 Heartbeat Management: Start/perform/end heartbeat supervision of the service

[image: image10.wmf]Framework

 :

IpHeartBeat

 :

IpSvcHeartBeatMgmt

1:

enableSvcHeartBeat()

2: pulse

()

3: pulse

()

4:

disableHeartBeat

()

At a certain point of

time the framework

decides to stop

heartbeat supervision

In this sequence diagram, the framework has decided that it wishes to monitor the service, and has therefore requested the service to commence sending its heartbeat. The service responds by sending its heartbeat at the specified interval. The framework then decides that it is satisfied with the service’s health and disables the heartbeat mechanism. If the heartbeat was not received from the service within the specified interval, the framework can decide that the service has failed the heartbeat and can then perform some recovery action.

11 Framework-to-Service Class Diagrams

[image: image11.wmf]IpFwInitial

initiateAuthentication()

(from Framework interfaces)

<<Interface>>

IpFwAccess

obtainInterface()

obtainInterfaceWithCallback()

endAccess()

(from Framework interfaces)

<<Interface>>

IpFwAPILevelAuthentication

selectEncryptionMethod()

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Framework interfaces)

<<Interface>>

IpSvcAccess

terminateAccess()

(from Service Interfaces)

<<Interface>>

IpSvcAPILevelAuthentication

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Service Interfaces)

<<Interface>>

<<uses>>

<<uses>>

IpFwAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

Figure: Trust and Security Management Package Overview

[image: image12.wmf]IpFwServiceDiscovery

listServiceTypes()

describeServiceType()

discoverService()

listRegisteredServices()

(from Framework interfaces)

<<Interface>>

Figure: Service Discovery Package Overview

[image: image13.wmf]IpFwServiceRegistration

registerService()

announceServiceAvailability()

unregisterService()

describeService()

unannounceService()

(from Framework interfaces)

<<Interface>>

Figure: Service Registration Package Overview

[image: image14.wmf]IpSvcFactory

createServiceManager()

(from Service Interfaces)

<<Interface>>

Figure: Service Factory Package Overview
[image: image15.wmf]IpSvcHeartBeatMgmt

enableSvcHeartBeat()

disableSvcHeartBeat()

changeTimePeriod()

<<Interface>>

IpSvcHeartBeat

send()

<<Interface>>

1

0..n

1

0..n

IpFwHeartBeat

send()

<<Interface>>

<<uses>>

IpFwHeartBeatMgmt

enableHeartBeat()

disableHeartBeat()

changeTimePeriod()

<<Interface>>

<<uses>>

0..n

1

0..n

1

IpFwLoadManager

reportLoad()

queryLoadReq()

querySvcLoadRes()

querySvcLoadErr()

registerLoadController()

unregisterLoadController()

suspendNotification()

resumeNotification()

<<Interface>>

IpSvcLoadManager

querySvcLoadReq()

queryLoadRes()

queryLoadErr()

loadLevelNotificatio...

suspendNotification()

resumeNotification()

<<Interface>>

<<uses>>

IpSvcFaultManager

activityTestRes()

svcActivityTestReq()

fwFaultReportInd()

fwFaultRecoveryInd()

fwUnavailableInd()

svcUnavailableInd()

appRemovalInd()

genFaultStatsRecordRes()

<<Interface>>

IpFwFaultManager

activityTestReq()

svcActivityTestRes()

appUnavailableInd()

genFaultStatsRecordReq()

svcRemovalInd()

<<Interface>>

<<uses>>

IpFwOAM

systemDate...

<<Interface>>

IpSvcOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

Figure: Integrity Management Package Overview

[image: image16.wmf]IpFwEventNotification

createNotification()

destroyNotification()

(from Framework Interfaces)

<<Interface>>

IpSvcEventNotification

reportNotification()

notificationTerminated()

(from Service Interfaces)

<<Interface>>

<<uses>>

Figure: Event Notification Package Overview

12 Framework-to-Service Interface Classes

12.1 Trust and Security Management Interface Classes
12.1.1 Interface Class IpFwInitial

Inherits from: IpInterface.
The service entity gains a reference to the IpFwInitial interface for the Framework provider that it wishes to access. This may be gained through a URL, a stringified object reference, etc. At this stage, the service entity has no guarantee that this is a reference to the Framework provider. The service entity uses this interface to initiate the authentication process with the Framework provider. The IpFwInitial interface supports the initiateAuthentication operation to allow the authentication process to take place. This operation must be the first invoked by the service entity. Invocations of other operations will fail until authentication has been successfully completed.

	<<Interface>>

IpFwInitial

	

	initiateAuthentication (svcDomain : in TpAuthDomain, authType : in TpAuthType) : TpAuthDomain

Method

initiateAuthentication()

The service entity uses this method to initiate the authentication process.

Returns <fwDomain> : This provides the service entity with a framework identifier, and a reference to call the authentication interface of the framework.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterface;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the service entity.The authInterface parameter is a reference to the authentication interface of the framework. The type of this interface is defined by the authType parameter. The service entity uses this interface to authenticate with the framework.

Parameters

svcDomain : in TpAuthDomain

This identifies the service entity to the framework, and provides a reference to the entity's authentication interface.

structure TpAuthDomain {

domainID:TpDomainID;

authInterface:
IpInterface;

};

The domainID parameter is an identifier either for an existing registered service (i.e. TpServiceID) or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the service (supplier) to the framework, (see authenticate() on IpFwAPILevelAuthentication). If the framework does not recognise the domainID, the framework throws the P_INVALID_DOMAIN_ID exception. The authInterface parameter is a reference to call the authentication interface of the service (supplier). The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework throws the P_INVALID_INTERFACE_TYPE exception.
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the service entity. It provides the opportunity to use an alternative to the OSA Authentication interface, e.g. an implementation specific authentication mechanism like CORBA Security, using the FwAuthentication interface, or Operator specific Authentication interfaces. OSA Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the svcDomain and fwDomain authInterface parameters are references to interfaces of type IpSvc/FwAPILevelAuthentication. If P_AUTHENTICATION is selected, the authInterface parameters are refereces to interfaces of type IpSvc/FwAuthentication which is used when an underlying distibution technology authentication mechanism is used.
Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_AUTH_TYPE
12.1.2 Interface Class IpFwAuthentication

Inherits from: IpInterface.
The Authentication Framework interface is used by client to request access to other interfaces supported by the Framework. The mutual authentication process should in this case be done with some underlying distribution technology authentication mechanism, e.g. CORBA Security.

	<<Interface>>

IpFwAuthentication

	

	requestAccess (accessType : in TpAccessType, svcAccessInterface : in IpInterfaceRef) : IpInterfaceRef

Method

requestAccess()

Once service entity and framework are authenticated, the service entity invokes the requestAccess operation on the IpFwAuthentication or IpFwAPILevelAuthentication interfaces. This allows the service entity to request the type of access it requires. If it requests P_OSA_ACCESS, then a reference to the IpFwAccess interface is returned. (Operators can define their own access interfaces to satisfy service requirements for different types of access.)

If this method is called before the service entity and framework have successfully completed the authentication process, then the request fails, and the P_ACCESS_DENIED exception is thrown.

Returns <fwAccessinterface> : This provides the reference for the service entity to call the access interface of the framework.

Parameters

accessType : in TpAccessType

This identifies the type of access interface requested by the service entity. If the framework does not provide the type of access identified by accessType, then the P_INVALID_ACCESS_TYPE exception is thrown.
svcAccessInterface : in IpInterfaceRef

This provides the reference for the framework to call the access interface of the service entity. If the interface reference is not of the correct type, the framework throws the P_INVALID_INTERFACE_TYPE exception.
Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_ACCESS_TYPE, P_INVALID_INTERFACE_TYPE
12.1.3 Interface Class IpFwAPILevelAuthentication

Inherits from: IpFwAuthentication.
Once the service entity has made initial contact with the provider, authentication of the service entity and Framework provider may be required. The API supports multiple authentication techniques. The procedure used to select an appropriate technique for a given situation is described below. The authentication mechanisms may be supported by cryptographic processes to provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and digital signatures in the authentication procedure depends on the type of authentication technique selected. In some cases strong authentication may need to be enforced by the framework provider to prevent misuse of resources. In addition it may be necessary to define the minimum encryption key length that can be used to ensure a high degree of confidentiality. The service entity must authenticate with the framework before it will be able to use any of the other interfaces supported by the framework. Invocations on other interfaces will fail until authentication has been successfully completed
1. The service entity calls initiateAuthentication on the provider's IpFwInitial interface. This allows the service entity to specify the type of authentication process. This authentication process may be specific to the Framework provider, or to the implementation technology used. The initiateAuthentication operation can be used to designate the specific process, (e.g. CORBA security could be used in a CORBA-based implementation of OSA). OSA defines a generic authentication interface (IpFwAPILevelAuthentication), which can be used to perform the authentication process. The initiateAuthentication operation allows the service entity to pass a reference to its IpSvcAPILevelAuthentication interface to the Framework, and receive a reference to the IpFwAPILevelAuthentication interface supported by the framework, in return.
2. The service entity invokes the selectEncryptionMethod on the framework's IpFwAPILevelAuthentication interface. This includes the encryption capabilities of the service entity. The framework then chooses an encryption method based on the encryption capabilities of the service entity and the framework. If the service entity is capable of handling more than one encryption method, then the framework chooses one option, the prescribedMethod. In some instances, the encryption capability of the service entity may not fulfil the demands of the framework, in which case, the authentication will fail.
3. The service entity and framework interact to authenticate each other. For an authentication type of P_OSA_ACCESS, this procedure may consist of a number of messages e.g. a challenge/ response protocol. This authentication protocol is performed using the authenticate operation on the IpFwAPILevelAuthentication interface. P_OSA_ACCESS is based on CHAP, which is primarily a one-way protocol. Mutual authentication is achieved by the framework invoking the authenticate method on the service entity’s APILevelAuthentication interface.
NOTE: At any point during the access session, either side can request re-authentication. Re-authentication does not have to be mutual.
	<<Interface>>

IpFwAPILevelAuthentication

	

	selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList) : TpEncryptionCapability

authenticate (challenge : in TpOctetSet) : TpOctetSetRef
abortAuthentication () : void

authenticationSucceeded () : void

Method

selectEncryptionMethod()

The service entity uses this method to initiate the authentication process. The framework returns its preferred mechanism. This should be within the capability of the service entity. If a mechanism that is both acceptable to the framework and within the capability of the service entity cannot be found, then the throws the P_NO_ACCEPTABLE ENCRYPTION_CAPABILITY exception. Once the framework has returned its preferred mechanism, it will wait for a predefined unit of time before invoking the service entity’s authenticate() method (the wait is to ensure that the service entity can initialise any resources necessary to use the prescribed encryption method)

Returns <prescribedmethod> : This is the mechanism preferred by the framework for the encryption process. If the service entity does not understand the value of the prescribedMethod returned by the framework, it is considered a catastrophic error and the service entity must abort the authentication process.

Parameters

encryptionCaps : in TpEncryptionCapabilityList

This is the means by which the encryption mechanisms supported by the service entity are conveyed to the framework.
Returns

TpEncryptionCapability

Raises

TpCommonExceptions, P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY
Method

authenticate()

The service entity uses this method to authenticate the framework. The challenge will be encrypted using the mechanism prescribed by selectEncryptionMethod. The framework must respond with the correct responses to the challenges presented by the service entity. The serviceID received in the initiateAuthentication() can be used by the framework to reference the correct public key for the service entity (the key management system is currently outside of the scope of the OSA API specification). The number of exchanges is dependent on the policies of each side. The whole authentication process is deemed successful when the authenticationSucceeded method is invoked. The invocation of this method may be interleaved with authenticate() calls by the framework on the service entity’s APILevelAuthentication interface.
Returns <response> : This is the response of the framework to the challenge of the service entity in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by the selectEncryptionMethod() method.

Parameters
challenge : in TpOctetSet
The challenge presented by the service entity to be responded to by the framework. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().
Returns

TpString
Raises

TpCommonExceptions
Method

abortAuthentication()

The service entity uses this method to abort the authentication process. This method is invoked if the service entity no longer wishes to continue the authentication process, (unless the application responded incorrectly to a challenge in which case no further communication with the application should occur.) If this method has been invoked, calls to the requestAccess operation on IpFwAPILevelAuthentication will result in the P_ACCESS_DENIED exception will be thrown, until the service entity has been properly authenticated.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions, P_ACCESS_DENIED
Method

authenticationSucceeded()

The service entity uses this method to inform the Framework of the success of the authentication attempt.

Parameters

No Parameters were identified for this method

12.1.4 Interface Class IpFwAccess

Inherits from: IpInterface.
Once the service entity has authenticated with the framework provider, the service entity can gain access to other framework interfaces. After authentication, the service entity can gain access to the framework's functions, by invoking the requestAccess method on the IpFwAPILevelAuthentication or IpFwAuthentication interfaces. This allows the service entity to request the type of access they require. If they request P_OSA_ACCESS, then a reference to the IpFwAccess interface is returned. (Operators can define their own access interfaces to satisfy service entity requirements for different types of access.) The service entity must also provide the framework with a reference to a 'callback' interface to allow the framework to initiate interactions during the access session. If the service entity has requested P_OSA_ACCESS, then they must provide a reference to a IpSvcAccess interface to the framework. The IpFwAccess interface allows the service entity to gain references to other interfaces offered by the framework. References to these framework interfaces are gained by invoking the obtainInterface, or obtainInterfaceWithCallback operations. The latter is used when a callback interface is supplied to the framework. For example, a service registration interface reference is returned when invoking obtainInterface with "registration" as the interface name. The endAccess operation is used to end the service entity's session with the framework. After it is invoked, the service entity will no longer be authenticated with the framework. The service entity will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail. The IpSvcAccess interface is offered by the service entity to the framework to allow the framework to initiate interactions during the access session. It can be used to terminate the access session and request that the service entity re-authenticate.

	<<Interface>>

IpFwAccess

	

	obtainInterface (interfaceName : in TpInterfaceName) : IpInterfaceRef

obtainInterfaceWithCallback (interfaceName : in TpInterfaceName, svcinterface : in IpInterfaceRef) : IpInterfaceRef

endAccess (endAccessProperties : in TpEndAccessProperties) : void
listInterfaces(frameworkInterfaces: out TpInterfaceList) : void
releaseInterface(interfaceName : in TpInterfaceName) : void

Method

obtainInterface()

This method is used to obtain other framework interfaces. The service entity uses this method to obtain interface references to other framework interfaces. (The obtainInterfacesWithCallback method should be used if the service entity is required to supply a callback interface to the framework.)

Returns <fwInterface> : This is the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface for which a reference is requested. If the interfaceName is invalid, the framework throws the P_INVALID_INTERFACE_NAME exception.
Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME
Method

obtainInterfaceWithCallback()

This method is used to obtain other framework interfaces. The service entity uses this method to obtain interface references to other framework interfaces, when it is required to supply a callback interface to the framework. (The obtainInterface method should be used when no callback interface needs to be supplied.)

Returns <fwInterface> : This is the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface for which a reference is requested. If the interfaceName is invalid, the framework throws the P_INVALID_INTERFACE_NAME exception.
svcinterface : in IpInterfaceRef

This is the reference to the service entity interface, which is used for callbacks. If the interface reference is not of the correct type, the framework throws the P_INVALID_INTERFACE_TYPE exception.
Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME, P_INVALID_INTERFACE_TYPE
Method

endAccess()

The service entity uses this method to end its access session with the framework. After it is invoked, the service entity will no longer be authenticated with the framework. The service entity will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

endAccessProperties : in TpEndAccessProperties

This is a list of properties that can be used to tell the framework the actions to perform when ending the access session (e.g. existing application sessions may be stopped, or left running). If a property is not recognised by the framework, the P_INVALID_PROPERTY exception is thrown.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_PROPERTY
Method

listInterfaces()

The service entity uses this method to obtain the names of all interfaces supported by the framework. It can then obtain the interfaces it wants to use using either obtainInterface() or obtainInterfaceWithCallback().

Parameters

frameworkInterfaces : out TpInterfaceNameList
The frameworkInterfaces parameter contains a list of interfaces that the framework makes available.

Raises

TpCommonExceptions, P_ACCESS_DENIED
Method

releaseInterface()

The service entity uses this method to release a framework interface that was obtained during this access session.

Parameters

interfaceName : in TpInterfaceName

This is the name of the framework interface which is being released. If the interfaceName is invalid, the framework throws the P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the service entity during this access session, then the P_TASK_REFUSED exception will be thrown.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME
12.1.5 Interface Class IpSvcAPILevelAuthentication

Inherits from: IpInterface.
	<<Interface>>

IpSvcAPILevelAuthentication

	

	authenticate (challenge : in TpOctetSet) : TpOctetSet
abortAuthentication () : void

authenticationSucceeded () : void

Method

authenticate()

The framework uses this method to authenticate the service entity. The challenge will be encrypted using the mechanism prescribed in selectEncryptionMethod. The service entity must respond with the correct responses to the challenges presented by the framework. The number of exchanges is dependent on the policies of each side. The whole authentication process is deemed successful when the authenticationSucceeded method is invoked. The invocation of this method may be interleaved with authenticate() calls by the service entity on the IpFWAPILevelAuthentication interface.
Returns <response> : This is the response of the service entity to the challenge of the framework in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Parameters

challenge : in TpString

The challenge presented by the framework to be responded to by the service entity. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().
Returns

TpString

Raises

TpCommonExceptions
Method

abortAuthentication()

The framework uses this method to abort the authentication process. This method is invoked if the framework wishes to abort the authentication process, (unless the service entity responded incorrectly to a challenge in which case no further communication with the service entity should occur.) If this method has been invoked, calls to the requestAccess operation on IpFwAPILevelAuthentication will result in the P_ACCESS_DENIED exception being thrown until the service entity has been properly authenticated.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
Method

authenticationSucceeded()

The Framework uses this method to inform the service entity of the success of the authentication attempt.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
12.1.6 Interface Class IpSvcAccess

Inherits from: IpInterface.
	<<Interface>>

IpSvcAccess

	

	terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in TpString) : void

Method

terminateAccess()

This method is used to end the service entity's access session with the framework. The service entity must re-authenticate if it wishes to continue its association with the framework. The service entity will not be able to use the references to any of the framework interfaces gained during the access session. Any method invocations associated with these interfaces will fail. If at any point the framework's level of confidence in the identity of the service entity becomes too low, perhaps due to re-authentication failing, the framework should terminate all outstanding service agreements for that entity and should take steps to terminate the entity's access session WITHOUT invoking terminateAccess() on the service entity. This follows a generally accepted security model where the framework has decided that it can no longer trust the service entity and will therefore sever ALL contact with it.

Parameters

terminationText : in TpString

This is the termination text that describes the reason for the termination of the access session.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the service entity, the P_INVALID_SIGNING_ALGORITHM exception is thrown.
digitalSignature : in TpString

This is a signed version of a hash of the termination text. The framework uses this to confirm its identity to the service entity. The service entity can check that the framework has signed the terminationText. If a match is made, the access session is terminated, otherwise the P_INVALID_SIGNATURE exception is thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNING_ALGORITHM, P_INVALID_SIGNATURE
12.2 Service Registration Interface Classes
Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with the Framework. Services are registered against a particular service type. Therefore service types are created first, and then services corresponding to those types are accepted from the Service Suppliers for registration in the framework. The framework maintains a repository of service types and registered services.

In order to register a new service in the framework, the service supplier must select a service type and the "property values" for the service. The service discovery functionality described in the previous section enables the service supplier to obtain a list of all the service types supported by the framework and their associated sets of service property values.

The Framework service registration-related interfaces are invoked by third party service supplier's administrative applications. They are described below. Note that these methods cannot be invoked until the authentication methods have been invoked successfully.

12.2.1 Interface Class IpFwServiceRegistration

Inherits from: IpInterface.
The Service Registration interface provides the methods used for the registration of network SCFs at the framework.

	<<Interface>>

IpFwServiceRegistration

	

	registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList, serviceID : out TpServiceIDRef) : TpResult

announceServiceAvailability (serviceID : in TpServiceID, serviceFactoryRef : in IpSvcFactoryRef) : TpResult

unregisterService (serviceID : in TpServiceID) : TpResult

describeService (serviceID : in TpServiceID, serviceDescription : out TpServiceDescriptionRef) : TpResult

unannounceService (serviceID : in TpServiceID) : TpResult

Method

registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent discovery by the enterprise applications . A service-ID is returned to the service supplier when a service is registered in the Framework. The service-ID is the handle with which the service supplier can identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context of the Framework that generated it.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type and a set of named property types that may be used in further describing this service (i.e., it restricts what is acceptable in the servicePropertyList parameter). If the string representation of the "type" does not obey the rules for identifiers, then an P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but the Framework is able to unambiguously determine that it is not a recognised service type, then a P_UNKNOWN_SERVICE_TYPE exception is raised.
servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter is a list of property name and property value pairs. They describe the service being registered. This description typically covers behavioral, non-functional and non-computational aspects of the service. Service properties are marked "mandatory" or "readonly". These property mode attributes have the following semantics:
a. mandatory - a service associated with this service type must provide an appropriate value for this property when registering.

b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may not be modified.

Specifying both modifiers indicates that a value must be provided and that subsequently it may not be modified. An example of such properties are those which form part of a service agreement and hence cannot be modified by service suppliers during the life time of service.

If the type of any of the property values is not the same as the declared type (declared in the service type), then a P_PROPERTY_TYPE_MISMATCH exception is raised. If an attempt is made to assign a dynamic property value to a readonly property, then the P_READONLY_DYNAMIC_PROPERTY exception is raised. If the "servicePropertyList" parameter omits any property declared in the service type with a mode of mandatory, then a P_MISSING_MANDATORY_PROPERTY exception is raised. If two or more properties with the same property name are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised.
serviceID : out TpServiceIDRef

This is the unique handle that is returned as a result of the successful completion of this operation. The Service Supplier can identify the registered service when attempting to access it via other operations such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to discover a service of this type.
Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID,P_PROPERTY_TYPE_MISMATCH,P_DUPLICATE_PROPERTY_NAME,
P_ILLEGAL_SERVICE_TYPE,P_UNKNOWN_SERVICE_TYPE,P_MISSING_MANDATORY_PROPERTY
Method

announceServiceAvailability()

The registerService() method described previously does not make the service discoverable. The announceServiceAvailability() method is invoked after the service is authenticated and its service factory is instantiated at a particular interface. This method informs the framework of the availability of "service factory" of the previously registered service, identified by its service ID, at a specific interface. After the receipt of this method, the framework makes the corresponding service discoverable.

There exists a "service manager"instance per service instance. Each service implements the IpSvcFactory interface. The IpSvcFactory interface supports a method called the createServiceManager(application: in TpClientAppID, serviceManager: out IpServiceRefRef). When the service agreement is signed for some serviceID (using signServiceAgreement()), the framework calls the createServiceManager() for this service, gets a serviceManager and returns this to the client application.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being announced. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
serviceFactoryRef : in IpSvcFactoryRef

The interface reference at which the service factory of the previously registered service is available.
Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID,P_INVALID_INTERFACE_TYPE
Method

unregisterService()

The unregisterService() operation is used by the service suppliers to remove a registered service from the Framework. The service is identified by the "service-ID" which was originally returned by the Framework in response to the registerService() operation. The service must be in the SCF Registered state. All instances of the service will be deleted.

Parameters

serviceID : in TpServiceID

The service to be withdrawn is identified by the "serviceID" parameter which was originally returned by the registerService() operation. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID
Method

describeService()

The describeService() operation returns the information about a service that is registered in the framework. It comprises, the "type" of the service , and the "properties" that describe this service. The service is identified by the "service-ID" parameter which was originally returned by the registerService() operation.

The SCS may register various versions of the same SCF, each with a different description (more or less restrictive, for example), and each getting a different serviceID assigned.

Parameters

serviceID : in TpServiceID

The service to be described is identified by the "serviceID" parameter which was originally returned by the registerService() operation. If the string representation of the "serviceID" does not obey the rules for object identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.
serviceDescription : out TpServiceDescriptionRef

This consists of the information about an offered service that is held by the Framework. It comprises the "type" of the service , and the properties that describe this service.
Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID
Method

unannounceService()

This method results in the service no longer being discoverable by applications. It is, however, still registered and the service ID is still associated with it. Applications currently using the service can continue to use the service but no new applications should be able to start using the service. Also, all unused service tokens relating to the service will be expired. This will prevent anyone who has already performed a selectService() but not yet performed the signServiceAgreement() from being able to obtain a new instance of the service.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being unannounced. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID
12.3 Service Factory Interface Classes
The IpSvcFactory interface allows the framework to get access to a service manager interface of a service. It is used during the signServiceAgreement, in order to return a service manager interface reference to the application. Each service has a service manager interface that is the initial point of contact for the service. E.g., the generic call control service uses the IpCallControlManager interface.

12.3.1 Interface Class IpSvcFactory

Inherits from: IpInterface.
	<<Interface>>

IpSvcFactory

	

	createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList, serviceManager : out IpServiceRefRef) : TpResult

Method

createServiceManager()

This method returns a new service manager interface reference for the specified application. The service instance will be configured for the client application using the properties agreed in the service level agreement.

Parameters

application : in TpClientAppID

Specifies the application for which the service manager interface is requested.
serviceProperties : in TpServicePropertyList

Specifies the service properties and their values that are to be used to configure the service instance. These properties form a part of the service level agreement. An example of these properties is a list of methods that the client application is allowed to invoke on the service interfaces.
serviceManager : out IpServiceRefRef

Specifies the service manager interface reference for the specified application ID.
Raises

TpCommonExceptions,P_INVALID_PROPERTY
12.4 Service Discovery Interface Classes
This API complements the Service Registration functionality described in another section.

Before a service can be registered in the framework, the service supplier must know what "types" of services the Framework supports and what service "properties" are applicable to each service type. The "listServiceType()" method returns a list of all "service types" that are currently supported by the framework and the "describeServiceType()" method returns a description of each service type. The description of service type includes the "service-specific properties" that are applicable to each service type. Then the service supplier can retrieve a specific set of registered services that both belong to a given type and possess a specific set of "property values", by using the "discoverService()" method.

Additionally the service supplier can retrieve a list of all registered services, without regard to type or property values, by using the "listRegisteredServices()" method. However the scope of the list will depend upon the framework implementation; e.g. a service supplier may only be permitted to retrieve a list of services that the service supplier has previously registered.

12.4.1 Interface Class IpFwServiceDiscovery

Inherits from: IpInterface.
	<<Interface>>

IpFwServiceDiscovery

	

	listServiceTypes () : TpServiceTypeNameList

describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in TpServicePropertyList, max : in TpInt32) : TpServiceList

listRegisteredServices () : TpServiceList

Method

listServiceTypes()

This operation returns the names of all service types that are in the repository. The details of the service types can then be obtained using the describeServiceType() method.

Returns <listTypes> : The names of the requested service types.

Parameters

No Parameters were identified for this method

Returns

TpServiceTypeNameList

Raises

TpCommonExceptions
Method

describeServiceType()

This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information about: the service properties associated with this service type: i.e. a list of service property {name, mode and type} tuples, the names of the super types of this service type, and whether the service type is currently enabled or disabled.

Parameters

name : in TpServiceTypeName

The name of the service type to be described. If the "name" is malformed, then the P_ILLEGAL_SERVICE_TYPE exception is raised. If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TYPE exception is raised.
Returns

TpServiceTypeDescription

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE
Method

discoverService()

The discoverService operation is the means by which the service supplier can retrieve a specific set of registered services that both belong to a given type and possess a specific set of "property values". The service supplier passes in a list of desired service properties to describe the service it is looking for, in the form of attribute/value pairs for the service properties. The service supplier also specifies the maximum number of matched responses it is willing to accept. The framework must not return more matches than the specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the specified maximum. The discoverService() operation returns a serviceID/Property pair list for those services that match the desired service property list that the service supplier provided.

Returns <serviceList> : This parameter gives a list of matching services. Each service is characterised by its service ID and a list of service property {name, mode and value list} tuples associated with the service.

Parameters

serviceTypeName : in TpServiceTypeName

The name of the required service type. If the string representation of the "type" does not obey the rules for service type identifiers, then the P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but is not recognised as a service type within the Framework, then the P_UNKNOWN_SERVICE_TYPE exception is raised. The framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the properties of its supertypes.
desiredPropertyList : in TpServicePropertyList

The "desiredPropertyList"parameter is a list of service property {name, mode and value list} tuples that the required services should satisfy. These properties deal with the non-functional and non-computational aspects of the desired service. The property values in the desired property list must be logically interpreted as "minimum", "maximum", etc. by the framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It is suggested that, at the time of service registration, each property value be specified as an appropriate range of values, so that desired property values can specify an "enclosing" range of values to help in the selection of desired services.
max : in TpInt32

The "max" parameter states the maximum number of services that are to be returned in the "serviceList" result.
Returns

TpServiceList

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE, P_INVALID_PROPERTY
Method

listRegisteredServices()

Returns a list of services so far registered in the framework.

Returns <serviceList> : The "serviceList" parameter returns a list of registered services. Each service is characterised by its service ID and a list of service property {name, mode and value list} tuples associated with the service.

Parameters

No Parameters were identified for this method

Returns

TpServiceList

Raises

TpCommonExceptions
12.5 Integrity Management Interface Classes
12.5.1 Interface Class IpFwFaultManager

Inherits from: IpInterface.
This interface is used by the service instance to inform the framework of events which affect the integrity of the API, and request fault management status information from the framework. The fault manager operations do not exchange callback interfaces as it is assumed that the service instance has supplied its Fault Management callback interface at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on the IpFwAccess interface.

	<<Interface>>

IpFwFaultManager

	

	activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void

svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
svcActivityTestErr (activityTestID : in TpActivityTestID) : void
appUnavailableInd () : void

genFaultStatsRecordReq (timePeriod : in TpTimeInterval, recordSubject : in TpSubjectType) : void

svcUnavailableInd (reason : in TpSvcUnavailReason) : void

Method

activityTestReq()

The service instance invokes this method to test that the framework or the client application is operational. On receipt of this request, the framework must carry out a test on itself or on the application, to check that it is operating correctly. The framework reports the test result by invoking the activityTestRes method on the IpSvcFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.
testSubject : in TpSubjectType
Identifies the subject for testing. (framework or client application).
Raises

TpCommonExceptions
Method

svcActivityTestRes()

The service instance uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
 Method

svcActivityTestErr()

The service instance uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
Method

appUnavailableInd()

This method is used by the service instance to inform the framework that the client application is not responding. On receipt of this indication, the framework must act to inform the client application that it should cease use of this service instance.

Parameters

No parameters were identified for this method.
Raises

TpCommonExceptions
Method

genFaultStatsRecordReq()

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the framework must produce a fault statistics record, for the framework or for the application during the specified time interval, which is returned to the service instance using the genFaultStatsRecordRes operation on the IpSvcFaultManager interface.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. A null value leaves this to the discretion of the framework.
testSubject : in TpSubjectType
Specifies the subject to be included in the general fault statistics record. (framework or application).
Raises

TpCommonExceptions
Method

svcUnavailableInd()

This method is used by the service instance to inform the framework that it is about to become unavailable for use. The framework should inform the client application that is currently using this service instance that it is unavailable for use (via the svcUnavailableInd method on the IpAppFaultManager interface).

Parameters

reason : in TpSvcUnavailReason

Identifies the reason for the service instance's unavailability.
Raises

TpCommonExceptions
12.5.2 Interface Class IpSvcFaultManager

Inherits from: IpInterface.
This interface is used to inform the service instance of events that affect the integrity of the Framework, Service or Client Application. The Framework will invoke methods on the Fault Management Service Interface that is specified when the service instance obtains the Fault Management Framework interface: i.e. by use of the obtainInterfaceWithCallback operation on the IpFwAccess interface

	<<Interface>>

IpSvcFaultManager

	

	activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
activityTestErr (activityTestID : in TpActivityTestID) : void
svcActivityTestReq (activityTestID : in TpActivityTestID) : void

fwFaultReportInd (fault : in TpInterfaceFault) : void

fwFaultRecoveryInd (fault : in TpInterfaceFaultRef) : void

fwUnavailableInd (reason : in TpFwUnavailReason) : void

svcUnavailableInd () : void

appUnavailableInd () : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, recordSubject : in TpSubjectType) : void
genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, recordSubject : in TpSubjectType) : void

Method

activityTestRes()

The framework uses this method to return the result of a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the service to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
 Method

activityTestErr()

The framework uses this method to indicate that an error occurred during a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the service instance to correlate this response (when it arrives) with the original request.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
Method

svcActivityTestReq()

The framework invokes this method to test that the service instance is operational. On receipt of this request, the service instance must carry out a test on itself, to check that it is operating correctly. The service instance reports the test result by invoking the svcActivityTestRes method on the IpFwFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
Raises

TpCommonExceptions
Method

fwFaultReportInd()

The framework invokes this method to notify the service instance of a failure within the framework. The service instance must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.
Raises

TpCommonExceptions
Method

fwFaultRecoveryInd()

The framework invokes this method to notify the service instance that a previously reported fault has been rectified. The service instance may then resume using the framework.

Parameters

fault : in TpInterfaceFaultRef

Specifies the fault from which the framework has recovered.
Raises

TpCommonExceptions
Method

fwUnavailableInd()

The framework invokes this method to inform the service instance that it is no longer available.

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available
Raises

TpCommonExceptions
Method

svcUnavailableInd()

The framework invokes this method to inform the service instance that the client application has reported that it can no longer use the service instance (either due to a failure in the client application or in the service instance itself). The service instance should assume that the client application is leaving the service session and should act accordingly to terminate the session from its own end too.

Parameters

No parameters were identified for this method.
Raises

TpCommonExceptions
Method

appUnavailableInd()

The framework invokes this method to inform the service instance that the client application is ceasing its current use of the service. This may be a result of the application reporting a failure. Alternatively, the framework may have detected that the application has failed: e.g. non-response from an activity test, failure to return heartbeats.

Parameters

None identified for this method.
Raises

TpCommonExceptions
Method

genFaultStatsRecordRes()

This method is used by the framework to provide fault statistics to a service in response to a genFaultStatsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.
recordSubject : in TpSubjectType
Specifies the entity (framework or applications) whose fault statistics record has been provided.
Raises

TpCommonExceptions
Method

genFaultStatsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to a genFaultStatsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatsError

The fault statistics error.
recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record was requested.
Raises

TpCommonExceptions
12.5.3 Interface Class IpFwHeartBeatMgmt

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the framework by a service instance.

	<<Interface>>

IpFwHeartBeatMgmt

	

	enableHeartBeat (interval : in TpInt32, svcInterface : in IpSvcHeartBeatRef) : void
disableHeartBeat () : void

changeInterval (interval : in TpInt32, session : in TpSessionID) : void

Method

enableHeartBeat()

With this method, the service instance instructs the framework to begin sending its heartbeat to the specified interface at the specified interval.
Parameters

interval : in TpInt32
The duration in milliseconds between the heartbeats.
svcInterface : in IpSvcHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE
Method

disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.
Parameters

None identified.
Raises

TpCommonExceptions
Method

changeInterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32
The time interval in milliseconds between the heartbeats.
Raises

TpCommonExceptions
12.5.4 Interface Class IpFwHeartBeat

Inherits from: IpInterface.
 The service side framework heartbeat interface is used by the service instance to send the framework its heartbeat.
	<<Interface>>

IpFwHeartBeat

	

	pulse () : void

Method

pulse()

The service instance uses this method to send its heartbeat to the framework. The framework will be expecting a pulse at the end of every interval specified in the parameter to the IpSvcHeartBeatMgmt.enableSvcHeartbeat() method. If the pulse() is not received within the specified interval, then the service instance can be deemed to have failed the heartbeat.
Parameters

 None.
Raises

TpCommonExceptions
12.5.5 Interface Class IpSvcHeartBeatMgmt

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the service instance by the framework.
	<<Interface>>

IpSvcHeartBeatMgmt

	

	enableSvcHeartBeat (interval : in TpInt32, fwInterface : in IpFwHeartBeatRef) : void

disableSvcHeartBeat () : void

changeInterval (interval : in TpInt32, session : in TpSessionID) : void

Method

enableSvcHeartBeat()

With this method, the framework instructs the service instance to begin sending its heartbeat to the specified interface at the specified interval..

Parameters

interval : in TpInt32
The time interval in milliseconds between the heartbeats.
fwInterface : in IpFwHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.
Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE
Method

disableSvcHeartBeat()

Instructs the service instance to cease the sending of its heartbeat.
Parameters

None identified.
Raises

TpCommonExceptions
Method

changeInterval()

Allows the administrative change of the heartbeat interval

Parameters

interval : in TpInt32
The time interval in milliseconds between the heartbeats.
Raises

TpCommonExceptions

12.5.6 Interface Class IpSvcHeartBeat

Inherits from: IpInterface.
The service heartbeat interface is used by the framework to send the service instance its heartbeat.
	<<Interface>>

IpSvcHeartBeat

	

	pulse () : void

Method

pulse()

The framework uses this method to send its heartbeat to the service instance. The service will be expecting a pulse at the end of every interval specified in the parameter to the IpFwHeartBeatMgmt.enableHeartbeat() method. If the pulse() is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.
Parameters

None identified.
Raises

TpCommonExceptions
12.5.7 Interface Class IpFwLoadManager

Inherits from: IpInterface.
The framework API should allow the load to be distributed across multiple machines and across multiple component processes, according to a load management policy. The separation of the load management mechanism and load management policy ensures the flexibility of the load management services. The load management policy identifies what load management rules the framework should follow for the specific service. It might specify what action the framework should take as the congestion level changes. For example, some real-time critical applications will want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is related to the QoS level to which the application is subscribed. The framework load management function is represented by the IpFwLoadManager interface. To handle responses and reports, the service developer must implement the IpSvcLoadManager interface to provide the callback mechanism.

	<<Interface>>

IpFwLoadManager

	

	reportLoad (loadLevel : in TpLoadLevel) : void

queryLoadReq (querySubject : in TpSubjectType, timeInterval : in TpTimeInterval) : void

querySvcLoadRes (loadStatistics : in TpLoadStatisticList) : void

querySvcLoadErr (loadStatisticError : in TpLoadStatisticError) : void

createLoadLevelNotification (notifSubject : in TpSubjectType) : void

destroyLoadLevelNotification (notifSubject : in TpSubjectType: void

suspendNotification (notifSubject : in TpSubjectType) : void

resumeNotification (notifSubject : in TpSubjectType) : void

Method

reportLoad()

The service instance uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load level on the service instance has changed.

At level 0 load, the service instance is performing within its load specifications (i.e. it is not congested or overloaded). At level 1 load, the service instance is overloaded. At level 2 load, the service instance is severely overloaded.

Parameters

loadLevel : in TpLoadLevel

Specifies the service instance 's load level.
Raises

TpCommonExceptions
Method

queryLoadReq()

The service instance uses this method to request the framework to provide load statistics records for the framework or for the application that uses the service instance.

Parameters

querySubject : in TpSubjectType
Specifies the entity (framework or applications) for which load statistics records should be reported
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.
Raises

TpCommonExceptions
Method

querySvcLoadRes()

The service instance uses this method to send load statistic records back to the framework that requested the information; i.e. in response to an invocation of the querySvcLoadReq method on the IpSvcLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the service-supplied load statistics.
Raises

TpCommonExceptions
Method

querySvcLoadErr()

The service instance uses this method to return an error response to the framework that requested the service instance 's load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the querySvcLoadReq method on the IpSvcLoadManager interface.

Parameters

loadStatisticError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the service instance 's load statistics.
Raises

TpCommonExceptions
Method

createLoadLevelNotification()

The service uses this method to register to receive notifications of load level changes associated with the framework or with the application that uses the service instance.

Parameters

notifSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should be reported.
Raises

TpCommonExceptions
Method

destroyLoadLevelNotification()

The service uses this method to unregister for notifications of load level changes associated with the framework or with the application that uses the service instance.

Parameters

notifSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should no longer be reported.
Raises

TpCommonExceptions
Method

suspendNotification()

The service instance uses this method to request the framework to suspend sending it notifications associated with the framework or with the application that uses the service instance; e.g. while the service instance handles a temporary overload condition.

Parameters

notifSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications by the framework should be suspended.
Raises

TpCommonExceptions
Method

resumeNotification()

The service instance uses this method to request the framework to resume sending it notifications associated with the framework or with the application that uses the service instance; e.g. after a period of suspension during which the service instance handled a temporary overload condition.

Parameters

notifSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications of load level changes by the framework should be resumed.
Raises

TpCommonExceptions
12.5.8 Interface Class IpSvcLoadManager

Inherits from: IpInterface.
The service developer supplies the load manager service interface to handle requests, reports and other responses from the framework load manager function. The service instance supplies the identity of its callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpFwAccess interface.

	<<Interface>>

IpSvcLoadManager

	

	querySvcLoadReq (timeInterval : in TpTimeInterval) : void

queryLoadRes (loadStatistics : in TpLoadStatisticList) : void

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

suspendNotification () : void

resumeNotification () : void

Method

querySvcLoadReq()

The framework uses this method to request the service instance to provide its load statistic records.

Parameters

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Raises

TpCommonExceptions
Method

queryLoadRes()

The framework uses this method to send load statistic records back to the service instance that requested the information; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics
Raises

TpCommonExceptions
Method

queryLoadErr()

The framework uses this method to return an error response to the serviceinstance that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
Raises

TpCommonExceptions
Method

loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the application or framework which have been registered for load level notifications) this method is invoked on the SCF.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Raises

TpCommonExceptions
Method

suspendNotification()

The framework uses this method to request the service instance to suspend sending it any notifications: e.g. while the framework handles a temporary overload condition.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
Method

resumeNotification()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of suspension during which the framework handled a temporary overload condition.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
12.5.9 Interface Class IpFwOAM

Inherits from: IpInterface.
The OAM interface is used to query the system date and time. The service and the framework can synchronise the date and time to a certain extent. Accurate time synchronisation is outside the scope of this API.

	<<Interface>>

IpFwOAM

	

	systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

Method

systemDateTimeQuery()

This method is used to query the system date and time. The client (service) passes in its own date and time to the framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : This is the system date and time of the framework.

Parameters

clientDateAndTime : in TpDateAndTime

This is the date and time of the client (service). The P_INVALID_DATE_TIME_FORMAT exception is thrown if the format of the parameter is invalid.
Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID_TIME_AND_DATE_FORMAT
12.5.10 Interface Class IpSvcOAM

Inherits from: IpInterface.
	<<Interface>>

IpSvcOAM

	

	systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

Method

systemDateTimeQuery()

This method is used by the framework to send the system date and time to the service. The service responds with its own date and time.

Returns <clientDateAndTime> : This is the date and time of the client (service).

Parameters

systemDateAndTime : in TpDateAndTime

This is the system date and time of the framework. The P_INVALID_DATE_TIME_FORMAT exception is thrown if the format of the parameter is invalid.
Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID_TIME_AND_DATE_FORMAT
12.6 Event Notification Interface Classes
12.6.1 Interface Class IpFwEventNotification

Inherits from: IpInterface.
The event notification mechanism is used to notify the service of generic events that have occurred.

	<<Interface>>

IpFwEventNotification

	

	createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

Method

createNotification()

This method is used to install generic notifications so that events can be sent to the service.

Returns <assignmentID> : Specifies the ID assigned by the framework for this newly installed event notification.

Parameters

eventCriteria : in TpFwEventCriteria

Specifies the event specific criteria used by the service to define the event required.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_EVENT_TYPE, P_INVALID_CRITERIA
Method

destroyNotification()

This method is used by the service to delete generic notifications from the framework.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will throw the P_INVALID_ASSIGNMENT_ID exception.
Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID
12.6.2 Interface Class IpSvcEventNotification

Inherits from: IpInterface.
This interface is used by the framework to inform the service of a generic event. The Event Notification Framework will invoke methods on the Event Notification Service Interface that is specified when the Event Notification interface is obtained.

	<<Interface>>

IpSvcEventNotification

	

	reportNotification (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

Method

reportNotification()

This method notifies the service of the arrival of a generic event.

Parameters

eventInfo : in TpFwEventInfo

Specifies specific data associated with this event.
assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The service can use the assignment id to associate events with event specific criteria and to act accordingly.
Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID
Method

notificationTerminated()

This method indicates to the service that all generic event notifications have been terminated (for example, due to faults detected).

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
13 Framework-to-Service State Transition Diagrams

13.1 Trust and Security Management State Transition Diagrams

There are no State Transition Diagrams defined for Trust and Security Management
13.2 Service Registration State Transition Diagrams
13.2.1 State Transition Diagrams for IpFwServiceRegistration

[image: image17.wmf]SCF

Registered

registerService

SCF

Announced

describeService

unannounceService

announceServiceAvailability

unregisterService

Figure : State Transition Diagram for IpFwServiceRegistration

13.2.1.1 SCF Registered State

This is the state entered when a Service Capability Server (SCS) registers its SCF in the Framework, by informing it of the existence of an SCF characterised by a service type and a set of service properties. As a result the Framework associates a service ID to this SCF, that will be used to identify it by both sides.
An SCF may be unregistered, the service ID then being no longer associated with the SCF.
13.2.1.2 SCF Announced State

This is the state entered when the existence of the SCF has been announced, thus making it available for discovery by applications. The SCF can be unannounced at any time, taking it back into the SCF Registered state where it is no longer available for discovery.
13.3 Service Factory State Transition Diagrams
There are no State Transition Diagrams defined for Service Factory
13.4 Service Discovery State Transition Diagrams

There are no State Transition Diagrams defined for Service Discovery
13.5 Integrity Management State Transition Diagrams
13.5.1 State Transition Diagram for IpFwLoadManager

[image: image18.wmf]Idle

NOTIFICATION

SUSPENDED

ACTIVE

IpFwAccess.obtainInterface

reportLoad

querySvcLoadRes[load statistics requested by

LoadManager]

querySvcLoadErr[load statistics requested by

LoadManager]

reportLoad

querySvcLoadRes[load statistics requested by

LoadManager]

querySvcLoadErr[load statistics requested by

LoadManager]

queryLoadReq

destroyLoadLevelNotification

suspendNotification[all notifications suspended]

createLoadLevelNotification

IpFwAccess.obtainInterfaceWithCallba

ck

resumeNotification

destroyLoadLevelNotification

All States

IpFwAccess.endAccess

queryLoadReq

“

load

change”^loadLevelNotification

IDLE

In this state the service has obtained an interface reference to the IpFwLoadManager from the IpFwAccess interface.

ACTIVE

In this state the service has indicated its interest in notifications by performing a createLoadLevelNotification() invocation on the IpFwLoadManager. The load manager can now request the service to supply load statistics information (by invoking querySvcLoadReq()). Furthermore the LoadManager can request the service to control its load (by invoking loadLevelNotification(), resumeNotification() or suspendNotification() on the service side of interface). In case the service detects a change in load level, it reports this to the LoadManager by calling the method reportLoad().
NOTIFICATION SUSPENDED

Due to, e.g. a temporary load condition, the service has requested the load manager to suspend sending the load level notification information.

13.6 Event Notification State Transition Diagrams

There are no State Transition Diagrams defined for Event Notification

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Ericsson (Ard-Jan Moerdijk), Alcatel (Chelo Abarca), Lucent (Tip Apaseesod)

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

3GPP

_1050241625.doc

Idle

NOTIFICATION

SUSPENDED

“load change”^loadLevelNotification

ACTIVE

IpFwAccess.obtainInterface

reportLoad

querySvcLoadRes[load statistics requested by LoadManager]

querySvcLoadErr[load statistics requested by LoadManager]

reportLoad

querySvcLoadRes[load statistics requested by LoadManager]

querySvcLoadErr[load statistics requested by LoadManager]

queryLoadReq

destroyLoadLevelNotification

suspendNotification[all notifications suspended]

createLoadLevelNotification

queryLoadReq

IpFwAccess.obtainInterfaceWithCallback

resumeNotification

destroyLoadLevelNotification

All States

IpFwAccess.endAccess

_1051432417.doc

Framework

 :

IpHeartBeat

 :

IpSvcHeartBeatMgmt

1: enableSvcHeartBeat()

2: pulse()

3: pulse()

4: disableHeartBeat()

At a certain point of

time the framework

decides to stop

heartbeat supervision

_1050241342.doc

 : IpSvcLoadManager

 : IpFwLoadManager

1: createLoadLevelNotification()

Framework detects its

load condition change

and initiates load control

action

3: loadLevelNotification()

2: load change detection & policy evaluation

This is the

implementation detail

5: loadLevelNotification()

6: destroyLoadLevelNotification()

4: load change detection & policy evaluation

This is the

implementation detail

