

3GPP LTE Security Aspects

Dionisio Zumerle Technical Officer, 3GPP ETSI

© 3GPP 2011 3GPP Workshop, Bangalore, 30 May 2011

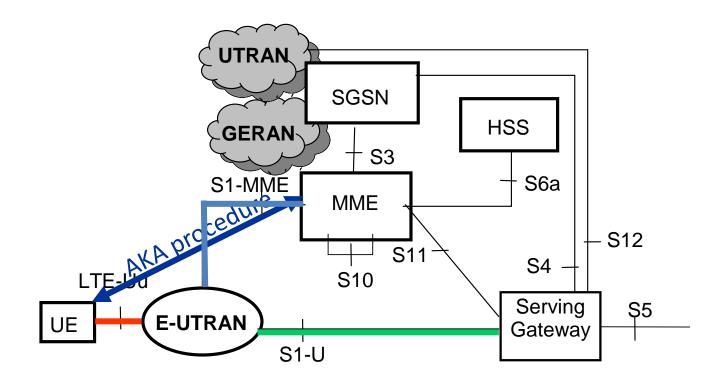
Contents

- LTE security architecture
- Security algorithms
- Lawful Interception
- n Backhaul Security
- Relay Node Security

LTE Security Architecture

LTE Security:

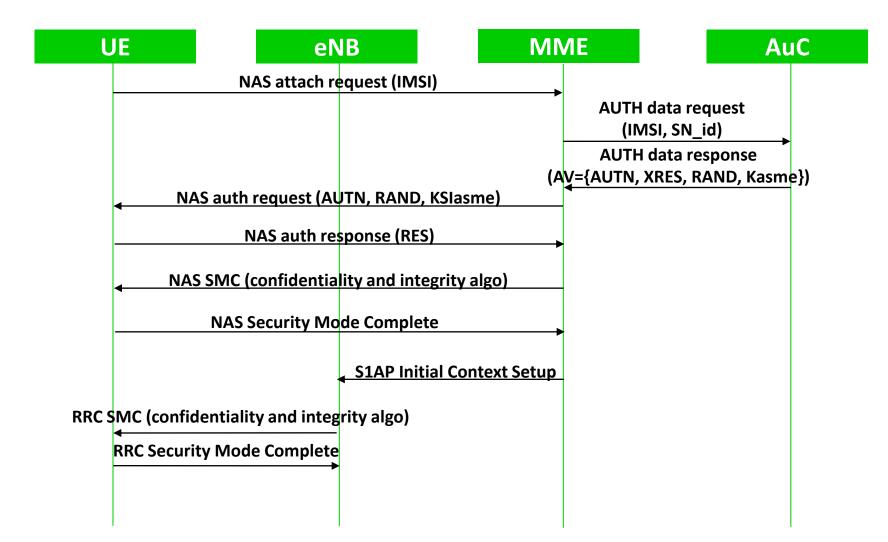
UMTS Security and LTE Architectural impact



- **OMTS** security enhancements:
 - Mutual authentication
 - Integrity keys
 - Public algorithms
 - "Deeper" encryption
 - Longer key length
- LTE Architecture:
 - Flat architecture
 - Separation of control plane and user plane
 - eNodeB instead of NodeB/RNC
 - All-IP network
 - Interworking with legacy and non-3GPP networks

- Characteristics of LTE Security
 - Re-use of UMTS Authentication and Key Agreement (AKA)
 - Use of USIM required (GSM SIM excluded)
 - Extended key hierarchy
 - Possibility for longer keys
 - Greater protection for backhaul
 - Integrated interworking security for legacy and non-3GPP networks

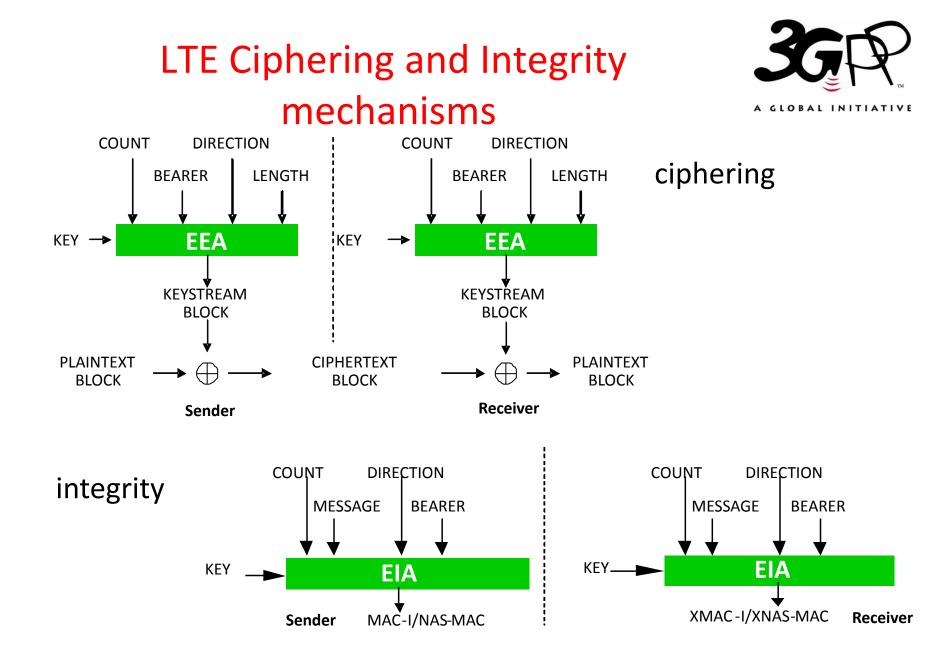
AKA and signalling protection



Confidentiality and integrity for signalling and confidentiality for user plane (RRC & NAS)
Confidentiality and integrity for signalling only (NAS)

Optional user plane protection (IPsec)

Authentication and Key Agreement



Security Algorithms

- Currently two separate algorithms specified
 - In addition to one NULL algorithm
- Current keylength 128 bits
 - Possibility to extend to 256 in the future
- Confidentiality protection of NAS/AS signalling recommended
- Integrity protection of NAS/AS signalling mandatory
- User data confidentiality protection recommended
- Ciphering/Deciphering applied on PDCP and NAS

128-EEA1/EIA1

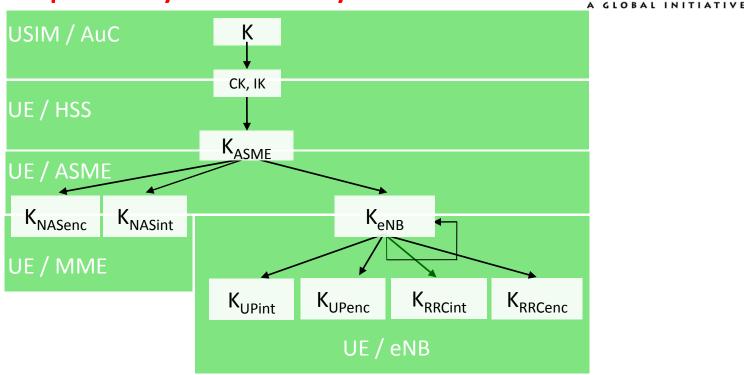
Based on SNOW 3G

- stream cipher
- keystream produced by Linear Feedback Shift Register (LFSR) and a Finite State Machine (FSM)
- Different from KASUMI as possible
 - selected during UMTS security design
- allows for:
 - low power consumption
 - low gate count implementation in hardware

128-EEA2/EIA2

จ AES block cipher

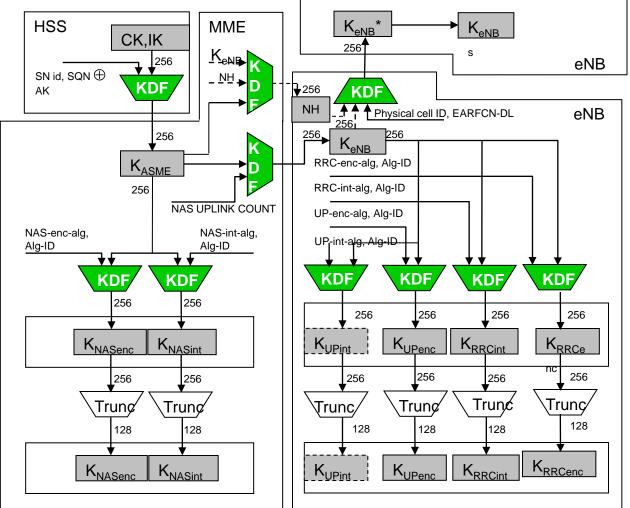
- Counter (CTM) Mode for ciphering
- CMAC Mode for MAC-I creation (integrity)
- Different from SNOW 3G as possible
 - Cracking one would not affect the other
- Reasons why KASUMI was not re-used:
 - eNB already supports AES
 - needs to support AES for NDS/IP
 - Similarity with other non-3GPP accesses (e.g. 802.11i)
 - Other


Based on Chinese ZUC

- stream cipher
- Three-phase evaluation ongoing
 - Public evaluation ongoing! <u>http://zucalg.forumotion.net/</u>
 - 2nd International Workshop on ZUC: June 5-6 in Beijing <u>http://www.3gpp.org/Call-for-Papers-Beijing-ZUC</u>

Network-mandatory/network-optional to be decided

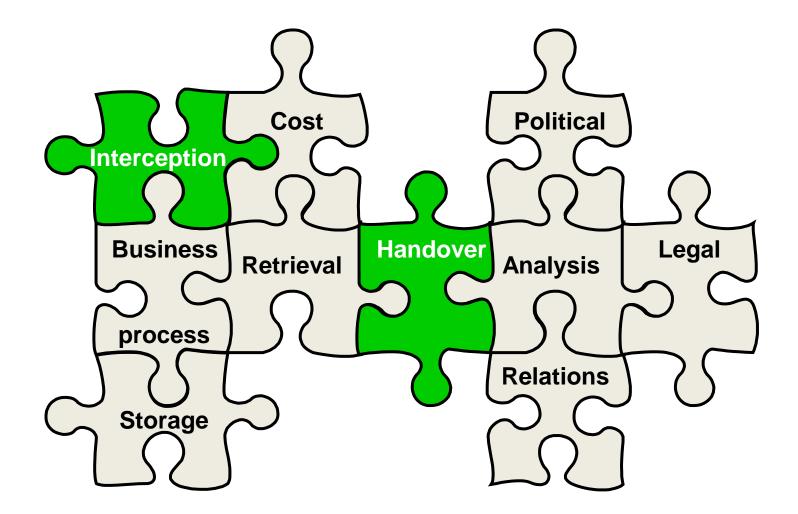
Deeper Key hierarchy in LTE



Faster handovers and key changes, independent of AKA
Added complexity in handling of security contexts
Security breaches local

A GLOBAL INITIATIVE

Key Derivation


Key distribution and key derivation scheme for EPS (network side), found in 33.401 Key Derivation Function (KDF) specification can be found in 33.220

Lawful Interception

Lawful Interception in 3GPP

Lawful Interception in EPS

Context and mechanisms similar to case of UMTS PS

- Different core entities (ICE, Intercepting Control Elements)
- ADMF handles requests from Law Enforcement Authorities
 - target identity: IMSI, MSISDN and IMEI
- X1 interface provisions ICEs and Delivery Functions
- X2 delivers IRI (Intercept Related Information)
- X3 delivers CC (Content of Communication)
- HI1,2,3: Handover Interfaces with law enforcement
 - Convey requests for interception of targets (HI1)
 - Deliver IRI (HI2) and CC (HI3) to LEAs

EPS LI Architecture

UTRAN SGSN HSS GERAN S3 S1-MME S6a MME X2 PCRF – S12 _×Rx S11 Gx⁄ S4 -S1 Serving PDN ŞGi **Operator's IP** i Gateway Gateway (Services (e.g. IMS, PSS etc.) S1-U X1_1 **X2 X3** X1_3 Delivery ADMF **Function 3** Delivery **Function 2** Mediation Mediation Mediation Function

HI3

LTE-Uu

E-UTRAN

Function

HI1

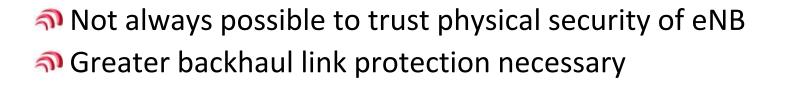
Function

LEMF

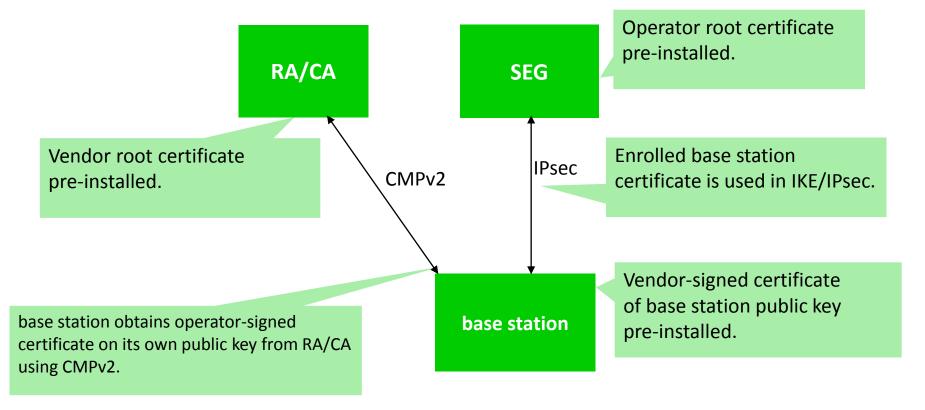
HI2

UE

Backhaul Security


© 3GPP 2011 3GPP Workshop, Bangalore, 30 May 2011

Backhaul Security

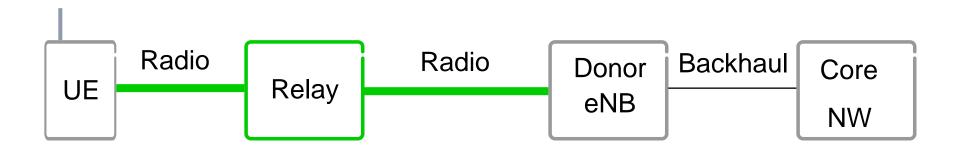

Base stations becoming more powerful

- LTE eNode B includes functions of NodeB and RNC
- Coverage needs grow constantly
- Infrastructure sharing

Certificate Enrollment for Base Stations

Picture from 3GPP TS 33.310

Relay Node Security


© 3GPP 2011 3GPP Workshop, Bangalore, 30 May 2011

Relay Node Authentication

Mutual authentication between Relay Node and network

- AKA used (RN attach)
- credentials stored on UICC
- Binding of Relay Node and USIM:
 - Based on symmetric pre-shared keys, or
 - Based on certificates

Relay Node Security

Control plane traffic integrity protected

User plane traffic optionally integrity protected

Relay Node and network connection confidentiality protected

Device integrity check

Secure environment for storing and processing sensitive data

Conclusions

- LTE Security: building on GSM and UMTS Security
- Newer security algorithms, longer keys
- Extended key hierarchy
- New features, addressing new scenarios
 - Backhaul Security
 - Relay Node Security

Thank You!

dionisio.zumerle@etsi.org

More Information about 3GPP:

www.3gpp.org

contact@3gpp.org

Selection of 3GPP Security Standards

LTE Security:

- 33.401 System Architecture Evolution (SAE); Security architecture
- 33.402 System Architecture Evolution (SAE); Security aspects of non-3GPP

Lawful Interception:

- 33.106 Lawful interception requirements
- **<u>33.107</u>** Lawful interception architecture and functions
- **33.108** Handover interface for Lawful Interception

Key Derivation Function:

<u>33.220</u> GAA: Generic Bootstrapping Architecture (GBA)

Backhaul Security:

33.310 Network Domain Security (NDS); Authentication Framework (AF)

Relay Node Security

- 33.816 Feasibility study on LTE relay node security (also 33.401)
- Home (e) Node B Security:
- 33.320 Home (evolved) Node B Security