Page 1

3GPP TSG-SA5 (Telecom Management)
S5-026441

Meeting #29, Beijing, CHINA, 24 ‑ 28 June

	CR-Form-v5

	CHANGE REQUEST

	

	(

	32.612
	CR
	099
	(

rev
	-
	(

Current version:
	4.1.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:
(

	Bulk CM IRP IS Enhancements for Validation/Preactivate/Modes

	
	

	Source:
(

	Motorola (Trevor.Pirt@motorola.com)

	
	

	Work item code:
(

	OAM-NIM
	
	Date: (

	24/05/2002

	
	
	
	
	

	Category:
(

	C
	
	Release: (

	REL-5

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	Support of Validation, Preactivation, Modes

	
	

	Summary of change:
(

	Add new operations validation and preactivate. Add Mode parameters. Other changes suggested by #25, #26, #27, #27quad, #28 and email discussion.

	
	

	Consequences if
(

not approved:
	Valiadtion, Preactivation, Modes not supported.

	
	

	Clauses affected:
(

	Sub-clause 6.2.1, 6.2.2, 6.2.2.5, 6.2.2.6, 6.2.2.9, 6.2.2.12, 6.2.3, 7.1, 7.2, 7.2.3, 7.2.4, 7.2.5, 7.3, Annex A.

	
	

	Other specs
(

	
	 Other core specifications
(

	32.611, 32.613, 32.614

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	Corresponding 32.613 CORBA SS changes are specified in S5-026442

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

6.2.1
Interfaces

Figure 5 illustrates the operations and notifications defined as interfaces implemented and used by IRPAgent and IRPManager, described using UML notation (Interface in IRP Information Model is identical to concepts conveyed by stereotype <<interface>> of UML). Parameters and return status are not indicated.

Two interfaces are defined. One is called BulkCmIRPOperations. This interface defines operations implemented by IRPAgent and used (or called) by IRPManager. The other is called BulkCmIRPNotifications. This interface defines notifications implemented by IRPManager and used by IRPAgent.

The interfaces support multiple IRPManagers connected to an IRPAgent.
(Editors note:pending new methodolgy potentially making this explicit, it is noted here explicitly, Generic IRP (32.312) aspects shall be inherited by this IRP. This statement will be removed once the new methodology is included and this inheritance is obvious. If the new methodology does not clarify this, appropriate text will be added to the same effect as this statement).

[image: image2.wmf]+startSession()

+endSession()

+upload()

+download()

+activate()

+fallback()

+abortSessionOperation()

+getSessionIds()

+getSessionStatus()

+getSessionLog()

+getBulkCmIRPVersion()

+preactivate()

+validate()

«interface»

Bulk CM Operations

«uses»

IRP Manager

+notifySessionStateChanged()

+notifyGetSessionLogEnded()

«interface»

Bulk CM Notifications

IRP Agent

«uses»

Implement

implement

Figure 4: UML Interface Class Diagram

6.2.2
Bulk CM Operations

Configuration data files defined in clause 8 define bulk configuration management changes. The following configuration data file handling operations exist in the Itf-N.

· startSession

· endSession

· upload

· download

· activate

· fallback

· abortSessionOperation

· getSessionIds

· getSessionStatus

· getSessionLog

· getBulkCmIRPVersion

· preactivate
· validate
Notification IRP [3] related operations are also associated with Bulk CM IRP (e.g. Subscribe an Unsubscribe), but these operations are described in32.302: "Telecommunication Management; Notification Management: Part 2: Notification IRP; Information Service” [3].).

The operations, upload, download, validate, preactivate, activate, fallback and getSessionLog are performed asynchronously in that when the operations are initiated, the IRPAgent returns an indication that the requested activity has begun, and the IRPManager may release and continue with other tasks. If the IRPManager has subscribed on event notifications, then the IRPManager will receive a notification when the task requested in the operation is complete.

The operations startSession, endSession, abortSessionOperation, getSessionIds, getSessionStatus and getBulkCmIRPVersion are performed synchronously in that the result of the operation is returned as a callback to the operation, and the IRPManager will wait until the response is received before continuing. Refer to subclause 4.3 for system conditions that need to be potentially managed, but are outside the scope of this document.

:

6.2.2.2
endSession (M)

The IRPManager invokes this operation to end a session state machine and delete all temporary entities and their related bulk data configuration for a specified sessionId in the IRPAgent. If a preactivation had been invoked, endSession should release any internal local resources allocated for the preactivation. The deletion will be rejected if the configuration state is in a working state: e.g. uploading (including getting a log), downloading or activating.

Table 2: endSession parameters

	Name
	Qualifier
	Description

	sessionId
	Input, M
	Identifies this specific session and process associated with an earlier bulk data operation e.g. upload or download

	status
	Output, M
	indicates (a) operation is successful and (b) operation failed because of specified or unspecified reasons

:

 6.2.2.4
download (M)

An IRPManager invokes this operation to request an IRPAgent to download and administer a file containing bulk configuration data (clause 8). The IRPAgent obtains the configuration data file from the indicated globally unique data file reference.

 For checks made during download see subclause 6.2.4.
Table 4: download parameters

	Name
	Qualifier
	Description

	sessionId
	Input, M
	Identifies this specific session and process associated with the requested bulk data download.

	downloadDataFileReference
	Input, M
	This specifies a globally unique file reference from where the data to be fetched and download from.

	status
	Output, M
	indicates (a) start of operation is successful or (b) operation failed because of specified or unspecified reasons

6.2.2.5
activate (M)

An IRPManager invokes this operation to request an IRPAgent to activate previously downloaded bulk configuration data (clause 8) that may have optionally been checked (subclause 6.2.2.12) and/or been preactivated (subclause 6.2.2.13). Activate means that operations specified in a previously downloaded configuration data file, for example create, delete and modify of managed objects are carried out on the live network i.e. mobile subscribers are affected by the downloaded configuration data.
An IRPAgent may support an optional activationMode parameter. This enables the IRPManager to indicate to the IRPAgent the preference for how the activation shall be executed. One of two options may be selected: “least service impact” or “least elapse time”. If the “least service impact” option is selected the IRPAgent shall optimise the execution of the activation in a way that minimises disruption to network services. Elapse time to complete the activation is of secondary importance. If the “least elapse time” option is selected the IRPAgent shall optimise the execution of the activation in a way that minimises the elapse time for completing the execution of the activation. During the execution, disruption of network services is of secondary importance.

See subclause 6.2.4 for descriptions of checks made during activate execution.
Specifying an activation mode is optional. There can only be one activation mode for a session. If an activation mode is specified for the activation, it shall be when the first activate, validate or preactivate operation is requested. If an activation mode was specified by validate or preactivate operations, it is not possible to change the activation mode initially specified with any subsequent activate operations. If an activation mode was specified for the first activate, it is not possible to change the activation mode initially specified with any subsequent activate retries. (If another activation mode is required, a new session, download, validate, preactivate and activate should be started.) If no activation mode is specified for the first activate, it cannot be subsequently specified with any subsequent activate retries. (If specification of an activation mode is required, a new session, download, validate, preactivate and activate should be started.) See also subclauses 6.2.2.12 and 6.2.2.13.

If a preactivation had been invoked, successful completion of activate should release any internal local resources allocated for the preactivation.
Selecting a fallback option is optional. There can only be one fallback option for a session.
If the fallback option is selected it shall be initiated when the first activation or preactivation operation is requested. If a fallback option is not requested for the first activation or preactivation, it cannot be subsequently requested for repeated activations or an activation following a preactivation during the session. If the fallback option was requested, it is not possible change the fallback option initially selected with any subsequent re-activate retries or an activation following a peractivation i.e. for a session it is only possible to fallback to the configuration that existed when the first activate or preactivate operation was requested. See also subclause 6.2.2.6. (If a new fallback configuration is required a new session, download and activate should be started. The old session can be ended, prior to which fallback can optionally be invoked).

Specifying how activate operation retries within a session shall be implemented following a partially successful activation (e.g. repeat all activation management actions or just the uncompleted delta of management actions that did not previously complete successfully) is beyond the scope of this document. Only the IRPManager can initiate activate retries. (The IRPAgent shall not initiate retries autonomously).

Table 5: activate parameters

	Name
	Qualifier
	Description

	sessionId
	Input, M
	Identifies this specific session and process associated with an earlier bulk data download that is required to be activated.

	activationMode
	Input, O
	Identifies whether a specific activation mode is required. See also subclauses 6.2.2.12 and 6.2.2.13. It may be set to indicate “least service impact” or “least elapse time” tpes of activation are required.

	fallbackEnabled
	Input, M
	Indicates whether or not it is required to initialise and enable fallback option prior to the activation.

This option is only open for the first activate operation of a session. For any subsequent activate operation retries within a session the fallbackEnabled parameter must be set to indicate it is not required to initialise fallback otherwise the activate operation retry shall fail.

	status
	Output, M
	indicates (a) start of operation is successful or (b) operation failed because of specified or unspecified reasons

6.2.2.6
fallback (M)

An IRPManager invokes this operation to request an IRPAgent to recover after previously ordered activation or preactivation has failed.
If a fallback is requested after a preactivation but before an activation the IRPAgent should as necessary return any internal local resources impacted by the preactivation back to the same state they were in prior to the preactivation being invoked. There is no impact to the operational network resources as the activate operation has not been invoked.

If fallback is requested after an activation the IRPAgent shall instigate activating the fallback area to restore the operational network resources impacted by the configuration changes for the session back to the configuration they were in when the fallback option was selected during the session. If a preactivation was also performed, as necessary the IRPAgent should return any internal local resources impacted by the preactivation back to the same state they were in prior to the preactivation being invoked.
Specifying how fallback operation retries within a session shall be implemented after a fallback fails (e.g. repeat all fallback functions or just the delta of fallback functions that did not previously complete successfully) is beyond the scope of this document. Only the IRPManager can initiate the fallback operation. The IRPAgent shall not initiate fallback or fallback retries autonomously. Within a session the fallback operation shall only be accepted if an initial activate or preactivate operations was performed with save fallback option requested. If the fallback option is selected and until the session is ended, any IRPManager request, in another session, of preactivation or activation shall fail if it involves one or more network resources already involved in the present session. For further discussion of fallback options see subclause 6.2.2.5.

Table 6: fallback parameters

	Name
	Qualifier
	Description

	sessionId
	Input, M
	Identifies this specific session and process associated with an earlier bulk data operation e.g. upload or download for which the current log is required.

	status
	Output, M
	indicates (a) start of operation is successful or (b) operation failed because of specified or unspecified reasons

6.2.2.9
getSessionStatus (M)

The IRPManager invokes this operation to request the IRPAgent to send the current state of the bulk configuration data file operation. The IRPAgent returns the current state. See clause 7.

This operation can be invoked in any session state and does not change the session state.
Table 9: getSessionStatus parameters

	Name
	Qualifier
	Description

	sessionId
	Input, M
	Identifies this specific session and process associated with an earlier bulk data operation e.g. upload or download for which the current status is required.

	sessionState
	Output, M
	Indicates current state of the configuration data file operation. See clause 7, i.e. will be one of: Upload In Progress, Upload Failed, Upload Completed, Down Load In Progress, Download Failed, Download Completed, Validation In Progress, Validation Failed, Validation Completed, Preactivation In Progress, Preactivation Failed, Preactivation Partly Realised, Preactivation Completed, Activation In Progress, Activation Failed, Activation Partly Realised, Activation Completed, Fallback In Progress, Fallback Failed, Fallback Partly Realised, Fallback Completed,

	status
	Output, M
	Indicates (a) start of operation is successful or (b) operation failed because of specified or unspecified reasons

6.2.2.12
validate (O)
An IRPManager invokes this operation to request an IRPAgent to validate previously downloaded bulk configuration data (clause.8), see subclause 6.2.4. Use of this optional operation enables an IRPManager to detect errors with regard to the previously downloaded bulk configuration data before requesting preactivation or activation. See subclause 6.2.4 for scope and types of errors attempted to be detected.
Specifying an activation mode is optional. There can only be one activation mode for a session. If an activation mode is specified for the validate, it shall be when the first validate operation is requested. If an activation mode was specified for the first validate operation, it is not possible to change the activation mode initially specified with any subsequent validate retries. (If another activation mode is required; a new session, download, validate, preactivate and activate should be started.). If no activation mode is specified for the first validate, it cannot be subsequently specified with any subsequent validate retries. (If specification of an activation mode is required; a new session, download, validate, preactivate and activate should be started.) If an activation mode is specified for the validate, it cannot be specified for the preactivation or activation. If no activation mode is specified for the validate operation, it can not be specified for the preactivation or activation. See also subclauses 6.2.2.13 and 6.2.2.5.
Use of the validate operation shall have no influence on the fallback behaviour of a session.
Invoking the validate operation shall not result in any of the suboperations specified in the downloaded bulk configuration data being applied (clause 8). The operation is essentially passive.
Table 12: validate parameters
	Name
	Qualifier
	Description

	sessionId
	Input, M
	Identifies this specific session and process associated with an earlier bulk data download that is required to be validated.

	activationMode
	Input, O
	Identifies whether a specific activation mode is required. See also subclauses 6.2.2.13 and 6.2.2.5. The valid choices are defined in the parameter table in clause 6.2.2.5.

	status
	Output, M
	Indicates (a) start of operation is successful or (b) operation failed because of specified or unspecified reasons

6.2.2.13
preactivate (O)

An IRPManager invokes this operation to request an IRPAgent to preactivate previously downloaded bulk configuration data (clause 8) that may have optionally been validated (subclause 6.2.2.12). The principal, but not mandatory, functions of the preactivate operation is to validate the configuration data changes in the context of current operational data and to pre-process the configuration data changes. Use of this optional operation enables the IRPManager to prepare the activation of the downloaded bulk configuration data at the EM or NE level before requesting its effective activation. The actions shall fall short of executing the bulk configuration data changes (clause 8) in the network and impacting service. (The actions may for example be to validate the configuration data changes in the context of current operational data or to pre-process the configuration data changes). Performing such actions prior to activate may help identify any potential problems prior to executing the changes on a live a network and may minimise activation elapse time. See also subclause 6.2.4 for scope of checks during a session and specifically for preactivate.
Specifying an activation mode is optional. There can only be one activation mode for a session. If an activation mode is specified for the preactivation, it shall be when the first preactivate or validate operation is requested. If an activation mode was specified by validate it is not possible to change the activation mode initially specified with any subsequent preactivate or activate operations. If an activation mode was specified for the first preactivate operation, it is not possible to change the activation mode initially specified with any subsequent preactivate retries, activate or activate retries. (If another activation mode is required, a new session, download, validate, preactivate and activate should be started.) If no activation mode is specified for the first preactivate, it cannot be subsequently specified with any subsequent preactivate retries, activation or activation retries. (If specification of an activation mode is required, a new session, download, validate, preactivate and activate should be started.) See also subclauses 6.2.2.5 and 6.2.2.12.
See subclause 6.2.4.3 for description of optional verification mode parameter and associated checking.
Selecting a fallback option is optional. There can only be one fallback option for a session.

If the option is selected it shall be initiated when the first preactivation operation is requested. If a fallback option is not requested for the first preactivation, it cannot be subsequently requested for repeated preactivations or activations during the session. If the fallback option was requested, it is not possible to change the fallback option initially selected with any subsequent re- preactivate retries i.e. for a session it is only possible to fallback to the configuration that existed when the first preactivate operation was requested. See also clause 6.2.2.6. (If a new fallback configuration is required a new session, download, activate and preactivate should be started. The old session can be ended, prior to which fallback can optionally be invoked).

Specifying how preactivate operation retries within a session shall be implemented following a partially successful preactivation (e.g. repeat all preactivation management actions or just the uncompleted delta of management actions that did not previously complete successfully) is beyond the scope of this document. Only the IRPManager can initiate preactivate retries. (The IRPAgent shall not initiate retries autonomously).

Table 13: preactivate parameters

	Name
	Qualifier
	Description

	sessionId
	Input, M
	Identifies this specific session and process associated with an earlier bulk data download that is required to be preactivated.

	verificationMode
	Input, O
	Selects the mode of checking. One of two choices may be selected: “full checking”, “limited checking”, see subclause 6.2.4.2.

	activationMode
	Input, O
	Identifies whether a specific activation mode is required. See also subclauses 6.2.2.5 and 6.2.2.12 . The valid choices are defined in the parameter table in clause 6.2.2.5.

	fallbackEnabled
	Input, M
	Indicates whether or not it is required to initialise and enable fallback option prior to the preactivation.

This option is only open for the first preactivate operation of a session. For any subsequent preactivate operation retries within a session the fallbackEnabled parameter must be set to indicate it is not required to initialise fallback otherwise the pre-activate operation retry shall fail.

	status
	Output, M
	indicates (a) start of operation is successful or (b) operation failed because of specified or unspecified reasons

6.2.3.2
notifySessionStateChanged (M)

The IRPAgent notifies the IRPManager that a state change has occurred on a bulk configuration data file sessionId operation subscribed to by the IRPManager. E.g. a configuration data file is available for processing after an upload, a download is complete See clause 7 for a further description of states.

Table 13: notifySessionStateChange parameters
	Name
	Qualifier
	Description

	notificationHeader
	Input, M
	See Table 12 Notification Header.

	NotificationType of notificationhHeader
	Input, M
	See Table 12 Notification Header. For this notification it indicates notification type is Notify Session State Changed.

	sessionId
	Input, M
	Identifies this specific session and process associated with an earlier bulk data operation e.g. upload or download for which the current status is required.

	sourceIndicator
	Input, O
	This parameter, when present, indicates the source of the operation that led to the generation of this notification. It can have one of the following values:

· resource operation: The notification was generated in response to an internal operation of the resource;

· management operation: The notification was generated in response to a management operation applied across the managed object boundary external to the managed object;

· unknown: It is not possible to determine the source of the operation.

	sessionState
	Input, M
	Indicates the state transition that caused the Notification. See clause 7. i.e. Upload Failed, Upload Completed, Download Failed, Download Completed, Validation Failed, Validation Completed, Preactivation Failed, Preactivation Partly Realised, Preactivation Completed, Activation Failed, Activation Partly Realised, Activation Completed, Fallback Failed, Fallback Partly Realised, Fallback Completed. (Note: as per sub-clause 7.2 “in-progress” transition states are not notified)

:

:
6.2.4
Validation and Checking Functions

6.2.4.1
Download Checks

During download the IRPAgent should check the consistency of imported configuration data against the data schema to ensure there are no errors. The IRPAgent is not required to check the semantic of the downloaded bulk configuration data during the download.
6.2.4.2
Validate Checks

During validation the IRPAgent should check the syntax and semantic of previously downloaded bulk configuration data.
6.2.4.3
Preactivation Checks

During preactivation the IRPAgent should check the semantic of previously downloaded bulk configuration data, and must also check the syntax if a validate operation has not previously been successfully performed.

An Element Manager should, if technically feasible, send the configuration data changes to all Network Elements (NE) for the NE to verify, to the extent possible, that the activate will successfully execute the configuration data changes. If any elements of configuration change data that will not successfully execute are identified, diagnostic data identifying the NEs and failing configuration data elements will be made available to the Manager.

An IRPAgent may support an optional verification mode parameter, see clause 6.2.2.13. This parameter may be used to limit checking, that requires extensive real time such as validation by all NE’s when the manager does not require such checking. The verification mode parameter has two values: “full checking” or “limited checking”. In a “limited checking” mode, checking that can be done immediately is still performed but checks that require long delays to be completed are by-passed.

(Editors note: may be subject to additional clarification as a result of contribution from AWS and Motorola).
6.2.4.4
Activate Checks

During the activation the same checks as for validate and preactivate should be performed if these operations have not previously been successfully performed. These checks may also be repeated if the context may have changed.
(Editors note: additional scope of checking maybe added).
7
State Machine

7.1
State Machine Overview

The Bulk CM IRPAgent state machine satisfies the following general requirements and characteristics for Bulk CM IRP:

1) Each configuration session is associated with one state machine. The session is identified by the sessionId. If a session is a started (startSession operation) an instance of the state machine is created. If the session is ended (endSession operation) the instance of the state machine is deleted.
2) Under normal operation without errors the IRPManager is able to supervise a configuration session by just monitoring the state change notifications (notifySessionStateChanged) triggered by the IRPAgent
3) Under abnormal conditions where the IRPManager is not notified of a change, the getSessionStatus operation can be invoked to determine current state of the session. The IRPManager does not need to maintain a history of the state machine.
4) On the IRPAgent there is only one download configuration data file (clause 8) associated with a session at a time.
5) Multi configuration session must be supported by the IRPAgent. E.g. it must be possible to invoke an upload session in parallel with an active activate session.
6) The IRPAgent resolves concurrency problems on a "first come - first serve" basis. E.g. an upload and an activation requested on the same configuration data can not be performed at the same time and in this case the first will be progress to completions and the second request rejected.
7) It must be possible to abort a configuration session within a transition state.
8) The operator/IRPManager decides on whether or not a fallback option is required before requesting an activation or preactivation. The fallback option will maintain the disposition of the configuration before the activation or preactivation. The fallback configuration information is established at point before the first activation or preactivation is started. If there are multiple activation or preactivation attempts during a session only one (first) fallback configuration is maintained.
9) The session log file can be requested in any state. The uploaded log file contains information which is specific to the configuration session.
10) Clause 7.3 defines the valid state machine pre and post conditions for each operation.
7.2
State Machine Description

The IRPAgent progresses Bulk CM operations and associated configuration data changes (clause 8) within a session according to the state machine defined here. The IRPManager can manage a configuration session using session state change notifications which are triggered by the IRPAgent. Not all state changes defined here are notified to the IRPManager. The transition states (UPLOAD_IN_PROGRESS, DOWNLOAD_IN_PROGRESS, VALIDATION_IN_PROGRESS, PREACTIVATION_IN_PROGRESS, ACTIVATION_IN_PROGRESS) are not notified to the IRPManager as they are not required.

If the IRPManager becomes unaware or needs to confirm the current state of a configuration session it can request this by invoking getSessionStatus operation. It is not required to know the history of the state machine. The getSessionStatus operation will provide the “actual” current status.
An IRPManager may request the status when it detects loss of control, for example because of the following reasons:

1) Session state change notifications are not being received as expected, e.g. because IRPAgent is blocked in a transition state, e.g. ACTIVATION_IN_PROGRESS
2) IRPManager gets disconnected from the IRPAgent, e.g. session state notification are not received.

The session state notification events are a considered a subset of the state machine (without transition state). The actual configuration state can be requested via getSessionStatus. Because of this common behaviour it is reasonable to define one interface type for the state machine handling which is used in the session state notification and in the getSessionStatus operation.
The IRPManager will only receive notifications if it registered itself at the IRPAgent with the subscribe operation.

For ease of description the state machine of a configuration session is introduced with the notion of substate machines but state itself are named unique. This kind of notion is not to be interpreted as providing implementation directions.
Within the description of the substate machines it is apparent there are the following state symmetries:
-
The state of the UPLOAD_PHASE, the DOWNLOAD_PHASE and the VALIDATION_PHASE are similar.
-
The state of the ACTIVATION_PHASE, PREACTIVATION_PHASE and the FALLBACK_PHASE are similar.
The startSession operation creates a state machine. The initial state of the configuration session in the IDLE_PHASE is IDLE. The endSession deletes a state machine which is not in a transition state, more details are defined in the substate machines.

[image: image4.wmf]validate

download

upload

startSession

endSession

substate machine of

DOWNLOAD_PHASE

substate machine of

UPLOAD_PHASE

substate machine of

VALIDATION_PHASE

substate machine of

FALLBACK_PHASE

IDLE

IDLE_PHASE

activate

substate machine of

ACTIVATION_PHASE

fallback

activate

substate machine of

PREACTIVATION_PHASE

preactivate

fallback

Figure 5: State Machine

The following figures describe the substate machine of a configuration session. The transition states, DOWNLOAD_IN_PROGRESS, UPLOAD_IN_PROGRESS, VALIDATION_IN_PROGRESS, PREACTIVATION_IN_PROGRESS and ACTIVATION_IN_PROGRESS, are either left implicit if the IRPAgent finished the processing or explicit via an abortSessionOperation operation from the IRPManager.

In these figures solid transition lines indicate the transition is caused by an external event and dashed transition lines indicate the transition is caused by an internal event or decision as depicted in figure 6.

[image: image5.wmf]external event

STATE2

STATE1

STATE2

STATE1

internal event/decision

Figure 6: Depicting State Transition Lines for Internal and External Events and Decision

7.2.1
Upload Phase

When the upload is triggered the IRP Agent writes the requested configuration data into a configuration data file and copies to the file reference provided by the IRP Manager. If the process succeeds the state UPLOAD_COMPLETED is indicated.If the upload fails a retry can be triggered in state UPLOAD_FAILED.
Once a session is associated with an upload none of the other state changes phases outside of the upload phase, i.e., download, validate, preactivate and activate phases, can be triggered for the session.

[image: image6.wmf]upload

endSession

abortSessionOperation

UPLOAD_

IN_PROGRESS

upload

UPLOAD_FAILED

UPLOAD_

COMPLETED

UPLOAD_PHASE

Internal: upload

failed

Internal: upload

successful

Figure 7: Substate Machine – UPLOAD_PHASE
7.2.2
Download Phase

When the download is triggered the IRP Agent copies the configuration data file (clause8) from a given file area. The file is parsed and validated. If valid the state DOWNLOAD_COMPLETED is indicated. If the download fails a retry can be triggered in state DOWNLOAD_FAILED.
Once a configuration is specialised to download/validate/preactivate/activation behaviour then an upload phase cannot be triggered within this session.

[image: image7.wmf]download

endSession

abortSessionOperation

DOWNLOAD_

IN_PROGRESS

download

DOWNLOAD_

FAILED

DOWNLOAD_

COMPLETED

DOWNLOAD_PHASE

precheck, preactivate,

activate

Internal: Download

successful

Internal: Download

failed

Figure 8: Substate Machine – DOWNLOAD_PHASE

7.2. 5
Validation Phase
After a download had been completed the configuration data can be semantically validated before being preactivated or activated into the real subnetwork of an IRPAgent. (see subclause 6.2.4). A best effort strategy shall be applied. If validation was successfull the state VALIDATION_COMPLETED is indicated. If the validate fails a retry can be triggered in state VALIDATION_FAILED.

[image: image8.wmf]validate

endSession

abortSessionOperation

VALIDATION_

IN_PROGRESS

validate

VALIDATION_

FAILED

VALIDATION_

COMPLETED

VALIDATION_PHASE

activate or

preactivate

Internal: Check

successful

Internal: validate

failed

Figure 11: Substate Machine – VALIDATION_PHASE

7.2.6
Preactivation Phase

After a download had been completed and optionally validated the configuration data can be preactivated before being activated into the real subnetwork of an IRPAgent. If the process fully succeeds the preactivation is completed.

 For preactivation a best effort strategy shall be employed.

If the IRPAgent is unable to successfully complete all pre-MIB changes that were actioned in the configuration data file (clause 8) the state PREACTIVATION_PARTLY_REALISED is indicated. This state is not an error condition because the preactivation of configuration data changes follows a best effort strategy. If the preactivation fails completely i.e. there are no pre-MIB changes the state PREACTIVATION_FAILED is indicated. A retry of the preactivate can be performed in states PREACTIVATION_PARTLY_REALISED and PREACTIVATION_FAILED. The PREACTIVATION_FAILED state cannot be entered if previously during the session the state had become PREACTIVATION_PARTLY_REALISED. The PREACTIVATION_PARTLY_REALISED state should be re-entered instead. A retry of the preactivate is allowed so that it is possible to recover after transient condition that caused an preactivate to fail or partly realise are no longer present.

[image: image9.wmf]preactivate

endSession

abortSessionOperation

PREACTIVATION_

IN_PROGRESS

preactivate

PRE-ACTIVATION_

PARTLY_REALISED

PREACTIVATION_

FAILED

PRE-ACTIVATION_

COMPLETED

PRE-ACTIVATION_PHASE

fallback

Only valid if not

previously entered

PREACTIVATION_PAR

TLY_REALISED state

Internal:

Preactivation failed

Internal:

Prectivation

successful

Internal:

Preactivation failed

activate

Figure 12: Substate Machine – PREACTIVATION_PHASE

7.2.3
Activation Phase

After a download has been completed and optionally validated and/or preactivated the configuration data can be activated into the real subnetwork of an IRPAgent. If the process fully succeeds the activation is completed.

 For activation a best effort strategy shall be employed.

If the IRPAgent is unable to successfully complete all MIB changes and corresponding changes in the network elements that were actioned in the configuration data file (clause 8) the state ACTIVATION_PARTLY_REALISED is indicated. This state is not an error condition because the activation of configuration data changes follows a best effort strategy. If the activate fails completely i.e. there are no MIB changes or corresponding changes in the network elements, the state ACTIVATION_FAILED is indicated. A retry of the activate can be performed in states ACTIVATION_PARTLY_REALISED and ACTIVATION_FAILED. The ACTIVATION_FAILED state cannot be entered if previously during the session the state had become ACTIVATION_PARTLY_REALISED. The ACTIVATION_PARTLY_REALISED state should be re-entered instead. A retry of the activate is allowed so that it is possible to recover after transient condition that caused an activate to fail or partly realise are no longer present.

[image: image10.wmf]activate

endSession

abortSessionOperation

ACTIVATION_

IN_PROGRESS

activate

ACTIVATION_

PARTLY_REALISED

ACTIVATION_

FAILED

ACTIVATION_

COMPLETED

ACTIVATION_PHASE

fallback

Only valid if not

previously entered

ACTIVATION_PARTLY_

REALISED state

Internal: Activation

failed

Internal: Activation

successful

Internal: Activation

failed

Figure 9: Substate Machine – ACTIVATION_PHASE

7.2.4
Fallback Phase

If an activate or preactivate operation was requested with the fallback option selected and was successfully or partially completed then a fallback operation can be requested. If the process of a fallback fully succeeds then the related MIB and subnetwork is reverted back to its former configuration prior to first configuration data file preactivation or activation of a session.

For fallback a best effort strategy shall be employed.

In case that not all MIB changes and corresponding changes in the network elements that were actioned in configuration data file (clause 8) were successfully reverted back the state FALLBACK_PARTLY_REALISED is indicated. This state is not an error condition as the fallback to the former configuration follows a best effort strategy. If the fallback fails completely i.e. no MIB changes or corresponding changes in the network elements can be reverted back then the state FALLBACK_FAILED is indicated. A retry of fallback can be performed in the states FALLBACK_PARTLY_REALISED and FALLBACK_FAILED. The FALLBACK_FAILED state cannot be entered if previously during the session the state had become FALLBACK_PARTLY_REALISED. The FALLBACK_PARTLY_REALISED state should be re-entered instead. A retry of the fallback is allowed so that it is possible to recover after transient condition that caused a fallback to fail or partly realise are no longer present.

[image: image11.wmf]fallback

endSession

abortSessionOperation

FALLBACK_

IN_PROGRESS

fallback

FALLBACK_

PARTLY_REALISED

FALLBACK_

FAILED

FALLBACK_

COMPLETED

FALLBACK_PHASE

Internal: Fallback

failed

Internal: Fallback

successful

Only valid if not previously entered

FALLBACK_PARTLY_REALISED

state

Internal: Fallback

failed

Figure 10: Substate Machine – FALLBACK_PHASE

7.3
State Machine Pre and Post Conditions Tables

For each operation Table 15 identifies the state machine pre and post conditions.

Table 15: State Machine Pre and Post Conditions

	Operation
	Pre-condition
	Post Condition

	startSession
	No state – input sessionId provided by an IRPManager is not already in use in the IRPAgent by this or any other IRPManager
	State = IDLE

	endSession
	not in a Transition status i.e. state <>. *_IN_PROGRESS
	sessionId is released - No state.

	upload
	State = IDLE or UPLOAD_FAILED
	Initially while operation is being performed:

State= UPLOAD_IN_PROGRESS

Finally when operation has completed:

State = UPLOAD_COMPLETED or UPLOAD_FAILED

	download
	State = IDLE or DOWNLOAD_FAILED
	Initially while operation is being performed:

State= DOWNLOAD_IN_PROGRESS

Finally when operation has completed:

State = DOWNLOAD_COMPLETED or DOWNLOAD_FAILED

	validate
	State = DOWNLOAD_COMPLETED or VALIDATION_FAILED
	Initially while operation is being performed:

State= VALIDATION_IN_PROGRESS

Finally when operation has completed:

State = VALIDATION_COMPLETED or VALIDATION_FAILED

	preactivate
	State = DOWNLOAD_COMPLETED or VALIDATION_COMPLETED or PREACTIVATION_PARTLY_REALISED or PREACTIVATION_FAILED
	Initially while operation is being performed:

State= PREACTIVATION_IN_PROGRESS

Finally when operation has completed:

State = PREACTIVATION_COMPLETED or PREACTIVATION_PARTLY_REALISED or PREACTIVATION_FAILED

	activate
	State = DOWNLOAD_COMPLETED or VALIDATION_COMPLETED or ACTIVATION_PARTLY_REALISED or ACTIVATION_FAILED or PREACTIVATION_COMPLETED or PREACTIVATION_PARTLY_REALISED
 or PREACTIVATION_FAILED

	Initially while operation is being performed:

State= ACTIVATION_IN_PROGRESS

Finally when operation has completed:

State = ACTIVATION_COMPLETED or ACTIVATION_PARTLY_REALISED or ACTIVATION_FAILED

	fallback
	State = PREACTIVATION_COMPLETED or PREACTIVATION_PARTLY_REALISED or ACTIVATION_COMPLETED or ACTIVATION_PARTLY_REALISED or ACTIVATION_FAILED or FALLBACK_PARTLY_REALISED or FALLBACK_FAILED
	Initially while operation is being performed:

State= FALLBACK_IN_PROGRESS

Finally when operation has completed:

State = FALLBACK_COMPLETED or FALLBACK_PARTLY_REALISED or FALLBACK_FAILED

	abortSessionOperation
	State = UPLOAD_IN_PROGRESS or DOWNLOAD_IN_PROGRESS or
VALIDATION_IN_PROGRESS or
PREACTIVATION_IN_PROGRESS or ACTIVATION_IN_PROGRESS or FALLBACK_IN_PROGRESS
	State =

UPLOAD_FAILED or DOWNLOAD_FAILED or VALIDATE_FAILED or PREACTIVATION_PARTLY_REALISED or PREACTIVATION_FAILED or ACTIVATION_PARTLY_REALISED or ACTIVATION_FAILED or FALLBACK_PARTLY_REALISED or FALLBACK_FAILED

	getSessionIds
	N/A – State Machine independent
	N/A

	getSessionStatus
	None
	None

	getSessionLog
	None
	None

	getBulkCmIRPversion
	N/A – State Machine independent
	N/A

Annex A (informative):
Scenarios

Draft supporting background informational only.
Example 1. Successful Upload Session

[image: image12.wmf]IPRManager

IRPAgent

subscribe()

startSession()

notifySessionStateChanged()

upload()

notifySessionStateChanged()

unsubscribe()

endSession()

IRPManager subscribes to receive

Bulk CM notifications.

IRPManager starts a new Bulk CM session

When session started state becomes IDLE,

and notification is sent to IRPManager

IRPManager requests and upload

When the upload has completed

IRPAgent sends notification

IRPManager ends the session

IRPManager unsubscribes from

Bulk CM notifications.

Example 2: Successful Download and Activation without validation and preactivation.

[image: image13.wmf]IRPManager

IRPAgent

subscribe()

startSession()

notifySessionStateChange()

download()

notifySessionStateChange()

unsubscribe()

activate()

IRPManager subscribes to receive

Bulk CM notifications.

IRPManager starts a new Bulk CM session

When session started state becomes IDLE,

and notification is sent to IRPManager

IRPManager requests a download

When the download has completed

IRPAgent sends notification

IRPManager ends the session

IRPManager unsubscribes from

Bulk CM notifications.

IRPAgent starts the activation

notifySessionStateChange()

IRPAgent completes activation

and sends notification

endSession()

Example 3: Successful Download and Activation with validation and preactivation.

[image: image14.wmf]IRPManager

IRPAgent

subscribe()

startSession()

notifySessionStateChange()

download()

notifySessionStateChange()

unsubscribe()

activate()

IRPManager subscribes to receive

Bulk CM notifications.

IRPManager starts a new Bulk CM session

When session started state becomes IDLE,

and notification is sent to IRPManager

IRPManager requests a download

When the download has completed

IRPAgent sends notification

IRPManager ends the session

IRPManager unsubscribes from

Bulk CM notifications.

IRPAgent starts the activation

notifySessionStateChange()

IRPAgent completes activation

and sends notification

endSession()

notifySessionStateChange()

preactivate()

IRPAgent starts the preactivation

notifySessionStateChange()

IRPAgent completes preactivation

and sends notification

validate()

IRPAgent starts the validation

IRPAgent completes the

validation and sends notification

Example 4: Successful Download and Activation with Validation.

[image: image15.wmf]IRPManager

IRPAgent

subscribe()

startSession()

notifySessionStateChange()

download()

notifySessionStateChange()

unsubscribe()

activate()

IRPManager subscribes to receive

Bulk CM notifications.

IRPManager starts a new Bulk CM session

When session started state becomes IDLE,

and notification is sent to IRPManager

IRPManager requests a download

When the download has completed

IRPAgent sends notification

IRPManager ends the session

IRPManager unsubscribes from

Bulk CM notifications.

IRPAgent starts the activation

notifySessionStateChange()

IRPAgent completes activation

and sends notification

endSession()

notifySessionStateChange()

validate()

IRPAgent starts the validation

IRPAgent completes the

validation and sends notification

Example 3: Successful Download and Activation with Preactivation.

[image: image16.wmf]IRPManager

IRPAgent

subscribe()

startSession()

notifySessionStateChange()

download()

notifySessionStateChange()

unsubscribe()

activate()

IRPManager subscribes to receive

Bulk CM notifications.

IRPManager starts a new Bulk CM session

When session started state becomes IDLE,

and notification is sent to IRPManager

IRPManager requests a download

When the download has completed

IRPAgent sends notification

IRPManager ends the session

IRPManager unsubscribes from

Bulk CM notifications.

IRPAgent starts the activation

notifySessionStateChange()

IRPAgent completes activation

and sends notification

endSession()

preactivate()

IRPAgent starts the preactivation

notifySessionStateChange()

IRPAgent completes preactivation

and sends notification

Annex B (informative):
Bulk CM Application and Operation Principles
At present place holder only.

B1
Key Characteristics
· Bulk CM operations are not transaction based.
· The state machine does not allow looping. Can only progress forward through main states.

· If any errors are found in the configuration data, it shall not be possible to fix the configuration data. A new session should be started with new corrected configuration data being downloaded..

· Non-transitional interface (editors note: clarify)

· Sessions may be run in parallel. There shall not be any exclusion of specified changes between pararellel sessions. (Editors note: a “lock” option may be added, subject to further contribution).
· (Editors note: include some example exception)

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �Page: 1��� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �Page: 1��� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �Page: 1��� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �Page: 1��� This is an example of pop-up text.

�PAGE \# "'Page: '#'�'" �Page: 5��� A new specific clause/subclause should be created for common description of the fallback option for pre-activate and activate operations

�PAGE \# "'Page: '#'�'" �Page: 5��� Under consideration.

�PAGE \# "'Page: '#'�'" �Page: 7��� A new specific clause/subclause should be created for common description of the fallback option for pre-activate and activate operations

�PAGE \# "'Page: '#'�'" �Page: 7��� Under consideration.

�PAGE \# "'Page: '#'�'" �Page: 7��� A new specific clause/subclause should be created for common description of the fallback option for pre-activate and activate operations

�PAGE \# "'Page: '#'�'" �Page: 9��� Based off AWS contribution S5C020022. Possibly subject to further comment/discussion and editorial to ensure fits best in context of this subclause.

�PAGE \# "'Page: '#'�'" �Page: 9���Based off AWS contribution S5C020022. Possibly subject to further comment/discussion and editorial to ensure fits best in context of this subclause.

�PAGE \# "'Page: '#'�'" �Page: 14��� 1) Remove as Bulk CM best effort strategy is not linked with the activation mode AND 2) Define default activation mode when not supported in a new specific clause/subclause which should be created for common description of activation mode for check, pre-activate and activate operations

�PAGE \# "'Page: '#'�'" �Page: 14��� 1) It should be possible to request activation even if preactivation is (totally) failed or only partly realized AND 2) PREACTIVATION_ FAILED substate can be reached through an abort operation AND 3) Use "in line with text" object layout instead of absolute position advanced object layout AND 4) Show new figure as inserted

�PAGE \# "'Page: '#'�'" �Page: 14��� Changed as per NN Comments and discussion at #26.

�PAGE \# "'Page: '#'�'" �Page: 14��� 1) Remove as Bulk CM best effort strategy is not linked with the activation mode AND 2) Define default activation mode when not supported in a new specific clause/subclause which should be created for common description of activation mode for check, pre-activate and activate operations

�PAGE \# "'Page: '#'�'" �Page: 15��� 1) ACTIVATION_ FAILED substate can be reached through an abort operation AND 2) Use "in line with text" object layout instead of absolute position advanced object layout

�PAGE \# "'Page: '#'�'" �Page: 15���Changed as per NN suggestion.

�PAGE \# "'Page: '#'�'" �Page: 16��� 1) FALLBACK_FAILED substate can be reached through an abort operation AND 2) Use "in line with text" object layout instead of absolute position advanced object layout

�PAGE \# "'Page: '#'�'" �Page: 16��� Changed as per NN suggestion.

�PAGE \# "'Page: '#'�'" �Page: 17��� For ensuring readability, preactivation phase substates should be listed just before activation phase substates

�PAGE \# "'Page: '#'�'" �Page: 17��� It should be possible to request activation even if preactivation is (totally) failed

�PAGE \# "'Page: '#'�'" �Page: 23��� Subject to further late contribution(s). See suggestions from Siemens (Gerd). Will add what have so far later.

CR page 1

_1078318940.vsd

_1078660311.vsd

_1081844035.vsd

_1081844094.vsd

_1078660439.vsd

_1078660472.vsd

_1078660350.vsd

_1078579885.vsd

_1078579998.vsd

_1078576915.vsd

_1073712494.vsd

_1075381476.vsd

_1051961455.vsd

_1073711677.vsd

_1052038160.vsd

_1050416199.vsd

