[bookmark: _GoBack]3GPP TSG SA WG5 (Telecom Management) Meeting #116	S5-176236
27 November-1 December 2017, Reno, Nevada, USA	revision of S5A-17xabc

Source:	Ericsson	
Title:	pCR 32.866 Propose to add query parameters for iterations
Document for:	Approval
Agenda Item:	6.5.4
1	Decision/action requested
The group is asked to approve this contribution
2	References
[bookmark: _Hlk494122276][1]	3GPP TR 32.866 Study on RESTful HTTP-based Solution Set (SS)
[2]	https://developer.digitalchalk.com/document/rest-api-v5/limit-and-offset/
3	Rationale
Clause 7.5.15 describes a pattern for iterations. For iterations alternative methods exists that should be supported by the API. An example is the use of query parameters.
The text below is taken from [2] and the example is adapted to reflect a typical message content for SA5.
All URLs which return collections of resource results (e.g. GET /dc/api/v5/users) follow the same pattern for paging. When issuing your HTTP request, you can include two parameters which determine paging behavior:
· limit
The limit parameter controls the maximum number of items that may be returned for a single request. This parameter can be thought of as the page size. If no limit is specified, the system defaults to a limit of 15 results per request. The maximum valid limit value is 100.
· offset
The offset parameter controls the starting point within the collection of resource results. For example, if you have a collection of 15 items to be retrieved from a resource and you specify limit=5, you can retrieve the entire set of results in 3 successive requests by varying the offset value: offset=0, offset=5, and offset=10. Note that the first item in the collection is retrieved by setting a zero offset.
The response to these requests is typically a JSON object with the following three properties: results, next, and prev. The results property is simply an array of the items returned for your request. If you are paged into the result set, the prev property will contain a link to the previous page of results. A next property, if present, will contain a link to the next page of results based on your current limit and offset values.
Examples
First page, three items at a time
For this scenario, we will make a request to the users resource, limiting the results to three items per page. Notice the next property on the response object contains a link with an identical URL but with an adjusted offset to include the next set of items.
Request
GET /ensembles/?limit=3,offset=5 HTTP/1.1
Host: example.org
Accept: application/json

Response
HTTP/1.1 200 OK
Content-Type: application/json
{
	"ensembles":
[
{
"id": "5",
 		"type": "Type1"
	},
{
"id": "6",
 		"type": "Type1"
	},
{
"id": "7",
 		"type": "Type1"
	}
],
 "_links":
 {
 	"self": { "href": "/ensembles/?limit=3,offset=5" },
 		"next": { "href": "/ensembles/?limit=3,offset=8" }
		"previous": { "href": "/ensembles/?limit=3,offset=2" }
 }
}

It is proposed to updated section 7.5.15 to reflect this.
4	Detailed proposal
It is proposed to do the following changes to draft TS 32.866 [2].
	
	1st Change

[bookmark: _Toc497743543][bookmark: _Hlk498511176][bookmark: _Hlk495076511][bookmark: _Toc497743539]7.5.15	Design pattern for iterations
Sometimes large portions of data need to be retrieved by a client. In these cases it is desirable to partition the response and return the data in multiple subsets. This is often referred to as the client iterating through the information to be returned.
RFC 7233 [c1] describes range requests that can be used for iterations. A Range header can be specified in the GET request allowing the client to specify a subset of the total resource representation. Only the specified subset is returned in the response. Ranges can be specified either in bytes or based on other substructures like the number of managed object instances. RFC 7233 [c1] defines only requests for byte ranges.
In case of success the server returns the status code 206 (Partial Content) and the Content-Range and Content-Length response headers. The response message body contains the partial content. The status code 416 (Range Not Satisfiable) is returned if the requested range cannot be satisfied by the server.
The Accept-Ranges header allows a server to indicate support for range requests for a target resource. The Accept-Ranges header value indicates the range unit type supported. The client can trigger a response including the Accept-Ranges header with a HEAD request.
The Query parameters “limit” and “offset” can also be used for iterations as alternative for range headers.
An API should support both the range headers and the query parameters pattern.

Example:
The three Part class instances shall be read in two steps. The first step shall return the first two instances, and the second step the last instance.
GET /Ensemble/1/Part HTTP/1.1
Host: example.org
Content-Type: application/json
Range: items=0-1

HTTP/1.1 206 Partial Content
Content-Range: 0-1/3
Content-Length: 1
Content-Type: application/json
[
 {
 "id": "a",
 "name": "ABC",
 "vendor": "XYZ",
 "size": "5"
 },
 {
 "id": "b",
 "name": "ABC",
 "vendor": "XYZ",
 "size": "2"
 }
]

GET /Ensemble/1/Part HTTP/1.1
Host: example.org
Content-Type: application/json
Range: items=2

HTTP/1.1 206 Partial Content
Content-Range: 2/3
Content-Length: 1
Content-Type: application/json
[
 {
 "id": "c",
 "name": "ABC",
 "vendor": "XYZ",
 "size": "53"
 }
]
The Range request header can specify also a set of ranges within a single representation (multipart ranges). The response to these requests is in case of success the 206 (Partial Content) status code and includes a Content-Type header value of multipart/byteranges together with a boundary parameter string. The boundary indicates the boundary between the requested parts in the response message body.
The concept of multipart ranges cannot be used to partition large data sets to be read into multiple smaller responses. It may be used to scope certain managed objects in a large resource representation containing multiple managed objects.

	
	End of changes

