Page 1

3GPP TSG-SA4 Meeting #99
S4-180967

Rome, Italy, 9-13 July 2018

revision of S4-180907
	CR-Form-v11.2

	PSEUDO CHANGE REQUEST

	

	
	26.118
	CR
	CRNum
	rev
	0
	Current version:
	1.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	

	

	Title:

	Audio Media Profile Template

	
	

	Source to WG:
	Qualcomm Incorporated, Phillips International B.V.

	Source to TSG:
	

	
	

	Work item code:
	VRStream
	
	Date:
	2018-07-12

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	Audio profiles required for VRStream.

	
	

	Summary of change:
	Adds spAACe, the 3D audio profile based on existing 3GPP eAAC+ audio codec.

	
	

	Consequences if not approved:
	No eAAC+ based audio for VRStream service.

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

===== BEGINNING OF CHANGE =====

6
Audio Enablers

6.1
Audio Operation Points

6.1.1
Definition of Operation Point

For the purpose to define interfaces to a conforming audio decoder, audio operation points are defined. In this case the following definitions hold:

-
Operation Point: A collection of discrete combinations of different content formats and VR specific rendering metadata, etc. and the encoding format.

-
Receiver: A receiver that can decode and render any bitstream that is conforming to a certain Operation Point.

-
Bitstream: An audio bitstream that conforms to an audio format

Figure 6.1: Audio Operation Points

This clause focuses on the interoperability point to a media decoder as indicated in Figure 5.1. This clause does not deal with the access engine and file parser which addresses aspects how the video bitstream is delivered.

In all audio operation points, the VR Presentation can be rendered using a single or multiple media decoder which provides decoded PCM signals and rendering metadata to the audio renderer.

6.1.2
Parameters of Audio Operation Point

This clause defines the potential parameters of Audio Operation Points. This includes the detailed audio decoder requirements and audio rendering metadata. The requirements are defined from the perspective of the audio decoder and renderer.

Parameters for an Audio Operation Point include:
- the audio decoder that the bitstream needs to conform to

- the permitted rendering data to be included in the audio bitstream

6.1.3
Summary of Audio Operation Points
tbd
6.1.4
3GPP spAACe Audio Operation Point

6.1.4.1
Overview

The Spatial Advanced Audio Coding Extension (spAACe) audio profile extends the application of the 3GPP TS 26.401 Enhanced aacPlus General Audio Codec (which normatively references to AAC) to support 3D audio including Channel-based, Object-based and Scene-based audio and/or a combination of these formats.

The audio profile additionally supports a topology that maintains backward compatibility with legacy devices supporting AAC based stereo decoding.

X.1.1(6.2.2.2.1
Channel-based audio signal processing chain and Metadata

The spAACe audio profile supports Channel-based audio content containing up to 16 channels, including e.g. stereo, 5.1, 5.1.2 and 7.1.4 formats. The signal processing chain for Channel-based audio content is depicted in Figure X.1.1.

[image: image1.png]
Figure X.1.1 – Channel workflow

With reference to the Channel-based audio signal processing chain in Figure X.1.1,
-
C denotes the total number of channels (e.g., C=12 for a 7.1+4 layout). The ordering of the audio streams in C are the ones described in the CICP index but can be extended to another arbitrary speaker layout configuration.
-
The Legacy Path provides support for legacy devices supporting AAC-based stereo decoders (specified e.g. in TS 26.401). The Legacy Path carries a stereo mix of the original channel content. The stereo mixing takes C channels in input and outputs stereo signals.
-
The Extended Path provides full immersive audio support. In the Extended Path, a set of AAC-based Core Codecs is used to encode, decode and deliver C channels.

-
The output of the Extended Path is fed to a loudspeaker or binaural renderer.

X.1.2 (6.2.2.2.2
Object-based audio signal processing chain and Metadata

The spAACe audio profile supports Object-based audio content that is ideally suited for object-based content with less than or equal to M objects (M=16 for Level 1).
[image: image2.png]
Figure X.1.2 – Object workflow

With reference to the Object-based audio signal processing chain in Figure X.1.2,
-
M denotes the total number of objects and R indicates the total number of loudspeakers in the target playback layout, with the constraints on M defined in Clause 6.2.2.3
-
In the Legacy Path, the M Objects are mixed to produce a stereo version of the original content.

-
The output of the Extended Path is the set of M objects and their corresponding Metadata reconstructed after the Core Codec and Metadata Codec.

-
An optional Object Renderer (which can perform loudspeaker rendering, binaural rendering, or a combination thereof) takes the M objects and their metadata and produces the appropriate feeds for the playback device.
The spAACe audio profile supports Metadata for Object-based audio according to ITU-R Recommendation BS.2076-1 (ADM), which includes, e.g. in Section 5.4.3.3:
-
Position

-
Gain

-
Spread

X.1.3 (6.2.2.2.3
Unified Scene-based audio and mixed content signal processing chain and Metadata

The spAACe audio profile supports a Unified Scene-based audio signal processing chain. Besides support for pure Scene-based audio content, the Unified Scene-based audio signal processing chain can also be used to transport channel and object-based audio in a scene-based representation. By converting the objects and channels to a unified scene-based audio format (e.g., by means of appropriate channels and objects to HOA transforms), the signal processing chain in Figure X.1.3 can be used for the delivery of channel- and object-based immersive audio content. This signal processing chain is particularly useful if many channel and/or objects must be delivered with low target bitrates.
[image: image3.png]
Figure X.1.3 – The unified Scene-based audio and mixed content signal processing chain

The unified Scene-based audio and mixed content signal processing chain is shown in Figure X.1.3.

-
N denotes the order of the HOA content and (N+1)2 indicates the number of HOA signals.

-
The Higher Order Ambisonics Transport Format (HTF) Encoder outputs T HTF Transport Channels and the HTF Metadata.

-
The Spatial Transform block takes the T transport channels as input and outputs a) two channels containing the stereo rendered version of the original HOA content which is fed to the Legacy Path and, b) a set of T–2 modified transport channels which are fed to the Extended Path.

-
In the Extended Path, the T–2 transport channels in output from the Core Codec and the Left/Right signals from the Legacy Path are combined in the Inverse Spatial Transform block to reconstruct the T QUOTE T transport channels. The transport channels are fed in the HTF Decoder together with the HTF Metadata and the output of the HTF Decoder is the reconstructed (N+1)2 HOA signals.

-
An HOA Renderer (which can render to loudspeakers, binaural, or a combination thereof) takes the reconstructed (N+1)2 HOA signals and produces the appropriate feeds for the reproduction device. The HOA Renderer can be e.g. the Reference Renderer specified in Clause 6.2.2.5.
A Bitstream conforming to the 3GPP spAACe Audio Operation point shall conform to the requirements in of clause 6.1.4.2.

A receiver conforming to the 3GPP Audio 1 Operation point shall support decoding and rendering a Bitstream conforming to the 3GPP Audio 1 Operation point. Detailed receiver requirements are provided in clause 6.1.4.3.
6.1.4.2
Bitstream requirements

The number and configuration of encoded audio input channels that can be supported at the decoder and the number and configuration of output loudspeaker channels that can be supported by the renderer are defined in the Table 1. These numbers are different for the production and emission profiles.

Table 1 – Bitstream constrains

	Level
	Max. Sampling rate
	Max. no. of core coded channels in compressed data stream
	Max. no. of decoder processed core channels
	Max. no. of loudspeaker output channels
	Max. no. of decoded objects
	Max. HOA order

	1
	48000
	32
	16
	12
	16
	6

	2
	48000
	56
	28
	12
	28
	6

6.1.4.3 Receiver requirements

A receiver supporting the 3GPP spAACe Audio Operation Point shall fulfill all requirements specified in this section.

1. Core decoding such as single channel element (SCE), channel pair element (CPE), and LFE decoding is described in [1].
2. HOA decoding is described in [2].
3. DRC is described in [3].

4. Other decoding functions such as object decoding is described in [3].
HOA Decoding, DRC processing, and other decoding functions such as object decoding shall adhere to the low complexity profile constraints as in [4].
[1] ISO/IEC 14496-3, Information technology - Coding of audio-visual objects - Part 3: Audio.

[2] ETSI TS 103 589, Higher Order Ambisonics (HOA) Transport Format.

[3] ISO/IEC 23003-4, Information technology -- MPEG audio technologies -- Part 4: Dynamic Range Control.

[4] ISO/IEC 23008-3:2018, Information technology — High efficiency coding and media delivery in heterogeneous environments - Part 3: 3D audio.
6.1.4.3.1
Complexity
Complexity numbers for spAACe Level 1 are based of Table 4 in ISO/IEC 23008-3 and Table 1.4 of ISO/IEC 14496-3;2009. As such, for spAACe Level 1 the following worst-case processing power in MOPS are estimated:

-
Core decoding:

-
Up to 16 times the complexity of eAAC+ mono decoding. See TS 26.936 Clause 9.1.2.
-
or up to 8 times complexity of eAAC+ stereo decoding (for 8 stereo streams). See TS 26.936 Clause 9.1.2.
-
Spatial decoding and HOA rendering:

-
Up to 36 MOPS for 6th order HOA and 12 speaker layout rendering.
-
Dynamic Range Control:

-
24 MOPS.

-
Binaural renderer:

-
See Clause 6.2.2.5.2 for information on the Reference Binaural Renderer complexity.
6.2.2.5
Reference Rendering

6.2.2.5.1
General

The Binaural Reference Renderer for the spAACe audio profile is the Common Informative Binaural Renderer described in Clause 4.5.1.2. The Loudspeaker Reference Renderer for the spAACe audio profile for objects and channels is the VBAP, as described in https://github.com/polarch/Vector-Base-Amplitude-Panning.

The Loudspeaker Reference Renderer for HOA is the ISO/IEC 23008-3:2018. Implementation of the Reference Renderer is optional and an External Rendering API is also provided in Clause 6.2.2.6.

6.2.2.5.2
Complexity

An estimated complexity for the CIBR Reference Renderer is provided in Table 1 for a 3rd order HOA configuration.

Table 2 – Estimated Complexity of CIBR for 3rd order HOA configuration

	CIBR portion
	Note
	Operation
	Formula
	Operations per frame
	Total MOPS
	% of Total MOPS

	ESD-to-HOA
	ESD-to-HOA and rotation operation could be optimized into one process
	matrix multiply
	=B*C*C
	262144
	
	

	
	
	
	
	
	12.288
	18.6

	HOA Rotation
	
	sparse matrix multiply
	=B*(3*3 + 5*5 + 7*7 +...)
	34816
	
	

	
	
	
	
	
	1.632
	2.5

	Binauralization

	
	FFT
	=C*F*K*log2(K)
	901120
	
	

	
	could be considered as one MAC operation
	complex multiplication
	=G*P*C*ceil((K+1)/2)
	32800
	
	

	
	
	complex addition
	=2*G*P*C*ceil((K+1)/2)
	65600
	
	

	
	
	IFFT
	=2*F*K*log2(K)
	112640
	
	

	
	
	
	
	
	52.1325
	78.8

	adding non-diegetic
	
	addition
	=2*B
	2048
	
	

	
	
	
	
	
	0.096
	0.1

	SUM
	
	
	
	
	66.1485
	 100

Table 3 - Description of symbols and default values for CIBR 3rd order HOA configuration

	Symbol
	Default value
	Description

	C
	16
	Number of HOA coefficients

	N
	256
	Length of an HRTF in samples

	B
	1024
	Processing blocksize in samples

	P
	1
	Number of partitions of the HRIRs (given by ceil(N/B))

	K
	2048
	Transform length in samples used for the real-to-complex FFT (typically)

	G
	2
	estimated additional complexity factor for complex addition/multiply

	F
	2.5
	estimated additional complexity factor for the FFT

6.2.2.5.3
Reference Renderer Motion to Sound Latency (rM2S)

Introduction

The Reference Renderer Motion to Sound Latency (rM2S) is defined as the time difference between:

-
tmotion_in. The instant in time when a motion event is received by the Reference Renderer,

-
trend_out. The instant in time when the last sample of the audio frame, corresponding to the head position defined by the motion event at Tmotion_in, is rendered by the Reference Renderer algorithm.

The rM2S is 27.8ms as assessed with the method described in Annex X.5.
NOTE: In comparison to the motion-to-sound latency, rM2S latency excludes the implementation specific head-tracker motion to quaternion output latency and sound card playback buffer.

6.2.2.5.4
Default set of HRTFs

The default set of HRTFs for the Reference Renderer is the Diffuse-Field Compensated Neumann KU100 binaural head, corresponding to Subject 2 of the SADIE database available at: https://www.york.ac.uk/sadie-project/database_old.html.
6.2.2.5.5
Interfaces for head tracking

Introduction

This section defines the syntax and format of scene displacement data for real-time sound field rotation in a Max/MSP implementation of the CIBR. HOA sound field rotation is accomplished by the ambiX_rotator VST plugin. The following information is agnostic to head tracking hardware and the head displacement data delivery method. Head displacement data reported by the head tracking device must be transformed and formatted to conform to the following scene displacement data format prior to reaching the CIBR.

Definition of the interface for scene-displacement data

The CIBR provides an interface for scene displacement, given by three Euler angles:

-
‘yaw’ is rotation around the z axis

-
‘pitch’ is rotation around the y axis

-
‘roll’ is rotation around the x axis

Scene displacement data is defined with a right-handed coordinate system using the following direction of the axes:

-
x axis pointing straight ahead
-
y axis pointing to the left
-
z axis pointing straight up
The CIBR implementation accepts Euler angle values between 0 and 1, corresponding to angular displacement between -180⁰ and 180⁰. Angular displacement in degrees is scaled to the accepted data range with the formula:

[image: image4.emf]

θ[#,%] =
θ[(%)# ,%)#] + 180

360

Positive angular displacements (formatted displacement values greater than 0.5) correspond to rotation about each axis as indicated below. For this definition, clockwise and counter-clockwise are determined by looking directly along the axis of rotation, towards the origin of the coordinate system.
-
Yaw displacement value of over 0.5 corresponds to clockwise rotation about the z axis.
-
Pitch displacement value of over 0.5 corresponds to counter-clockwise rotation about the y axis.
-
Roll displacement value of over 0.5 corresponds to clockwise rotation about the x axis.

The order of sound field rotation may be set as either Yaw-Pitch-Roll or Roll-Pitch-Yaw within the ambiX_rotator VST.
Syntax of scene displacement interface

The first inlet of the CIBR Max/MSP object consumes scene displacement data as a stream of messages. Each message is a two-item list with the format [rotation_axis rotation_angle]. The rotation_axis parameter is defined as follows:

	rotation_axis value
	Axis of rotation

	1
	Yaw (z axis)

	2
	Pitch (y axis)

	3
	Roll (x axis)

The rotation_angle value is a float value in the range [0.0 1.0] that produces sound field rotation as described in the previous section.

6.2.2.6
External Rendering
6.2.2.6.1
Loudspeaker Renderer Interface

In Annex X.2, the spAACeConfig() syntax describes the target loudspeaker layout SpeakerConfig3d() that is defined in ISO/IEC 23008-3.

The Application Programming Interface for local loudspeaker setup and rendering is described in Section 17.3 of ISO/IEC 23008-3. Syntax for LoudspeakerRendering() in Table 248 defines the signaling of the local loudspeaker setup and target layout.

6.2.2.6.2
Binaural Renderer Interface
The Application Programming Interfaces for the binaural renderer are as follows:

· for channel-based content, the outputs are the audio channels and the target loudspeaker layout information is contained in SpeakerConfig3d().
· for object-based content, the outpus are the audio objects and related metadata.
· for HOA content, the output is the set of (N+1)2 HOA signals (in SN3D normalization and ACN channel ordering) where N is the HOA order.

The binaural renderer takes any of the outputs specified above (channels, objects, and HOA) and performs the filtering of the output with the Head-Related Transfer Functions (HRTFs) or Binaural Room Impulse Responses (BRIRs). The HRTFs and BRIRs are specified using the SOFA format [SOFA].
[SOFA] AES STANDARD, AES69-2015: AES standard for file exchange - Spatial acoustic data file format http://www.aes.org/publications/standards/search.cfm?docID=99
6.2.2.7
Loudness normalization and dynamic range control (DRC)
In Annex X.2, spAACeAS descrbes a way to use the DRC defined in ISO/IEC 23003-4. The interface for loudness normalization and dynamic range control is fully specified in ISO/IEC 23003-4.
6.2
Audio Media Profiles

6.2.1
Introduction and Overview

This clause defines the media profiles for audio. Media profiles include specification on the following:

-
Elementary stream constraints based on the audio operation points defined in clause 6.1.

-
File format encapsulation constraints and signalling including capability signalling. The defines to a 3GPP VR Track as defined above.

-
DASH Adaptation Set constraints and signalling including capability signalling. This defines a DASH content format profile.

Table 6.2-1 provides an overview of the Media Profiles in defined in the remainder of clause 6.2.

6.2.2
Spatial Advanced Audio Coding Extension (spAACe) Audio Profile

6.2.2.1
General

SpAACe Extension streams may be added to DASH Periods in one of the following three ways:

1) As a single Adaptation Set for which all Representations conform to the AAC Tracks as defined in clause 6.2.2.2.1.2.

2) As a case for which two Adaptation Sets are generated,

a) a complementary Adaptation Set that is compatible to enhanced AAC.

b) a Preselection extension such that the Adaptation Set contains tracks that need to be combined with one Representation of the complementary Adaptation Set.

3) As a single Adaptation Set for which all Representations conform to that conforms to a new sample entry spAACe.

NOTE: This initial specification focuses on 1) to ensure consistency for legacy codecs, but mode 2 and/or 3 that rely on a new sample entry are under development.

6.2.2.2
File Format Signaling and Encapsulation

6.2.2.2.1
General
3GP VR Tracks conforming to this media profile used in the context of the specification shall conform to the 3GP File Format [7] with the following further requirements:

-
The audio track shall comply to the Bitstream requirements and recommendations for the Operation Point as defined in clause 6.1.

-
The sample entry type of the track shall be equal to 'mp4a'.

Spatial AAC Extension (spAACe) elementary streams may be generated in one of the following three ways:

1) as compatible enhanced AAC elementary stream following Annex X.x of the bitstream format which is then encapsulated into track conforming to the ‘mp4a’ sample entry ('mp4a') as defined in ISO/IEC 14496-14 [X]. For details on the track format, refer to clause 6.2.2.2.1.2
2) as a mode for which the two tracks are generated,

a) a base track that is compatible enhanced AAC elementary stream which is then encapsulated into track conforming to the ‘mp4a’ sample entry ('mp4a') as defined in ISO/IEC 14496-14 [X].

b) a track that conforms to a new sample entry spAACe that is a dependent track of the base track.

3) a new track format that conforms to a new sample entry spAACe as a single track.
NOTE: This initial specification focuses on 1) to ensure consistency for legacy codecs, but mode 2 and/or 3 that rely on a new sample entry are under development.

6.2.2.2.2
AAC Tracks with spAACe Extensions

3GP VR Tracks conforming to the spAACe media profile used in the context of the specification shall conform to the 3GP File Format [7] with the following further requirements:

-
The elementary stream shall follow the bitstream format in Annex B and conform to the spAACe constraints.
-
At least one sample entry type of each sample entry of the track shall be equal to 'mp4a'.

-
The Track Header Box ('tkhd') shall obey the following constraints:

· flags = 0x000007

· layer = 0

· volume = 0x0100

· matrix = {0x00010000, 0, 0, 0, 0x00010000, 0, 0, 0, 0x40000000} // unity matrix

· width = 0

· height = 0

· duration = 0

-
The Sound Media Header ('smhd') shall obey the following constraints:

-
The value of the balance field shall be set to '0'.

-
The Sample Description Box ('stsd') shall obey the following constraints:

-
the SampleDescriptionBox contains the AudioSampleEntry Box or AudioSampleEntryV1 Box.
6.2.2.3
Additional Restrictions for DASH Representations

If a VR Track conforming to this media profile is included in a DASH Representation, the following additional constraints shall apply:

-
The Media Header Box ('mdhd') shall obey the following constraints:

-
The value of the duration field shall be set to '0'.

-
The value of the duration field in the Movie Header Box ('mvhd') shall be set to a value of '0'

-
The Track Header Box ('tkhd') shall obey the following constraints:

-
The value of the duration field shall be set to '0'.

-
Movie Fragment Header Boxes ('mfhd') shall contain sequence_number values that are sequentially numbered starting with the number 1 and incrementing by +1, sequenced by movie fragment storage and presentation order.

-
Any Segment Index Box ('sidx'), if present, shall obey the additional constraints:

-
the timescale field shall have the same value as the timescale field in the Media Header Box ('mdhd') within the same track; and

-
the reference_ID field shall be set to the track_ID of the ISO Media track as defined in the Track Header Box ('tkhd').

6.2.2.4
DASH Adaptation Set Constraints

For an audio Adaptation Set, the following constraints apply:

-
Each Representation shall conform to the AAC Tracks with spAACe Extensions format defined in clause 6.2.2.2.2 and the general constraints in clause 6.2.2.2.2
-
The @codecs parameter shall be present on Adaptation Set level and shall signal the maximum required capability to decode any Representation in the Adaptation Set. The @codecs parameter should be signalled on the representation level if different from the one on Adaptation Set level.

-
Random Access Points shall be signalled by @startsWithSAP set to 1 or 2.

-
The presence of spAACe extensions shall be be signalled using
-a Supplemental Descriptor shall be used to signal the value by setting the @schemeIdURI attribute to urn:3GPP:org:audio:spAACe and the value shall be set to the Level value of the codec following Table 1..

If all Representations in an Adaptation Set conform to the requirements in clause 6.2.2.2.4 and the Adaptation Set conforms to the requirements in this clause, then the @profiles parameter in the Adaptation Set may signal conformance to this Operation Point by using "urn:3GPP:vrstream:mp:audio:spAACe ". The @profiles parameter may be present to signal the constraints for the Adaptation Set.
===== END OF CHANGE =====

===== BEGINNING OF CHANGE =====

Annex X.2 (normative): Syntax of spAACe audio stream (spAACeAS)
This appendix defines a self-contained stream format to transport spAACe data.
· Core decoding such as single channel element (SCE), channel pair element (CPE), and LFE decoding is described in [1].

· HOA decoding is described in [2].

· DRC is described in [3].

· Other decoding functions such as object decoding is described in [4]. We followed the low complexity profile constraints.

[1] ISO/IEC 14496-3, Information technology - Coding of audio-visual objects - Part 3: Audio.

[2] ETSI TS 103 589, Higher Order Ambisonics (HOA) Transport Format.

[3] ISO/IEC 23003-4, Information technology -- MPEG audio technologies -- Part 4: Dynamic Range Control.

[4] ISO/IEC 23008-3:2018, Information technology — High efficiency coding and media delivery in heterogeneous environments - Part 3: 3D audio.
Table A.1 — Syntax of spAACeAudioStream()
	Syntax
	No. of bits
	Mnemonic

	spAACeAudioStream()
	
	

	{
	
	

	
while (bitsAvailable() != 0) {
	
	

	

spAACeAudioStreamPacket();
	
	

	
}
	
	

	}
	
	

Table A.2 — Syntax of spAACeAudioStreamPacket()

	Syntax
	No. of bits
	Mnemonic

	spAACeAudioStreamPacket()
	
	

	{
	
	

	
SPAACEASPacketType = escapedValue(3,8,8);
	3,11,19
	uimsbf

	
SPAACEASPacketLength = escapedValue(11,24,24);
	11,35,59
	uimsbf

	
SPAACEASPacketLabel = escapedValue(2,8,32);
	2,10,42
	uimsbf

	
SPAACEASPacketPayload(SPAACEASPacketType);
	
	

	}
	
	

	NOTE: With the given bit allocation, SPAACEASPacketPayload() is always byte-aligned

Table A.2.1 — Semantics of spAACeAudioStreamPacket()
	SPAACEASPacketType
	This element specifies the payload type which is defined below.

SPAACEASPacketType

value

PACTYP_SYNC

0

PACTYP_SPAACECFG

1

PACTYP_SPAACEFRAME

2

PACTYP_AUDIOSCENEINFO

3

/* reserved */

4-5

PACTYP_FILLDATA

6

PACTYP_SYNCGAP

7

PACTYP_MARKER

8

PACTYP_CRC16

9

PACTYP_CRC32

10

PACTYP_GLOBAL_CRC16

11

PACTYP_GLOBAL_CRC32

12

PACTYP_USERINTERACTION
13

PACTYP_LOUDNESS_DRC

14

PACTYP_BUFFERINFO

15

PACTYP_AUDIOTRUNCATION

16

/* reserved */
17-

	SPAACEASPacketLabel
	This element provides an indication of which packets belong together.

	SPAACEASPacketLength
	This element indicates the length of the spAACeAudioStreamPacket().

Table A.3 — Syntax of SPAACEASPacketPayload()

	Syntax
	No. of bits
	Mnemonic

	SPAACEASPacketPayload(SPAACEASPacketType)
	
	

	{
	
	

	
switch (SPAACEASPacketType) {
	
	

	

case PACTYP_SYNC:
	
	

	

0xB4; /* syncword*/
	12
	uimsbf

	

break;
	
	

	

case PACTYP_SPAACECFG:
	
	

	

spAACeConfig();
	
	

	

break;
	
	

	

case PACTYP_SPAACEFRAME:
	
	

	

spAACeFrame();
	
	

	

break;
	
	

	

case PACTYP_AUDIOSCENEINFO:
	
	

	

mae_AudioSceneInfo();
	
	

	

break;
	
	

	

case PACTYP_FILLDATA:
	
	

	

for (i=0; i< SPAACEASPacketLength; i++) {
	
	

	

spAACeAS_fill_data_byte(i);
	8
	bslbf

	

}
	
	

	

break;
	
	

	

case PACTYP_SYNCGAP:
	
	

	

syncSpacingLength = escapedValue(16,24,24);
	16,40,64
	uimsbf

	

break;
	
	

	

case PACTYP_MARKER:
	
	

	

for (i=0; i< SPAACEASPacketLength; i++) {
	
	

	

spAACeMarker(i);
	8
	bslbf

	

}
	
	

	

break;
	
	

	

case PACTYP_CRC16:
	
	

	

spAACeASParity16Data;
	16
	bslbf

	

break;
	
	

	

case PACTYP_CRC32:
	
	

	

spAACeASParity32Data;
	32
	bslbf

	

break;
	
	

	

case PACTYP_GLOBAL_CRC16:
	
	

	

numProtectedPackets;
	6
	bslbf

	

spAACeASParity16Data;
	16
	bslbf

	

break;
	
	

	

case PACTYP_ GLOBAL_CRC32:
	
	

	

numProtectedPackets;
	6
	bslbf

	

spAACeASParity32Data;
	32
	bslbf

	

break;
	
	

	

case PACTYP_USERINTERACTION:
	
	

	

spAACeElementInteraction();
	
	

	

break;
	
	

	

case PACTYP_LOUDNESS_DRC:
	
	

	

uniDrcInterface ();
	
	

	

break;
	
	

	

case PACTYP_BUFFERINFO:
	
	

	

if (spAACeAS_buffer_fullness_present)
	1
	uimsbf

	

spAACeAS_buffer_fullness = escapedValue(15,24,32);
	15,39,71
	uimsbf

	

}
	
	

	

break;
	
	

	

case PACTYP_AUDIOTRUNCATION:
	
	

	

if (spAACeAudioTruncPresent) {
	1
	uimsbf

	

spAACeTruncFrom;
	1
	uimsbf

	

spAACeTruncSamples;
	13
	uimsbf

	

}
	
	

	

break;
	
	

	
}
	
	

	
ByteAlign();
	
	

	}
	
	

Table A.3.1 — Semantics of SPAACEASPacketPayload()
	spAACeConfig()
	A spAACe audio config which is defined in Table A.4.

	spAACeFrame()
	A spAACe audio payload which is defined in Table A.9.

	mae_AudioSceneInfo()
	The set of metadata consists of descriptive metadata, restrictive metadata, positional metadata, and structural metadata. The structure is defined in 15.2 of ISO/IEC 23008-3.

	spAACeAS_fill_data_byte(i)
	8-bit data elements

	syncSpacingLength
	the length in Bytes between the last two SPAACEASPacketType PACTYP_SYNC

	spAACeMarker(i)
	This element indicates a marker event.

marker_byte (i)

Meaning

0x01

Configuration Change Marker

0x02

Random Access / Immediate Playout Marker

0x03

Program Boundary Marker

the other values

/*reserved */

	spAACeElementInteraction ()
	Identical to MPEG-H 3D audio element interaction structure as defined in 17.7.4 of ISO/IEC 23008-3.

	uniDrcInterface ()
	defined in ISO/IEC 23003-4.

	spAACeAS_buffer_fullness_present
	a bit signaling the presence of spAACeAS_buffer_fullness

	spAACeAS_buffer_fullness
	This element indicates the state of the bit reservoir

	spAACeAudioTruncPresent
	If 1 the truncation message is active.

	spAACeTruncFrom
	if 0 truncate samples from the end, if 1 truncate samples from the beginning.

	spAACeTruncSamples
	number of samples to truncate

	ByteAlign()
	fill bits to achieve byte alignment

Table A.4 — Syntax of spAACeConfig()
	Syntax
	No. of bits
	Mnemonic

	spAACeConfig()
	
	

	{
	
	

	
referenceLayout = CICPspeakerLayoutIdx;
	6
	uimsbf

	
SpAACeSignals3d();
	
	

	
spAACeDecoderConfig();

	
	

	
if (spAACeConfigExtensionPresent) {
	1
	uimsbf

	

spAACeDecoderConfigExtension();
	
	

	
}

}
	
	

Table A.4.1 — Semantics of spAACeConfig()
	CICPspeakerLayoutIdx
	ChannelConfiguration value. Shall be as defined in ISO/IEC 23001-8.

	SpAACeSignals3d()
	Signal configuration defined in Table A.5

	spAACeDecoderConfig()
	Decoder configuration defined in Table A.6

	spAACeConfigExtensionPresent
	If 1, it indicates the presence of extended configuration.

	spAACeDecoderConfigExtension()
	It indicates the extended configuration function defined in Table A.4.2.

Table A.4.2 — Syntax of spAACeDecoderConfigExtension()

	Syntax
	No. of bits
	Mnemonic

	spAACeDecoderConfigExtension()
	
	

	{
	
	

	
numConfigExtensions = escapedValue(2,4,8) + 1;
	
	

	
	
	

	
for (idx=0; idx<numConfigExtensions; idx++) {

	

spAACeConfigExtType[idx] = escapedValue(4,8,16);
	

	

spAACeConfigExtLength[idx] = escapedValue(4,8,16);

	
	
	

	

switch (spAACeConfigExtType[idx]) {
	
	

	

case ID_SPAACE_CONFIG_EXT_FILL:
	
	

	

while (spAACeConfigExtLength[idx]--) {
	
	

	

fill_byte[i];
	8
	uimsbf

	

}
	
	

	

break;
	
	

	

case ID_SPAACE_CONFIG_EXT_LOUDNESS_INFO:
	
	

	

spAACeLoudnessInfoSet();
	

	

break;
	
	

	

case ID_SPAACE_CONFIG_EXT_AUDIOSCENE_INFO:
	
	

	

mae_AudioSceneInfo();
	
	

	

break;
	
	

	

case ID_SPAACE_CONFIG_EXT_HOA_MATRIX:
	
	

	

HoaRenderingMatrixSet();
	
	

	

break;
	
	

	

case ID_SPAACE_CONFIG_EXT_SIG_GROUP_INFO:
	
	

	

for (grp = 0; grp < bsNumSignalGroups + 1 ; grp++) {
	
	

	

groupPriority[grp];
	3
	uimsbf

	

fixedPosition[grp];
	1
	uimsbf

	

}
	
	

	

break;
	
	

	

default:
	
	

	

while (spAACeConfigExtLength[idx]--) {
	
	

	

tmp;
	8
	uimsbf

	

}
	
	

	

break;
	
	

	

}
	
	

	
}
	
	

	}
	
	

Table A.4.3 — Semantics of spAACeDecoderConfigExtension()
	numConfigExtensions
	The number of extended configurations

	spAACeConfigExtType
	This element specifies the extended config type which is defined below.

spAACeConfigExtType
value

ID_SPAACE_CONFIG_EXT_FILL
0

ID_SPAACE_CONFIG_EXT_LOUDNESS_INFO
1

ID_SPAACE_CONFIG_EXT_AUDIOSCENE_INFO
2

ID_SPAACE_CONFIG_EXT_HOA_MATRIX
3

ID_SPAACE_CONFIG_EXT_SIG_GROUP_INFO
4

/* reserved */

the others

	spAACeLoudnessInfoSet()
	The content of mpegh3daLoudnessInfoSet() is listed in Table 125 of ISO/IEC 23008-3. It is defined in ISO/IEC 23003-4.

	mae_AudioSceneInfo()
	The set of metadata consists of descriptive metadata, restrictive metadata, positional metadata, and structural metadata. The structure is defined in 15.2 of ISO/IEC 23008-3.

	HoaRenderingMatrixSet()
	An HOA rendering matrix structure as defined in Table 32 of ISO/IEC 23008-3.

	groupPriority
	If groups are discarded, the groups with lowest priority should be discarded first.

	fixedPosition
	This field defines if the positions of the members of a group shall be updated in the context of processing of tracking data.

Table A.5 — Syntax of SpAACeSignals3d()
	Syntax
	No. of bits
	Mnemonic

	SpAACeSignals3d()
	
	

	{
	
	

	
numAudioChannels

= 0;
	
	

	
numAudioObjects

= 0;
	
	

	
numHOATransportChannels
 = 0;
	
	

	
	
	

	
bsNumSignalGroups;
	5
	uimsbf

	
for (grp = 0; grp < bsNumSignalGroups + 1 ; grp++) {
	
	

	

signal_groupID[grp] = grp;
	
	

	

signalGroupType[grp];
	3
	bslbf

	

bsNumberOfSignals[grp] = escapedValue(5, 8, 16);
	
	

	

if (SignalGroupType[grp] == SignalGroupTypeChannels) {
	
	

	

numAudioChannels += bsNumberOfSignals[grp] + 1;
	
	

	

}
	
	

	

if (SignalGroupType[grp] == SignalGroupTypeObject) {
	
	

	

numAudioObjects += bsNumberOfSignals[grp] + 1;
	
	

	

}
	
	

	

if (SignalGroupType[grp] == SignalGroupTypeHOA) {
	
	

	

if (numOfHoaRenderingMatrices > 0) {
	
	

	

AnyHoaRenderingMatrix[grp]
	1
	uimsbf

	

if (AnyHoaRenderingMatrix[grp]==0) {
	
	

	

HoaRenderingMatrixId[grp];
	7
	uimsbf

	

}
	
	

	

}
	
	

	

numHOATransportChannels += bsNumberOfSignals[grp] + 1;

	

}
	
	

	
}
	
	

	}
	
	

Table A.5.1 — Semantics of SpAACeSignals3d()
	bsNumSignalGroups
	It defines the number of signal groups that are present in the bitstream.

	signal_groupID
	It indicates an ID to the signal groups.

	signalGroupType
	It indicates a signal group type.

SignalGroupTypeChannels

0

It contains channel signals
SignalGroupTypeObject

1

It contains object signals
2

/* reserved */

SignalGroupTypeHOA

3

It contains HOA signals
4-

/* reserved */

	AnyHoaRenderingMatrix [grp]
	It defines whether any rendering matrix can be used (DefaultHoaRenderingMatrix[grp]=0) or a transmitted rendering matrix shall be used (DefaultHoaRenderingMatrix[grp]=1) for this audio group.

	HoaRenderingMatrixId[grp]
	It indicates which HOA rendering matrix shall be used for this audio group. All transmitted HoaRenderingMatrixId’s are available in Table 32 of ISO/IEC 23008-3.

Table A.6 — Syntax of spAACeDecoderConfig()

	Syntax
	No. of bits
	Mnemonic

	spAACeDecoderConfig()
	
	

	{
	
	

	
numElements = escapedValue(4,8,16) + 1;
	
	

	
	
	

	
for (elemIdx=0; elemIdx<numElements; ++elemIdx) {
	
	

	

spAACeElementType[elemIdx];

inLegacyPath[elemIdx];

 if (inLegacyPath){

 legacyPathChannelIdx[elemIdx];

 }
	4

1

5
	Uimsbf

Uimsbf

Uimsbf

	

switch (spAACeElementType[elemIdx]) {
	
	

	

case ID_SPAACE_SCE:
	
	

	

case ID_SPAACE_CPE:
	
	

	

case ID_SPAACE_LFE:
	
	

	

program_config_element();

break;
	
	

	

case ID_SPAACE_EXT:
	
	

	

spAACeExtElementConfig();

break;

default:

break;

}
	
	

	
}
	
	

	}
	
	

Table A.6.1 — Semantics of spAACeDecoderConfig()
	spAACeElementType
	It defines bit stream extensions types. (compatible with Table 4.85 of ISO-IEC-14496-3;2009

ID_SPAACE_SCE
0

It contains single channel element.
ID_SPAACE_CPE
1

It contains channel pair elements.
ID_SPAACE_CCE
2

It contains coupling channel element.
ID_SPAACE_LFE
3

It contains LFE.
4

/* reserved */
5

/* reserved */
ID_SPAACE_FIL

6

It contains fill element.
7

/* reserved */
ID_SPAACE_EXT

8

It contains extension payload.
9-15

/* reserved */

	inLegacyPath
	Set to 1 if the payload for the element is carried in the legacy AAC path as described in Annex B.

	legacyPathChannelIdx
	Index of the legacy path channel that is used for carrying the payload for this element.

	program_config_element()
	Configuration for SCE, CPE and LFE. This function is defined in Table 4.2 of ISO/IEC 14496-3.

	spAACeExtElementConfig()
	Configuration for extension elements defined in Table A.7

Table A.7 — Syntax of spAACeExtElementConfig()

	Syntax
	No. of bits
	Mnemonic

	spAACeExtElementConfig()
	
	

	{
	
	

	
SpAACeExtElementType

= escapedValue(4, 8, 16);
	
	

	
SpAACeExtElementConfigLength
= escapedValue(4, 8, 16);
	
	

	
	
	

	
switch (SpAACeExtElementType) {
	
	

	
case ID_EXT_ELE_FILL:
	
	

	

/* No configuration element */
	
	

	

break;
	
	

	
case ID_EXT_ELE_AUDIOPREROLL:
	
	

	

/* No configuration element */
	
	

	

break;
	
	

	
case ID_EXT_ELE_UNI_DRC:
	
	

	

spAACeUniDrcConfig();
	
	

	

break;
	
	

	
case ID_EXT_ELE_OBJ_METADATA:
	
	

	

ObjectMetadataConfig();
	
	

	

break;
	
	

	
case ID_EXT_ELE_HOA:
	
	

	

HOAConfig_SN3D();
	
	

	

break;
	
	

	
case ID_EXT_ELE_ENHANCED_OBJ_METADATA:
	
	

	

EnhancedObjectMetadataConfig();
	
	

	

break;
	
	

	
default:
	NOTE
	

	

while (SpAACeExtElementConfigLength--) {
	
	

	

tmp;
	8
	uimsbf

	

}
	
	

	

break;
	
	

	
}
	
	

	}
	
	

	NOTE: The default entry for the SpAACeExtElementType is used for unknown extElementTypes so that legacy decoders can cope with future extensions.

Table A.7.1 — Semantics of spAACeExtElementConfig()
	SpAACeExtElementType
	This element specifies the extension element type which is defined below.

SPAACEASPacketType

value

ID_EXT_ELE_FILL

0

ID_EXT_ELE_AUDIOPREROLL

1

ID_EXT_ELE_UNI_DRC

2

ID_EXT_ELE_OBJ_METADATA
3

ID_EXT_ELE_HOA
4

ID_EXT_ELE_ENHANCED_OBJ_METADATA
5

/* reserved */

6-

	SpAACeExtElementConfigLength
	This element defines the length of spAACeExtElementConfig in bytes.

	spAACeUniDrcConfig()
	DRC configuration defined in Table 126 of ISO/IEC 23008-3.

	ObjectMetadataConfig()
	Object metadata configuration defined in Table 133 of ISO/IEC 23008-3 (lowDelayMetadataCoding shall be set to 1).

	HOAConfig_SN3D()
	HOA configuration defined Table A.7.2. It is a modified version of Table 8 of ETSI TS 103 589.

	EnhancedObjectMetadataConfig()
	Enhanced object metadata configuration defined in Table 144 of ISO/IEC 23008-3.

Table A.7.2 — Syntax of HOAConfig_SN3D()
	Syntax
	No. of bits
	Mnemonic

	HOAConfig_SN3D()

{

NumOfHoaCoeffs_E = (HoaOrder_E + 1)^2;

IsScreenRelative_E;

HOADecoderConfig_SN3D(NumOfTransportChannels);

if (RecorrIdx == 2) {

bitDepth;

if (RecorrMtxSizeFlag) {

RecorrMtx_numRow = rowIdx + 1;

RecorrMtx_numCol = colIdx + 1;

} else {

RecorrMtx_numRow = MinAmbHoaOrder_E;

RecorrMtx_numCol = MinAmbHoaOrder_E;

}

MaxValueRecorrMtx;

for (i=0; i< RecorrMtx_numRow; i++){

for (j=0; j< RecorrMtx_numCol; j++){

RecorrMtx(i,j)
= tmpValueRecorrMtx / MaxValueRecorrMtx;

}

}

} elseif (RecorrIdx == 3) {

BeamAzimuth = 0;

BeamElevation = 0;

StereoSpread;

BeamCharacter = BeamCharacterIdx/15;

InPhasePostprocessingFlag;

if (hasAngleOffset) {

BeamAzimuth += azimuthAngleOffset;

BeamElevation += elevationAngleOffset;

}

RecorrMtx_numRow = 4;

RecorrMtx_numCol = 4;

RecorrMtx = RecorrMtxGeneration();

}

}
	5

1

3

4

1

4

4

bitDepth+1

bitDepth+1

4

4

1

1

8

5
	uimsbf uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

bslbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

Table A.7.3 — Semantics of HOAConfig_SN3D()

	HoaOrder_E
	This element determines the HOA order of the coded signal.

	NumOfHoaCoeffs_E
	This element determines the number of HOA coefficients of the coded HOA representation, which is equal to the number of HOA coefficients to be reconstructed.

	IsScreenRelative_E
	This element indicates if the HOA representation shall be rendered with respect to the reproduction screen size as described in ISO/IEC 23008-3, clause 18.4.

 0: not screen related

 1: screen related

	RecorrIdx
	This element indicates which decorrelation matrix is applied to recorrelate the ambience signals.

0: identity matrix

1: the matrix define in ISO/IEC 23008-3

2: transmitted recorrelation matrix (method #1)

3: transmitted recorrelation matrix (method #2)

4-7: reserved

	HOADecoderConfig_SN3D()
	This function is defined in Table 9 of ETSI TS 103 589.

	bitDepth
	This element contains information about the coded bit depth.

	RecorrMtxSizeFlag
	If this value is 1, RecorrMtx_numRow and RecorrMtx_numCol are transmitted. Otherwise, the default value of MinNumOfCoeffsForAmbHOA_E is used.

	MinNumOfCoeffsForAmbHOA_E
	This element determines the minimum number of HOA coefficients used for the coding of the ambient HOA. It is defined in Table 9 of ETSI TS 103 589.

	RecorrMtx_numRow
	This element contains information about the number of rows of a recorrection matrix.

	RecorrMtx_numCol
	This element contains information about the number of columns of a recorrection matrix.

	MaxValueRecorrMtx
	It defines the maximum value of RecorrMtx.

	RecorrMtx(i,j)
	This element indicates an i-th row and j-th column of recorrelation matrix. This matrix is applied to ambient channels for (1) recorrelation and/or (2) backward compatible decoding with eAAC+ of [1].

	BeamAzimuth
	It defines the azimuth angle for the center of the stereo beams.

	BeamElevation
	It defines the elevation angle for the center of the stereo beams.

	StereoSpread
	It defines the spread angle between the stereo beams (30~120 degree).

	BeamCharacter
	Its value range is between 0.0 and 1.0.

	InPhasePostprocessingFlag
	If this flag is set, in-phase post-processing is performed on the stereo beams.

	hasAngleOffset
	If this flag is set, BeamAzimuth and BeamElevation will be modified by azimuthAngleOffset (-180 ~ 180 degree) and elevationAngleOffset (-90 ~ 90 degree).

	RecorrMtxGeneration()
	This function generates RecorrMtx based on BeamAzimuth, BeamElevation, StereoSpread, BeamCharacter, InPhasePostprocessingFlag.

Table A.8 — Syntax of spAACeFrame()
	Syntax
	No. of bits
	Mnemonic

	spAACeFrame()
	
	

	{
	
	

	for (elemIdx= 0; elemIdx<numElements; ++elemIdx) {
	
	

	
if
(spAACeElementType[elemIdx] !=ID_SPAACE_EXT){
	
	

	

elementLength;
	16
	uimsbf

	
}
	
	

	
switch(spAACeElementType[elemIdx]) {
	
	

	

case ID_SPAACE_SCE:

if (inLegacyPath[elemIdx]) {

SpAACe_legacy_single_channel_element();

} else {
	Note 2
	

	

SpAACe_single_channel_element();

}

break;
	elementLength, Note 1

	

case ID_SPAACE_CPE:

if (inLegacyPath[elemIdx]) {

SpAACe_legacy_channel_pair_element();

} else {
	Note 2
	

	

SpAACe_channel_pair_element();

}

break;
	elementLength, Note 1

	

case ID_SPAACE_LFE:

if (inLegacyPath[elemIdx]) {

SpAACe_legacy_lfe_channel_element();

} else{
	Note 2

	

SpAACe_lfe_channel_element();
	elementLength, Note 1

	

}

break;

case ID_SPAACE_CCE:

if (inLegacyPath[elemIdx]) {

SpAACe_legacy_channel_coupling_element();

} else{
	Note 2
	

	

SpAACe_channel_coupling_element();

}

break;
	elementLength, Note 1

	

case ID_FIL:

if (inLegacyPath[elemIdx]) {

SpAACe_legacy_fill_element();

} else{
	Note 2

	

	

SpAACe_fill_element();

}
	elementLength, Note 1

	

case ID_SPAACE_EXT:
	
	

	

spAACeExtElement();

break;

}

}
	elementLength, Note 1

	}
	
	

	NOTE 1: If present, elementLength represents the length of the corresponding element it refers to in number of bits.
Note 2: These elements are located outside the SpAACeFrame and present in the legacy path of the decoding process as described in Annex B. legacyPathChannelIdx[elemIdx] should be selected from legacy path.

Table A.8.1 — Semantics of spAACeFrame()
	spAACeElementType
	As defined in Table A.6.1

	SpAACe_legacy_single_channel_element()
	single_channel_element() from legacy path as described in Table 4.4 in ISO-IEC-14496-3;2009.

	SpAACe_single_channel_element()
	single_channel_element() as described in Table 4.4 in ISO-IEC-14496-3;2009

	SpAACe_legacy_channel_pair_element()
	channel_pair_element() from legacy path as described in Table 4.5 in ISO-IEC-14496-3;2009..

	SpAACe_channel_pair_element()
	channel_pair_element() as described in Table 4.5 in ISO-IEC-14496-3;2009

	SpAACe_legacy_lfe_ channel_element()
	lfe_ channel_element() from legacy path as described in Table 4.9 in ISO-IEC-14496-3;2009..

	SpAACe_lfe_ channel_element()
	lfe_channel_element() as described in Table 4.9 in ISO-IEC-14496-3;2009

	SpAACe_legacy_channel_coupling_element()
	channel_coupling_element() from legacy path as described in Table 4.8 in ISO-IEC-14496-3;2009..

	SpAACe_channel_coupling_element()
	channel_coupling_element() as described in Table 4.8 in ISO-IEC-14496-3;2009

	SpAACe_legacy_fill_element()
	fill_element() from legacy path as described in Table 4.11 in ISO-IEC-14496-3;2009.

	SpAACe_fill_element()
	fill_element() as described in Table 4.11 in ISO-IEC-14496-3;2009

	spAACeExtElement()
	Core data for extension elements. This function is identical to mpegh3daExtElement() which is described in Table 45 of ISO/IEC 23008-3.

===== END OF CHANGE =====

===== BEGINNING OF CHANGE =====

Annex X.3 (normative): AAC frame and syntax of raw_data_block()
SpAACe Audio Stream bits are partitioned into a sequence of byte aligned data chunks with a maximum size of 256 bytes. Each partition is then embedded as a separate fill_element within the raw_data_block of the AAC bitstream to maintain backwards compatibility with the legacy AAC format. SpAACe Audio Stream bits embedded in one raw_data_block of the legacy AAC bitstream include all the SpAACe payload bits belonging to that time slot (corresponding to the legacy AAC frame).

This appendix describes the parsing of the AAC bitstream format to extract these data chunks and form one contiguous block of SpAACe Audio Stream bits.

The overview and syntax of ADTS frame is provided in Annex 1.A of ISO_IEC_14496-3;2009. Refer to tables 1.A.4 to 1.A.11.
Syntax of raw_data_block() is explained in Table 4.3 of ISO_IEC_14496-3;2009.

single_channel_element() and channel_pair_element() are used to carry the mono and stereo channels in the legacy path. Syntax is described in Table 4.4 and Table 4.5 of ISO_IEC_14496-3;2009. Any number of these elements from the legacy path might be used in the SpAACe decoding process as described in Table A.8.

A sequence of Fill_elements are used to carry the SpAACe Audio Stream. Fill_element syntax is described in Table 4.11 of ISO_IEC_14496-3;2009. We define a new extension type to carry the SpAACe data bytes.

Syntax of extension_payload() is updated by adding one more extension_type as follows.

Table B.1 — Syntax of extension_payload()
	Syntax
	No. of bits
	Mnemonic

	extension_payload(cnt){
	
	

	
extension_type;
	4
	uimsbf

	
align = 4;
	
	

	
switch(extension_type) {

	

case EXT_DYNAMIC_RANGE:
	
	

	

return dynamic_range_info();
	
	

	

case EXT_DYNAMIC_RANGE:

	

return dynamic_range_info();

	

case EXT_SAC_DATA:

	

return sac_extension_data(cnt);
	

	

case EXT_SBR_DATA:
	

	

return sbr_extension_data(id_aac, 0);
	

	

case EXT_SBR_DATA_CRC:
	
	

	

return sbr_extension_data(id_aac, 1);
	

	

case EXT_FILL_DATA:

fill_nibble; /* must be ‘0000’ */

for (i=0; i<cnt-1; i++) {

fill_byte[i]; /* must be ‘10100101’ */ 8

}

return cnt;

case EXT_DATA_ELEMENT:

data_element_version;

switch(data_element_version) {

case ANC_DATA:

loopCounter = 0;

dataElementLength = 0;

do {

dataElementLengthPart;

dataElementLength += dataElementLengthPart;

loopCounter++;

} while (dataElementLengthPart == 255);

for (i=0; i<dataElementLength; i++) {

data_element_byte[i];

}

return (dataElementLength+loopCounter+1);

default:

align = 0;

}

case EXT_SPAACE_DATA:

return SpAACe_data(cnt);

case EXT_FIL:

default:

for (i=0; i<8*(cnt-1)+align; i++) {

other_bits[i];

}

return cnt;

}

}
	4

8
4

8

8

1
	uimsbf
uimsbf
uimsbf
uimsbf
uimsbf
uimsbf

Table B.2 — Syntax of SpAACe_data()
	Syntax
	No. of bits
	Mnemonic

	SpAACe_data(cnt)

{

for (i=0; i< cnt-1; i++) {

SpAACeDataByte[i];

}

return (cnt);

}
	8
	bslbf

Table B.3 — Additional extension_type definition in Table 4.121 of ISO_IEC_14496-3;2009

	EXT_SPAACE_DATA
	‘0101’
	SpAACe Payload

The aggregated SpAACeDataByte[] buffers from one raw_data_block forms the spAACeAudioStream().
===== END OF CHANGE =====
===== BEGINNING OF CHANGE =====

Annex X.4 – Common Informative Binaural Renderer Motion to Sound Latency Measurement Method.

Reference Renderer Motion to Sound Latency Measurement (rM2S)
To determine the rM2S, an rM2S Measurement System was implemented in the Max/MSP platform. Figure 1 demonstrates a high-level signal flow diagram of the rM2S measurement system.

[image: image5.jpg]
Figure 1
The rM2S Measurement System implements two instances of the system under test (SUT), named Binaural Renderer 1 (BR1) and Binaural Renderer 2 (BR2). The measurement procedure begins with a “BANG” message (consistent with the Max/MSP signal flow paradigm). At the onset of the “BANG” message, BR1 and BR2 begin playing a binaural white noise test signal located directly in front of the listener at 0⁰ azimuth, 0⁰ elevation. The onset also causes a quaternion input change, immediately rotating BR1 and BR2 by 90⁰ clockwise and 90⁰ counter-clockwise, respectively. The rotations position the sound source directly to the right of the listener for BR1, and directly to the left of the listener for BR2. After 10ms, two record blocks are triggered to start recording the binaural output of BR1 and BR2. After 1000ms, at time tmotion_in, BR2 is rotated by 180⁰ counter-clockwise, thus positioning the sound source directly to the right of the listener. Finally, at tmotion_in + 1000ms, playback is halted for both BR1 and BR2.

Figure 2 shows a sample recording of BR2 for one run of the measurement system. Because recording begins exactly one second before BR2’s 180⁰ rotation, the Reference Renderer Motion to Sound Latency is visually apparent as the time delay between one second (marked with the black dashed line) and the increase in gain of BR2’s right channel.

[image: image6.jpg]
Figure 2
By subtracting BR2’s right channel recording from BR1’s right channel recording, the exact Reference Renderer Motion to Sound Latency can be measured as the number of samples between tmotion_in (i.e.. sample 48001 with a sampling rate of 48kHz) and the point at which the difference signal becomes zero at trend_out. Figure 3 illustrates overlaid BR1 and BR2 right channel recordings, as well as their difference signal.

[image: image7.jpg]
Figure 3
Results

In this section, Reference Renderer Motion to Sound Latency results are presented for a real-time Max/MSP implementation of the CIBR system. The measurement procedure is executed with Max/MSP, and Reference Renderer Motion to Sound Latency calculations are automated in MATLAB. The Max/MSP implementation was realized on a Lenovo Thinkpad™ T460 laptop with an Intel Core™ i5-6300U CPU, 2 Cores, 4 Logical Processors.
100 total measurements were run, of which 13 were discarded due to alignment errors in the Max/MSP recorded signals. Such errors shifted the BR2 recording by a small number of samples, thus leading to a BR1/BR2 difference signal with no or premature convergence to 0. Figure 4 demonstrates a successfully automated M2S measurement.

[image: image8.jpg]
Figure 4
Figure 5 displays each of the 87 remaining M2S latency measurements, as well as a mean M2S latency of 23.95ms. All CIBR M2S latency measurements fall within the range of 1332 and 1335 samples. Or, equivalently, between 27.75ms and 27.8125ms at a sample rate of 48kHz. However, it should be noted that the sound field rotation begins around 300 samples after the one second mark (as seen in Figure 4).

[image: image9.jpg]
Figure 5
The sound field rotation is then interpolated over approximately one buffer of size 1024 samples. Therefore, the reported M2S latency values, which are calculated when this interpolation is complete, are an upper bound on the most extreme rotation scenario (e.g. a listener instantaneous rotating their head 180⁰).
===== END OF CHANGE =====
_1592650496.vsd
�

�

�

3GPP VR DASH Profile

3GPP VR Media Profile

3GPP VR Scheme

Access
Engine

Audio
Renderer

�

File  Parser

VR Application

Media Decoder

File Decoder

Sensor

3GPP VR Track

Decoded Signal

Rendering Metadata

Segment

MPD

Audio Presentation

�

�

�

�

3GPP VR API

3GPP VR OP

