3GPP TSG_CN5 (Open Service Access – OSA) 
N5-010703
Meeting #12, Sophia Antipolis, FRANCE, 16 – 19 July 2001

	CR-Form-v4

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	015
	(

rev
	-
	(

Current version:
	4.1.0
	(


	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Introduction of Service Instance Lifecycle Management

	
	

	Source:
(

	CN5 


	
	

	Work item code:
(

	OSA1
	
	Date: (

	30/08/2001

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-4

	
	Use one of the following categories:
F  (correction)
A  (corresponds to a correction in an earlier release)
B  (addition of feature), 
C  (functional modification of feature)
D  (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	There is no method that the Framework can invoke on the Service instance to indicate that the Session has been terminated unless the Service implements the IpSvcFaultManager interface. Even if that interface is supported the Framework shouldn’t be using those methods if, for example, the Service Agreement should be terminated because the contract governing its terms expires.  There needs to be a method that the framework can invoke to terminate the service instance.

	
	

	Summary of change:
(

	It is proposed that a new interface, IpServiceInstanceLifecycleManager, is introduced. This interface will replace the IpSvcFactory interface.  The existing method on IpSvcFactory (createServiceManager) is carried over to the new interface. In addition a new method – destroyServiceManager – is supported.

	
	

	Consequences if 
(

not approved:
	There will be no way to terminate a service instance which does not implement the fault management interfaces.  This means that the service instance cannot be terminated and will therefore hold resources indefinitely.

Failure to adopt this CR would result in divergence between the 3GPP R4 specification and the ETSI/Parlay specifications.

	
	

	Clauses affected:
(

	6.4, 10.1, 10.2, 12.2, 13.2

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	


How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.  Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks"  feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text.  Delete those parts of the specification which are not relevant to the change request.
Current Situation

A service instance is brought into existence when the Application invokes signServiceAgreement on the Framework. The Framework uses a Service Factory to create the instance, and a reference to it is returned to the Application.

It could be considered then that a Session between the Application and Service instance has been started.

This Session is considered to be ended under the following conditions :-

The Application invokes IpAccess.terminateServiceAgreement()

The Application invokes IpFaultManager.svcUnavailableInd()

The Service instance invokes IpFwFaultManager.appUnavailableInd()

The Service instance invokes IpFwFaultManager.svcRemovalInd()

The Framework invokes IpSvcFaultManager.svcUnavailableInd() – as a result of item 2 above

The Framework invokes IpSvcFaultManager.appRemovalInd() – possibly as a result of  item 2 above

(If the service instance invokes either of the above IpFwFaultManager methods the Framework needs to pass that information on to the application, which can then decide whether to end the service agreement or not.  Currently, the IpAppFaultManager interface is lacking an appRemovalInd method so this cannot be done.  Likewise, the IpFaultManager is lacking a svcUnavailableInd which the application could invoke to inform the framework that it is having trouble with the service. )

Issue

There is currently no method that the Framework can invoke on the Service instance to indicate that the Session has been terminated unless the Service implements the IpSvcFaultManager interface. Even if that interface is supported the Framework shouldn’t be using those methods if, for example, the Service Agreement should be terminated because the contract governing its terms expires.  There needs to be a method that the framework can invoke to terminate the service instance.

Proposal

The original proposal in N5-010577 is superceded as a result of discussions held at the meeting in Sophia Antipolis. The new proposal follows.

It is proposed that a new interface, IpServiceInstanceLifecycleManager, is introduced. This interface will replace the IpSvcFactory interface.

The existing method on IpSvcFactory (createServiceManager) is carried over to the new interface. In addition a new method - destroyServiceManager – is supported.

When an Application wants to end the session it has with a Service it invokes terminateServiceAgreement()  on the Framework’s IpAccess interface and the Framework will invoke destroyServiceManager() on the Service’s Service Instance Lifecycle manager.

Resultant Changes

· New IpServiceInstanceLifecycleManager interface

· IpSvcFactory interface removed

· The announceServiceAvailability method must be updated

In addition numerous sequence diagrams, class diagrams and text which include the IpSvcFactory interface or refer to the service factory need to be updated.

Note: The service factory is referenced in the sequence diagram in section 10.2.1.  This has been changed in this contribution to reference the service instance lifecycle manager, but the change will not show up properly.

Note that N5-010697 introduces the service instance id to the createServiceManager method of IpSvcFactory so this should be carried over into the new IpServiceInstanceLifecycleManager. 



	


	

	















12.2 Service Instance Lifecycle Manager Interface Classes
The IpServiceInstanceLifecycleManager interface allows the framework to get access to a service manager interface of a service. It is used during the signServiceAgreement, in order to return a service manager interface reference to the application. Each service has a service manager interface that is the initial point of contact for the service. E.g., the generic call control service uses the IpCallControlManager interface.

12.2.1 Interface Class IpServiceInstanceLifecycleManager

Inherits from: IpInterface.

The IpServiceInstanceLifecycleManager interface allows the Framework to create and destroy Service Manager Instances.

	<<Interface>>

IpServiceInstanceLifecycleManager

	

	createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList, serviceInstanceID : in TpServiceInstanceID, serviceManager : out IpServiceRefRef) : TpResult

destroyServiceManager (serviceInstanceID : in TpServiceInstanceID) : TpResult




Method

createServiceManager()

This method returns a new service manager interface reference for the specified application.  The service instance will be configured for the client application using the properties agreed in the service level agreement. 

Parameters

application : in TpClientAppID

Specifies the application for which the service manager interface is requested.
serviceProperties : in TpServicePropertyList

Specifies the service properties and their values that are to be used to configure the service instance.  These properties form a part of the service level agreement.  An example of these properties is a list of methods that the client application is allowed to invoke on the service interfaces.

serviceInstanceID : in TpServiceInstanceID

Specifies the Service Instance ID that the new Service Manager is to be identified by.

serviceManager : out IpServiceRefRef

Specifies the service manager interface reference for the specified application ID.
Raises

TpCommonExceptions,P_INVALID_PROPERTY
Method

destroyServiceManager()

This method destroys an existing service manager interface reference. This will result in the client application being unable to use the service manager any more. 

Parameters

serviceInstance : in TpServiceInstanceID

Identifies the Service Instance to be destroyed.

Raises

TpCommonExceptions
6.4
 INCLUDEPICTURE "C:\\Program Files\\Rational\\SoDAWord\\placehld.wmf" \* MERGEFORMAT Trust and Security Management Sequence Diagrams

6.4.1
Service Selection

The following figure shows the process of selecting an SCF.

After discovery the Application gets a list of one or more SCF versions that match its required description. It now needs to decide which service it is going to use; it also needs to actually get a way to use it. 

This is achieved by the following two steps:

 INCLUDEPICTURE H:\\PEX\\Mulligan\\OSA\\UML\\latest\\FW_Template_1.dia\\3A797A870011.wmf \* MERGEFORMAT 
1:
Service Selection: first step - selectService

In this first step the Application identifies the SCF version it has finally decided to use. This is done by means of the serviceID, which is the agreed identifier for SCF versions. The Framework acknowledges this selection by returning to the Application a new identifier for the service chosen: a service token, that is a private identifier for this service between this Application and this network, and is used for the process of signing the service agreement.

Input is:

·
in serviceID

This identifies the SCF required.

And output:

·
out serviceToken

This is a free format text token returned by the framework, which can be signed as part of a service agreement. It contains operator specific information relating to the service level agreement. 

2:
Service Selection: second step - signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once this contractual details have been agreed, then the Application can be given the means to actually use it. The means are a reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By calling the createServiceManager operation on the lifecycle manager the Framework retrieves this interface and returns it to the Application. The service properties suitable for this application are also fed to the SCF (via the lifecycle manager interface) in order for the SCS to instantiate an SCF version that is suitable for this application.

Input:

·
in serviceToken

This is the identifier that the network and Application have agreed to privately use for a certain version of SCF. 

·
in agreementText

This is the agreement text that is to be signed by the Framework using the private key of the Framework.

·
in signingAlgorithm 

This is the algorithm used to compute the digital signature.

Output:

·
out signatureAndServiceMgr 

This is a reference to a structure containing the digital signature of the Framework for the service agreement, and a reference to the manager interface of the SCF.

10.1 Service Registration Sequence Diagrams

10.1.1 New SCF Registration

The following figure shows the process of registering a new Service Capability Feature in the Framework.  Service Registration is a two step process: 

 INCLUDEPICTURE H:\\PEX\\Mulligan\\OSA\\UML\\latest\\FW_Template_1.dia\\3A7979E50307.wmf \* MERGEFORMAT 
1:
Registration: first step - register service

The purpose of this first step in the process of registration is to agree, within the network, on a name to call, internally, a newly installed SCF version. It is necessary because the OSA Framework and SCF in the same network may come from different vendors. The goal is to make an association between the new SCF version, as characterized by a list of properties, and an identifier called serviceID.

This service ID will be the name used in that network (that is, between that network's Framework and its SCSs), whenever it is necessary to refer to this newly installed version of SCF (for example for announcing its availability, or for withdrawing it later).

The following input parameters are given from the SCS to the Framework in this first registration step:

·
in serviceTypeName

This is a string with the name of the SCF, among a list of standard names (e.g. "P_MPCC").

·
in servicePropertyList

This is a list of types TpServiceProperty; each TpServiceProperty is a triplet (ServicePropertyName, ServicePropertyValueList, ServicePropertyMode).

·
ServicePropertyName is a string that defines a valid SFC property name (valid SCF property names are listed in the SCF data definition).

·
ServicePropertyValueList is a numbered set of types TpServicePropertyValue; TpServicePropertyValue is a string that describes a valid value of a SCF property (valid SCF property values are listed in the SCF data definition).

·
ServicePropertyMode is the value of the property modes (e.g. "mandatory", meaning that all properties of this SCF must be given values at service registration time).

The following output parameter results from service registration:

·
out serviceID

This is a string, automatically generated by the Framework of this network, based on the following:

·
a string that contains a unique number, generated by the Framework; 

·
a string that identifies the SCF name (e.g. "P_MPCC");

·
a concatenation of strings that identify the SCF specialization, if any.

This is the name by which the newly installed version of SCF, described by the list of properties above, is going to be identified internally in this network.

2:
Registration: second step - announce service availability

At this point the network's Framework is aware of the existence of a new SCF, and could let applications know - but they would have no way to use it. Installing the SCS logic and assigning a name to it does not make this SCF available. In order to make the SCF available an "entry point", called lifecycle manager, is used. The role of the lifecycle manager is to control the life cycle of an interface, or set of interfaces, and provide clients with the references that are necessary to invoke the methods offered by these interfaces. The starting point for a client to use an SCF is to obtain an interface reference to a lifecycle manager of the desired SCF.

A Network Operator, upon completion of the first registration phase, and once it has an identifier to the new SCF version, will instantiate a lifecycle manager for it that will allow client to use it.  Then it will inform the Framework of the value of the interface associated to the new SCF. After the receipt of this information, the Framework makes the new SCF (identified by the pair [serviceID, serviceInstanceLifecycleManagerRef]) discoverable.

The following input parameters are given from the SCS to the Framework in this second registration step:

·
in serviceID

This is the identifier that has been agreed in the network for the new SCF; any interaction related to the SCF needs to include the serviceID, to know which SCF it is.

·
in serviceInstanceLifecycleManagerRef
This is the interface reference at which the lifecycle manager of the new SCF is available. Note that the Framework will have to invoke the method createServiceManager() in this interface, any time between now and when it accepts the first application requests for discovery, so that it can get the service manager interface necessary for applications as an entry point to any SCF.

 INCLUDEPICTURE "C:\\Program Files\\Rational\\SoDAWord\\placehld.wmf" \* MERGEFORMAT 
10.2
 INCLUDEPICTURE "C:\\Program Files\\Rational\\SoDAWord\\placehld.wmf" \* MERGEFORMAT Service Instance Lifecycle Manager Sequence Diagrams

10.2.1
Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the signing of the service agreement and the corresponding actions towards the service. For more information on accessing the framework, authentication and discovery of services, see the corresponding sections.


[image: image1.wmf] : 

IpAppCallControlManager

AppLogic

 : IpInitial

 : IpAccess

 : 

IpCallControlManager

 : 

IpAppAccess

GenericCallControlService :

IpServiceInstance

LifecycleManager

1: 

selectService(  )

3: signServiceAgreement(    )

4: createServiceManager(   )

5: new()

6: new()

7: 

setCallback( )

We assume that the application is already authenticated and discovered the service it wants to use

2: signServiceAgreement(    )



[image: image2.wmf] : 

IpAppCallControlManager

AppLogic

 : IpInitial

 : IpAccess

 : 

IpCallControlManager

 : 

IpAppAccess

GenericCallControlService :

IpServiceInstance

LifecycleManager

1: 

selectService(  )

3: signServiceAgreement(    )

4: createServiceManager(   )

5: new()

6: new()

7: 

setCallback( )

We assume that the application is already authenticated and discovered the service it wants to use

2: signServiceAgreement(    )



1:
The application selects the service, using a serviceID for the generic call control service. The serviceID could have been obtained via the discovery interface. A ServiceToken is returned to the application.

2:
The framework signs the service agreement.

3:
The client application signs the service agreement. As a result a service manager interface reference (in this case of type IpCallControlManager) is returned to the application.

4:
Provided the signature information is correct and all conditions have been fulfilled, the framework will request the service identified by the serviceID to return a service manager interface reference. The service manager is the initial point of contact to the service.

5:
The lifecycle manager creates a new manager interface instance (a call control manager) for the specified application. It should be noted that this is an implementation detail. The service implementation may use other mechanism to get a service manager interface instance.

6:
The application creates a new IpAppCallControlManager interface to be used for callbacks.

7:
The Application sets the callback interface to the interface created with the previous message.

13.2  INCLUDEPICTURE "C:\\Program Files\\Rational\\SoDAWord\\placehld.wmf" \* MERGEFORMAT 

 INCLUDEPICTURE "C:\\Program Files\\Rational\\SoDAWord\\placehld.wmf" \* MERGEFORMAT Service Instance Lifecycle Manager State Transition Diagrams
 INCLUDEPICTURE "C:\\Program Files\\Rational\\SoDAWord\\placehld.wmf" \* MERGEFORMAT 
There are no State Transition Diagrams defined for the Service Instance Lifecycle Manager.
�PAGE \# "'Page: '#'�'"  �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'"  �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'"  �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'"  �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to http://www.3gpp.org/3G_Specs/3G_Specs.htm

�PAGE \# "'Page: '#'�'"  �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'"  �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'"  �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'"  �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'"  �� Andy Bennett, Gareth Carroll, Tip Apaseesod, (Lucent)

�PAGE \# "'Page: '#'�'"  �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See http://www.3gpp.org/ftp/information/work_plan/

�PAGE \# "'Page: '#'�'"  �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'"  �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'"  �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'"  �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'"  �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'"  �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'"  �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'"  �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'"  �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'"  �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'"  �� This is an example of pop-up text.



_1057649581.doc


 : IpAppCallControlManager





AppLogic





 : IpInitial





 : IpAccess





 : IpCallControlManager





 : IpAppAccess





GenericCallControlService : 





IpServiceInstance


LifecycleManager





1: selectService(  )





3: signServiceAgreement(    )





4: createServiceManager(   )





5: new()





6: new()





7: setCallback( )





We assume that the application is already authenticated and discovered the service it wants to use





2: signServiceAgreement(    )









