3GPP TSG SA WG5 (Telecom Management) Meeting #115
S5-175265
16-20 October 2017, Busan, Korea
revision of S5A-17xabc
Source:
Nokia
Title:
pCR 32.866 Clarify design patterns
Document for:
Approval
Agenda Item:
6.5.5
1
Decision/action requested

Discuss and approve the pCR
2
References

None.
3
Rationale

Discuss and approve the pCR.
4
Detailed proposal

	1st modified section

7.5
Design Patterns

7.5.1
Information model for examples

The following class diagram is used for examples in clause 7.5.

[image: image1.png][R
Ensemble

dsting
type:sting

[R
Part

dsting
name:siring
vendor:string
sizeinteger

Figure 7.5.1.1: Class diagram

Editor’s note: In the figure above the arrow needs to be removed and a <<names>> stereotype needs to be added.
The corresponding JSON Schema definitions are given by
{

 "title": "Ensemble class",

 "description": "Ensemble class definition serving as example in 3GPP TR 32.866",

 "type": "object",

 "properties": {

 "id": { "type": "string" },

 "type": { "type": "string" }
 }

}

and
{

 "title": "Part class",

 "description": "Part class definition serving as example in 3GPP TR 32.866",

 "type": "object",

 "properties": {

 "id": { "type": "string" },

 "name": { "type": "string" },

 "vendor": { "type": "string" },

 "size": { "type": "integer"}
 }

}

Furthermore, the following instances are assumed:

· There is one instance of the class Ensemble with the id=1.
· There are three instances of the class Part with id=a, id=b and id=c.
The instances could look like

{

 "id": "z",

 "type": "baseStation"

}
and
{

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "5"

}
Multiple instances of the Part class can be transferred in the message body in an array containing a Part class instance as JSON object.
[

 {

 "id": "a",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "5"

 },

 {

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "2"

 },
 {

 "id": "c",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "53"

 }

]
7.5.2
Design pattern for READ operations (scope: one resource)

READ operations for single resources shall be mapped to the HTTP GET method. The resource to be retrieved is identified by the URI.

Example:

The resource representation of the Part class instance with id=b shall be read. A GET is invoked on the corresponding URI. In case of success 200 OK is returned.

GET /Ensemble/1/Part/b HTTP/1.1
Host: example.org

Content-Type: application/json

HTTP/1.1 200 OK
Content-Type: application/json

{

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "5"

}
It is also possible to return the location of the resource. I this case the id attribute is not required any more.
HTTP/1.1 200 OK
Content-Type: application/json

{

 "href": "/Ensemble/1/Part/b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "5"

}
7.5.3
Design pattern for READ operations (scope: multiple resource)

READ operations for multiple resources shall be mapped to the HTTP GET method. For the selection of multiple resources two approaches are possible:

1. With GET …{root}/{ClassName} it is possible to retrieve all resources of type class name below the root resource. Alternatively, a new resource {ClassName}s can be introduced below the {root} resource. Invoking a GET on this resource returns also all ClassName instances.
2. Other resource selection mechanisms can be realized with the query part of the URI, where scoping and filtering constructs can be placed, see clause 7.5.13.

Example:

The resource representations of all Part class instances shall be read.
GET /Ensemble/1/Part HTTP/1.1
Host: example.org

Content-Type: application/json
HTTP/1.1 200 OK
Content-Type: application/json

[

 {

 "id": "a",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "5"

 },

 {

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "2"

 },
 {

 "id": "c",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "53"

 }

]
Example:

The base object and the complete subtree below the base object shall be retrieved. In the example response given below the name containment is reflected in the JSON structure. It is also possible to return a plain list of object instances where each object contains its own URI.
GET /Ensemble/1?scopeType=BASE_SUBTREE HTTP/1.1
Host: example.org

Content-Type: application/json

HTTP/1.1 200 OK
Content-Type: application/json

[

 {

 "id":"z",

 "type":"baseStation"

 },

 {

 "Part":

 [

 {

 "id": "a",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "5"

 },

 {

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "2"

 },

 {

 "id": "c",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "53"

 }

]

 }

]

7.5.4
Design pattern for UPDATE operations (complete update)

For updating a complete resource HTTP PUT is used. The resource is updated with the representation in the request message body.

In case only a part of the resource shall be updated, the agent can GET the resource representation, modify it and send the modified complete resource representation back to the server using PUT. All attributes of the resource with final values need to be sent in the message body. Missing attributes will be set by the server to empty or null value. Alternatively, HTTP PATCH can be used for partial updates.

Multiple resources can be selected for an update with the scoping and filtering design pattern.

Example:
Update the Part class instance with id=b, change the size attribute from "2" to "5". Even though the other attributers are not touched, they need to be present in the request message body.
PUT /Ensemble/1/Part/b HTTP/1.1
Host: example.org

Content-Type: application/json

{

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "5"

}
HTTP/1.1 200 OK

Content-Type: application/json

{

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "5"

}
7.5.5
Design pattern for UPDATE operations (partial update)

HTTP PATCH is used when only a part of the resource shall be replaced. The changes to be applied to the target resource are described in the request message body. RFC 7396 [b2] describes a simple method for JSON (JSON Merge Patch) to describe these modifications.

The query part of the URI can be used for scoping and filtering multiple resources.

Example:
Update the Part class instance with id=b, change the size attribute from "2" to "5". In contrast to PUT, only the size attribute needs to be present in the request message body. The unmodified attributes can be omitted.
Request:
PATCH /Ensemble/1/Part/b HTTP/1.1
Host: example.org

Content-Type: application/merge-patch+json

{

 "size": "5"

}
HTTP/1.1 200 OK

Content-Type: application/json

{

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "5"

}
7.5.6
Design pattern for CREATE operations (single resource)

When the identifier of the new resource shall be created by the server the HTTP POST method must be used for resource creation. In case the identifier shall be created by the client and used by the server the HTTP PUT method must be used.

Example:
A new Part class instance shall be created using the POST method. In case of success "201 Created" is returned. The location header value refers to the new resource. The name of the resource is created by the server.
POST /Ensemble/1/Part HTTP/1.1
Host: example.org

Content-Type: application/json

{

 "id": "b",
 "name": "ABC",

 "vendor": "XYZ",

 "size": "5"

}
HTTP/1.1 201 Created

Location: /Ensemble/1/Part/6384
Content-Type: application/json

{

 "id": "b",
 "name": "ABC",

 "vendor": "XYZ",

 "size": "5"

}
Example:
Assume the Part class instance with id=b does not exist yet. A PUT at the location /Ensemble/1/Part/b creates this resource. In case off success "201 Created" is returned. The location header value refers to the new resource.
PUT /Ensemble/1/Part/b HTTP/1.1
Host: example.org

Content-Type: application/json

{

 "id": "b",
 "name": "ABC",

 "vendor": "XYZ",

 "size": "5"

}
HTTP/1.1 201 Created

Location: /Ensemble/1/Part/b
7.5.7
Design pattern for CREATE operations (multiple resources)

The location header can carry only one URI. For this reason, HTTP POST or HTTP PUT cannot be used for creation of multiple resources, unless the URIs of the created resources are made known to the server in some other way than in the location header response. One possibility to do so is to return "303 See Other" and a location header pointing to a resource containing the links of all created resources.

Another possibility is to use HTTP PATCH with JSON Patch for creation of multiple resources.

Example:
Assume the part class instances with id=b and id=c do not exist yet and shall be created with a single HTTP PATCH method invocation. JSON PATCH is used to describe the resources to be created.

PATCH /Ensemble/1/Part HTTP/1.1
Host: example.org

Content-Type: application/json-patch+json

[

 {

 "op":"add",

 "path":"/",

 "value":{

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "2"

 }

 },

 {

 "op":"add",

 "path":"/",

 "value":{

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "53"

 }

 }

]
HTTP/1.1 200 OK

Content-Type: application/json
[

 {

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "2"

 },
 {

 "id": "c",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "53"

 }

]

7.5.8
Design pattern for DELETE operations (single resource)

The HTTP DELETE method is used for deleting single resources.

Example:
The Part class instance with id=b shall be deleted.
DELETE /Ensemble/1/Part/b HTTP/1.1
Host: example.org

HTTP/1.1 204 No content

7.5.9
Design pattern for DELETE operations (multiple resources)

HTTP PATCH with JSON Patch is used for deleting multiple resources.
Example:
The Part class instances with id=b and id=c shall be deleted.
DELETE /Ensemble/1/Part HTTP/1.1
Host: example.org

Content-Type: application/json-patch+json

[

 {

 "op":"remove",

 "path":"/b",

 "value":{

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "2"

 }

 },

 {

 "op":"remove",

 "path":"/c",

 "value":{

 "id": "b",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "53"

 }

 }

]
HTTP/1.1 200 OK

Content-Type: application/json
[

 {

 "id": "a",

 "name": "ABC",

 "vendor": "XYZ",

 "size": "5"

 }
]
7.5.10
Design pattern for SUBSCRIBE/NOTIFY operations

HTTP is based on requests and responses. There is no built-in support for notifications and subscriptions to notifications. These mechanisms need to be modelled. To this end the server exposes a subscription resource. To subscribe to notifications the subscriber sends a HTTP POST request to this resource indicating – in the message body - the subscriber to which notifications shall be sent to, and including information about the type of notifications that are subscribed to. Additional filter information may be included in the message body as well.

Upon reception of a HTTP POST request the HTTP server creates a dedicated subscription resource for this specific subscription. To cancel a subscription, the subscriber deletes this resource with HTTP DELETE. If the cancellation is successful, the server responds with response code 204 (No content).
To send a notification on the occurence of a notifyable event the HTTP server sends a HTTP POST request to the client identified by HTTP endpoint address. The actual notification content is included in the message body of the HTTP POST request. Conceptually this means that the HTTP server contains a reduced feature HTTP client for sending HTTP POST requests, and vice versa, the HTTP client contains a reduced feature HTTP server for receiving HTTP POST requests and sending HTTP POST responses.
The subscriber can retrieve the information about a specific subscription by sending a HTTP GET request to the URI returned by the server upon creation of this subscription. Information about all subscriptions of a subscriber can be read by invoking a HTTP GET on the parent subscription resource whilst instructing the server, using the query component, to return only the subscriptions related to the client invoking the request.
Example:
This example shows how to subscribe to notifications.
POST /Subscriptions HTTP/1.1
Host: example.org

Content-Type: application/json

{

 "subscriberAddress": "http://subscriber.com/SubscriptionX",
 "subscribedNotificationTypes": "all",
 "notificationFilter": "filterValue"
}
HTTP/1.1 201 Created

Location: /Subscriptions/7324
Content-Type: application/json

{

 "subscriberAddress": "http://subscriber.com/SubscriptionX",
 "subscribedNotificationTypes": "all",
 "notificationFilter": "FilterValue"
}
Example:
This example shows how to send a notification.

POST /SubscriptionX HTTP/1.1
Host: subscriber.com

Content-Type: application/json

{

 "notificationType": "alarm",
 "alarmedResource": "example.org/Ensemble/1/Part/b ",
 "eventTime": "2017-08-09T13:37:27+00:00"
}
HTTP/1.1 204 No Content
Example:
This example shows how to delete a subscription.

DELETE /Subscriptions/7324 HTTP/1.1
Host: example.org

HTTP/1.1 204 No Content
Example:
This example shows how to query information about a specific subscription.

GET /Subscriptions/7234 HTTP/1.1
Host: example.org

HTTP/1.1 200 Ok

Content-Type: application/json

{

 "subscriberAddress": "http://subscriber.com/SubscriptionX",
 "subscribedNotificationTypes": "all",
 "notificationFilter": "FilterValue"
}
7.5.11
Design pattern for TASK operations

Due to their complexity, some operations cannot be mapped easily into CRUD operations. For these operations task resources are introduced. Reasons for escaping to task operations include

· Editor’s note: Reasons are to be added

Task resources are created below a parent resource to which the task is related to. The tasks are invoked by sending a HTTP POST request to the resource. Input parameters can be specified in the message body of the POST request. Output parameters can be returned in the message body of the POST response. The name of the resource should be a verb describing the invoked action

…/foo/doSomething

Task resources are created automatically by the HTTP server once the parent resource is created. The HTTP client does not need to create them.

7.5.12
Design pattern for asynchronous operations

Some operations cannot be mapped to synchronous HTTP requests and responses. For these operations, various options exist to implement asynchronous operations over a HTTP interface.

Option 1: Client requests a notification to a callback URI

In this option, the client submits a callback URI while requesting the asynchronous operation. This URI is called when the asynchronous operation is complete.
To invoke an operation:

The client sends a GET request to an operation-style URI, for example “/network/utranCell/Cell13784/upgrade”. The request contains a link to a callback URI so that the client may be notified when the request is completed. If the request is accepted, the server responds with status 200 (OK). If the request is not accepted, the server responds with status 4xx or 5xx.

To cancel an ongoing operation:

Cancellation is not possible.

To check the status of an operation:

Status check is not possible.

Advantages:

This option is very simple to implement.

Disadvantages:

This option does not properly use the RESTful nature of HTTP, it only uses HTTP as a carrier protocol. The Solution Set must describe proprietary handling of request state transitions and error handling.

The client and server must agree in advance which operations will be asynchronous.

It is not possible for the client to check the status of the request or to cancel the request.

Maturity level:

This option is at Richardson Maturity Level 0. The action is described in the URI, not in the HTTP verb. The status of the request is not reported to the client.

Option 2: Client creates a resource to represent the operation

In this option, the client creates and manages a resource to represent the asynchronous operation. This resource is used to represent the actions on the operation and the error conditions of the operation.
To invoke an operation:

The client POSTs a request to an operation-style URI, for example “/network/utranCell/Cell13784/upgrade”. Optionally, the request may contain a link to a callback URI so that the client may be notified when the request is completed. If the request is accepted, the server responds with status 201 (created) and a link to a status URI (for example “Location: /network/utranCell/Cell13784/upgrade/75CD01A7110C”). If the request is not accepted, the server responds with status 4xx or 5xx.

To cancel an ongoing operation:

The client invokes a DELETE operation on the status URI. If the cancellation is successful, the server responds with response code 204 (success). If it is not possible to cancel the ongoing operation, the server responds with response code 405 (method not allowed).

To check the status of an operation:

The client invokes a GET operation on the status URI. The server responds with response code 200 (OK) and the body of the response describes the current status of the operation (for example ongoing/success/failed).

If the operation has finished, the server may remove the status URI after a suitable timeout. Any requests to the removed URI should result in response code 410 (gone).

Advantages:

This option is compatible with existing 3GPP SA5 Information Models.

Disadvantages:

This option does not properly use the RESTful nature of HTTP, it only uses HTTP as a carrier protocol. The Solution Set must describe proprietary handling of request state transitions and error handling.

The client and server must agree in advance which operations will be asynchronous.

Every operation is expressed as a POST. This causes misuse of HTTP verbs in some cases, for example an asynchronous request to delete a resource must be encapsulated within a POST request.

Maturity level:

This option is at Richardson Maturity Level 1. The action is described in the URI, not in the HTTP verb. The status of the request is described in the HTTP body, not in the HTTP status code.

Option 3: Server creates a resource to represent the operation
In this option, the server creates and manages a resource to represent the asynchronous operation. HTTP verbs are used to represent the actions on the operation and HTTP status codes are used to report the error conditions of the operation.
To invoke an operation:

The client sends a request (POST/PUT/DELETE) containing “Expect: 200-ok/201-created/202-accepted” in the request header.

If the server is able to processes the request synchronously, the server responds with code 200 (OK) or 201 (created).

If the server is not able to processes the request synchronously, the server responds with status 202 (accepted) and a link to a status URI (for example “Location: /request/9EB50DADABDF”).

If the request is not accepted, the server responds with status 4xx or 5xx.

To cancel an ongoing asynchronous operation:

The client invokes a DELETE operation on the status URI. If the cancellation is successful, the server responds with response code 204 (success). If it is not possible to cancel the ongoing operation, the server responds with response code 405 (method not allowed).

To check the status of an asynchronous operation:

The client invokes a GET operation on the status URI. If the operation is still ongoing, the server responds with response code 200 (OK). If the operation is finished and an object exists as a result of the operation, the server responds with response code 303 (see other link) and the URI of the object. If the operation is finished and no object exists as a result of the operation, the server responds with response code 410 (gone).

If the operation has finished, the server may remove the status URI after a suitable timeout. Any requests to the removed URI should result in response code 410 (gone).

Advantages:

This option is compatible with cloud-style interfaces. Standard HTTP verbs and HTTP error codes are used properly. Because the behaviour is consistent, code may be reused or automatically generated.

Disadvantages:

This option is very different to the existing 3GPP SA5 solution sets. A typical 3GPP SA5 Information Model defines the behaviour of an asynchronous operation, and this behaviour may differ for various managed objects. In this option, the behaviour of the asynchronous operation is always the same, which may cause a mismatch between the Information Model and the Solution Set.

Maturity level:

This option is at Richardson Maturity Level 2. The lifecycle of the request is controlled by HTTP verbs and is reported by the HTTP status codes.

7.5.13
Design pattern for scoping and filtering

The hierarchical path component in the URI serves to identify a resource, called the base resource. The scope defines the resources below the base resource or at the same level as the base resource. A subset of the scoped resources can be selected by applying one or multiple filtering criteria. The scoped resources that match the filter criteria are those on which the HTTP operation is being applied to.

The query component in the URI is used for scoping and filtering. The query component is indicated by the first question mark ("?") character and terminated by a number sign ("#") character or by the end of the URI.

In RFC3986 [a3] the query component is defined as

query = *(pchar / "/" / "?")

A filter language is not defined. In ETSI GS NFV SOL 003 the following filter language is specified

simpleFilterExpr := <attrName>["."<attrName>]*"."<op>"="<value>

filterExpr := "?"<simpleFilterExpr>["&"<simpleFilterExpr>]*
op := "eq" | "neq" | "gt" | "lt" | "gte" | "lte" | "cont" |
 "ncont"
attrName := string
with

	Operator <op>
	Meaning

	<attrName>.eq=<value>[,<value>]*
	Attribute equal to one of the values in the list

	<attrName>.neq=<value>[,<value>]*
	Attribute not equal to any of the values in the list

	<attrName>.gt=<value>
	Attribute greater than <value>

	<attrName>.gte=<value>
	Attribute greater than or equal to <value>

	<attrName>.lt=<value>
	Attribute less than <value>

	<attrName>.lte=<value>
	Attribute less than or equal to <value>

	<attrName>.cont=<value>[,<value>]*
	Attribute contains (at least) one of the values in the list

	<attrName>.ncont=<value>[,<value>]*
	Attribute does not contain any of the values in the list

Editor’s note: It is ffs if this filter language shall be adopted.
The scope can be defined as follows:

…?scopeType={scopeTypeValue}&scopeLevel={scopeLevelValue}

scopeTypeValue = "BASE_ONLY" / "BASE_NTH_LEVEL" / "BASE_SUBTREE" / "BASE_ALL"

scopeLevelValue = *DIGIT
The scope types are defined in TS 32.602 [a6], and repeated here for convenience

· BASE_ONLY: select the base object, value of Level is ignored
· BASE_NTH_LEVEL: select all nth level (indicated by the value of Level) subordinate objects
· BASE_SUBTREE: select the base object and all of its subordinates down to and including the nth level
· BASE_ALL: select the base object and all of its subordinates; value of Level is ignored
Another simpler but also less rich possibility to select certain resources is to invoke a HTTP method not on a leaf resource but on a resource before the leaf object

Example 1:
This URI scopes the leaf resource with the id=c, which is the normal case where one resource is selected.
…/Ensemble/1/Part/c

Example 2:
This URI scopes all three instances of Part with the id=a, id=b and id=c

…/Ensemble/1/Part

Example 3:
This URI scopes the instance of Ensemble with id=1

…/Ensemble/1

Example 4:
This URI scopes all instances of Ensemble, in this case hence only the instance with id=1

…/Ensemble

7.5.14
Design pattern for links
Links (hypertext) are used on Level 3 of the Richardson Maturity Model. Links are used to traverse the resource space and discover features of the resources without the need to consult external documents.
Links are returned by the server as part of the resource representation. All links shall be returned in an object named "_links". The name of each link object inside the "_links" shall convey the semantics of the link.
Example 1:
In this example the hyperlinks to the resource (alarm) itself is returned as well as the links to the previous and the next alarm.
{

"_links": {

 "self": {"href": "http://example.org/AlarmIRP/v1/Alarms/127"},

 "next": {"href": "http://example.org/AlarmIRP/v1/Alarms/128"},

 "prev": {"href": "http://example.org/AlarmIRP/v1/Alarms/126"}

}

}

Example 2:
In the following example possible actions on the returned alarm are listed in the "_links" object.
{

"_links": {

 "comment": {"href": "http://example.org/AlarmIRP/v1/Alarms/127/comment"},

 "acknowledge": {"href": "http://example.org/AlarmIRP/v1/Alarms/127/acknowledge"}
}

}

In case the alarm is already acknowledged the following options are returned.
{

"_links": {

 "comment": {"href": "http://example.org/AlarmIRP/v1/Alarms/127/comment"},

 "unacknowledge": {"href": "http://example.org/AlarmIRP/v1/Alarms/127/unacknowledge"}
}

}

	End of 1st modified section

