
3GPP TSG-SA WG4 Meeting #96
S4-171205
Albuquerque, New Mexico, 13th – 17th November 2017

Source:
Expway
Title:
Pseudo-CR Update CoAP overview with block-wise transfers
Spec:
3GPP TR 26.850
Agenda item:
9.9
Document for:
Approval
Contact:
Cedric Thienot cedric.thienot@expway.com
1. Introduction
In SA4#93, SA4 has initiated the FS_MBMS_IoT study item about the MBMS service layer profiles and optimizations to provide application services such as massive software updates for IoT devices which are significantly resource-constrainted (battery power, processing and storage).

2. Reason for Change
This present document provides the editor corrections and the block-wise transfers in CoAP. The CoAP base protocol in RFC 7252 works well for small payload. However, in case of larger payload which exceeds the maximum size for fragmentation at different layers (e.g. IP, UDP), RFC 7959 extends basic CoAP with a pair of "Block" options for transferring multiple blocks of information from a resource representation in multiple request-response pairs. Block-wise transfers are used for file repair request and response messages using CoAP.
3. Conclusions

<Conclusion part (optional)>

4. Proposal

It is proposed to agree the following changes to 3GPP TR 26.850.
* * * First Change * * * *

7
Solutions

7.1 Overview of CoAP
This section provides an overview of CoAP, whose design was motivated for IoT-related communications. As described in RFC 7252 [7], it is a specialized content transfer protocol for the Internet for use with constrained endpoints and constrained networks (e.g. low-power Tx/Rx and bandwidth). CoAP supports a request/response interaction model between application endpoints and includes key Web concepts in HTTP such as RESTful client-server architecture, use of URIs for resource identification and location, and Internet media types. In fact, CoAP is designed to interface easily with HTTP for Web integration while meeting specific requirements such as very low overhead, simplicity for constrained application, device and network environments (such as in IoT communications). It also contains built-in support for service and resource discovery, as well as multicast distribution (since it runs over UDP, it also supports the use of multicast IP destination addressing). The key characteristics and features of CoAP can be summarized as follows:

· Web protocol which fulfils IoT/M2M requirements in constrained environments;

· Binding to UDP transport with optional reliable delivery;

· Support for both unicast and multicast requests;

· Asynchronous message exchanges;

· Small, simple header < 10 bytes;

· URI-based resource location/addressing and content type support;

· Simple proxy and caching capabilities;

· Stateless HTTP mapping, enabling both the use of proxies to provide access to CoAP resources using HTTP in a uniform way, and simple HTTP interfaces to be alternatively implemented over CoAP;

· Security binding to DTLS (Datagram Transport Layer Security;

· Optional observation, block transfer and discovery

The relationship between the use of and interworking between HTTP and CoAP as Web transfer protocols in the REST-based architecture environment is shown in Figure 7.1-1 below:

[image: image1.emf]Internet

Constrained

environment

Figure 7.1-1 – Logical Layered Model of CoAP

7.1.1 Comparison to HTTP
Like HTTP, CoAP was designed with the REST architecture popular in the Web in mind in support of the ubiquitous use on the Internet of Web services/Web APIs by applications. As opposed to simply employing compression of HTTP, the design of CoAP intended to realize a subset of REST common with HTTP but optimized for IoT or M2M applications. The interaction model of CoAP is similar to the client/server model in HTTP. A CoAP request, as in HTTP, is sent by a client to a server to request an action, via a Method Code on the server-resident resource. Subsequently, the server returns a response (with associated Response Code) which may include a payload containing a representation of the requested resource. However, unlike HTTP, such interactions operate asynchronously in CoAP, over the datagram-based transport offered by UDP. Other similarities in features to HTTP as offered in CoAP include:
a) signalling of additional metadata in both request or responses in the form of Options carried in the CoAP message header, similar to the use of Header fields in HTTP;

b) support for proxying and caching as in HTTP;

c) enables securing the message exchange between CoAP endpoints by use of DTLS, which functions like TLS in HTTPS.

7.1.2 Logical Architecture Model

CoAP can be considered logically as a two-layer operational model comprising: i) request/response interaction layer using Method and Response codes, and whose contents are carried by messages and ii) a message layer that addresses the underlying UDP transport and the asynchronous nature of the client-server interactions. This model is shown below in Figure 7.1.2-1.

[image: image2.emf]Confidential and Proprietary –Qualcomm Technologies, Inc.

|

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

|

80-xxxxx-x Rev. A 9

Application

Requests/Responses

Messages

DTLS

CoAP

UDP

Figure 7.1.2-1 – Logical Layered Model of CoAP

7.1.2.1 CoAP Messaging Model
CoAP messages uses a short fixed-length binary header (4 bytes) that may be followed by compact binary options and a payload. This message format is shared by requests and responses. Each CoAP message contains a Message ID for duplicate-detection and support of optional reliability. CoAP defines four types of messages:
· Confirmable (CON),

· Non-confirmable (NON),

· Acknowledgement (ACK), and

· Reset (RST).

Requests can be carried in either Confirmable or Non-confirmable messages, and responses can be carried in these or could be piggybacked in Acknowledgement messages. The use of Confirmable messages adds reliability to UDP transport, since messages marked as such (CON) will be retransmitted (using a default time-out and exponential back-off between retransmissions) until the recipient returns an ACK message with the same Message ID. An example of reliable CoAP messaging is shown in Figure 7.1.2.1-1.

[image: image3.emf]Confidential and Proprietary –Qualcomm Technologies, Inc.

|

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

|

80-xxxxx-x Rev. A 13

CoAP Client CoAP Server

CON [0xfc17]

ACK [0xfc17]

The Constrained Application Protocol (CoAP)

Figure 7.1.2.1-1 – Reliable Message Transmission in CoAP
The response to a CON message could be sent initially as an empty ACK message (as shown by the second step of the call flow in the right-hand side diagram in Figure 7.1.2.1-2), and later, when the resource becomes available, it can be carried as the payload of a second response via a separate CON message (as shown by the third step of the call flow in the right-hand side diagram in Figure 7.1.2.1-2). This is referred to as a “separate response”. The latter response can be linked to the original request using a Token in both the request and response messages to identify their correlation independently from the underlying message exchanges. An example of piggybacked and separated responses (separated delivery of ACK from payload) is show in Figure 7.1.2.1-2.

[image: image4.emf]Confidential and Proprietary –Qualcomm Technologies, Inc.

|

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

|

80-xxxxx-x Rev. A 10

CoAP Client CoAP Server

CON [0xbc90]

GET/Temperature

(Token 0x71)

ACK [0xbc90]

…

CON [0x12bb]

2.05 Content

(Token 0x71)

“18.4 C”

ACK [0x12bb]

Request

Response

(w/ payload)

Response

(w/o payload)

CoAP Client CoAP Server

CON [0xbc90]

Get/Temperature

(Token 0x71)

ACK [0xbc90]

2.05 Content

(Token 0x71)

“20.5 C”

Request

Response

The Constrained Application Protocol (CoAP)

Piggybacked response Separated response

Figure 7.1.2.1-2 – Piggybacked vs. Separated Response for Reliable Messaging in CoAP

Should a recipient be unable to process a CON message, it will reply with a Reset message (RST) instead of an ACK. Messages not requiring reliable delivery can be sent as Non-Confirmable (NON) messages. Such message will not be acknowledged, but will contain a Message ID for duplicate detection. If a request is sent in a NON message, its response may be returned in a new NON message, an example of which is shown in Figure 7.1.2.1-3, or a CON message can be returned (requiring the peer to return an ACK). A recipient that is unable to process a NON message may reply with a RST message.

[image: image5.emf]Confidential and Proprietary –Qualcomm Technologies, Inc.

|

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

|

80-xxxxx-x Rev. A 11

CoAP Client CoAP Server

NON [0xab88]

GET/Temperature

(Token 0x71)

NON [0x17d2]

2.05 Content

(Token 0x71)

“23.8 C”

The Constrained Application Protocol (CoAP)

Figure 7.1.2.1-3 – Request and Response via Separate Non-Confirmable Messages

7.1.2.2 Methods and Response Codes
CoAP makes use of GET, PUT, POST, and DELETE methods in a manner similar to HTTP, with the semantics described below.
· GET: retrieves a representation for the information that currently corresponds to the resource identified by the request URI.

· PUT: requests that the resource identified by the request URI be updated or created with the attached representation.

· POST: requests processing of the enclosed representation in the request.

· DELETE: requests that the resource identified by the request URI be deleted.

Methods beyond the basic four types can be added to CoAP in separate IETF specifications. URI support in a server is simplified as the client already parses the URI and splits it into host, port, path, and query components, making use of default values for efficiency. Response Codes relate to a small subset of HTTP status codes along with a few CoAP-specific codes, with some examples as shown in Section 7.1.3.
After receiving and interpreting a request, a server responds with a CoAP response that is matched to the request by the client-generated token whose purpose is different from the Message ID (the latter is used to match a Confirmable message to its Acknowledgement). A response is identified by the Code field in the CoAP header as defined in Section 7.1.3. Like the HTTP Status Code, the CoAP Response Code indicates the result of the target endpoint’s attempt to understand and satisfy the request.
7.1.3 Message Format
CoAP features the delivery of compact message delivery over UDP. CoAP messages are encoded in a simple binary format. The message format starts with a fixed-size 4-byte header. This is followed by a variable-length Token value, which can be between 0 and 8 bytes long. After the Token is a sequence of zero or more CoAP Options in Type-Length-Value (TLV) format, optionally followed by a payload that occupies the data section of the datagram. The CoAP message format is shown below in Figure 7.1.3-1.

[image: image6.emf]Confidential and Proprietary –Qualcomm Technologies, Inc.

|

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

|

80-xxxxx-x Rev. A 12

0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 Ver T TKL Code Message ID

Token (if any, TKL bytes) ...

 Options (if any) ...

1 1 1 1 1 1 1 1 Payload (if any) ...

LWM2M Client

(CoAP)

LWM2M

Bootstrap Server

(CoAP)

CON [0xbc90]

(Token 0x71)

{Bootstrap Request}

ACK [0xbc90]

(Token 0x71)

{Bootstrap Response}

Bootstrap

•

CoAP includes two features (integrated layers)

•

Requests/Responses

•

Messages

•

CoAP message format – integrated layers

•

Version (Ver)

•

Ver=1 in RFC 7252

•

Type (T)

•

CON (0), NON (1), ACK (2), RST (3)

• Supported message reliability – resend CON

message after a timeout if no ACK/RST received

•

Token Length (TKL) and Token

•

Correlates a response with a corresponding request

•

Message ID

•

Supports message correlation – ACK/RST matched to

CON/NON messages

• ACK/RST message echo message ID

on CON/NON request

•

Supports duplicate detection

• ACK/RST resent on duplicate

CON message ID

• Silently ignores duplicate NON

messages

•

Message ID must not be reused in

EXCHANGE_LIFETIME

The Constrained Application Protocol (CoAP)

•

Piggybacked response

•

Message format

Figure 7.1.3-1 – CoAP Message Header

· Ver (V): message Version number

· Type (T): message Type – CON (00), NON (01), ACK (10), RST (11)

· Token Length (TKL): length of (variable-length) Token field whose value is a sequence of 0 to 8 bytes. The Token value, acting effectively as a “request ID” is used to correlate requests and responses, as every request will contain a client-generated Token that the server must echo (without modification) in any resulting response.

· Code: A 3-digit code in the form c.dd, where ‘c’ is 3-bit ‘class’ representing a single decimal digit from 0-7, and ‘dd’ is a 5-bit ‘detail’ representing two decimal digits from 00 to 31. The class can indicate a Request (0), a Success response (2), a Client Error response (4), or a Server Error response (5). As example values of the ‘Code’ field, the following Success and Client Error codes are defined:

Success codes (2.xx):
· 2.01 Created: similar to HTTP 201 "Created", but only used in response to POST and PUT requests. The payload returned with the response, if any, is a representation of the action result.

· 2.02 Deleted: similar to HTTP 204 "No Content" but only used in response to a request that causes the resource to be no longer available, such as DELETE and, in certain circumstances, POST requests.

· 2.03 Valid: similar to HTTP 304 "Not Modified", but is only used to indicate that the response identified by the entity-tag identified by the included ETag Option is valid.

· 2.04 Changed: similar to HTTP 204 "No Content" but only used in response to POST and PUT requests.

· 2.05 Content: similar to HTTP 200 "OK" but only used in response to GET requests.

Client Error codes (4.xx):
· 4.00 Bad Request: Equivalent meaning to HTTP 400 “Bad Request”.

· 4.01 Unauthorized: the client is not authorized to perform the requested action.

· 4.02 Bad Option: the request could not be understood by the server due to one or more unrecognized or malformed options.

· Each of the following error codes 4.03 Forbidden, 4.04 Not Found, 4.05 Method Not Allowed, 4.06 Not Acceptable, 4.12 Precondition Failed, 4.13 Request Entity Too Large, and 4.15 Unsupported Content-Format has similar semantics to its HTTP 4.xx error code counterpart with the same ‘xx’ value.

· Message ID: use for matching response type ACK/RST to request type CON/NON, as well as for message duplicate detection.

While the CoAP specification [7] itself only defines an upper bound to the message size. Messages larger than an IP packet would result in undesirable packet fragmentation. Therefore, [7] recommends that when appropriately encapsulated, a CoAP message should fit within a single IP packet and which fits into
one UDP packet payload, i.e. within a single IP datagram.
7.1.4 Options

Either a request or response message may contain one or more options, a common set of which is defined in CoAP for both message types:
· Content-Format

· ETag

· Location-Path

· Location-Query

· Max-Age

· Proxy-Uri

· Proxy-Scheme

· Uri-Host

· Uri-Path

· Uri-Port

· Uri-Query

· Accept

· If-Match

· If-None-Match

· Size1

As can be seen, many of these options have the same name and similar semantics as header fields defined in HTTP. Options belong to one of two classes: “critical” or “elective”. The difference is how an unrecognizable option is handled by the message recipient, namely according to the following rules:
· Unrecognized options of class "elective" MUST be silently ignored;

· Unrecognized options of class "critical" that occur in a CON request must cause the return of a 4.02 (Bad Option) response;

· Unrecognized options of class "critical" that occur in a CON response, or piggybacked in an ACK response, must cause the response to be rejected;

· Unrecognized options of class "critical" that occur in a NON message MUST cause the message to be rejected.

Additionally, options are also classified based on how a proxy is to deal with an option it does not recognize it. For this purpose, an option can either be considered ‘Unsafe-to-Forward’ (UnSafe is set to 1) or ‘Safe-to-Forward’ (UnSafe is set to 0).
7.1.5 Caching
CoAP endpoints may be able to cache responses to reduce the response time and network bandwidth consumption on future, equivalent requests. Unlike HTTP, the cacheability of a CoAP response does not depend on the request method, but instead on the Response Code. A "freshness" mechanism is used for this purpose by making of the ‘Max-Age’ Option code, which indicates the cache lifetime. The ‘ETag’ Option allows for validity checking whereby the payload of a prior response can be reused to satisfy a new request. RFC 7252 [7] indicates that Response Codes used to indicate success but are unrecognized by an endpoint must not be cached.
7.1.6 Proxying
As possible in HTTP, CoAP supports the use of proxies which are CoAP devices typically used by clients to perform requests on their behalf. Both forward-proxy and reverse-proxy functionality are possible. In the former, the proxy can be explicitly selected by the client in serving the client’s request, whereas in the latter, the proxy serves as stand-in for an origin server. A proxy can map an incoming CoAP request to an outgoing CoAP request (CoAP-to-CoAP proxy), or translate from/to a different protocol (“cross-proxy”), for example, between CoAP and HTTP. An instance of such CoAP-to-HTTP cross proxy is shown in Figure 7.1-1.
7.1.7 Security and DTLS
The delivery of CoAP messages can be secured by using DTLS (Datagram Transport Layer Security) as defined in RFC 6347 [8], in a similar fashion to securing HTTP over TCP by using TLS. The CoAP protocol stack model with the (optional) inclusion of DTLS was shown in Figure 7.1.2-1.
7.1.8 Block-wise transfers
The CoAP base protocol works well for small payload. However, in case of larger payload which exceeds the maximum size for fragmentation at different layers (e.g. IP, UDP), RFC 7959 extends basic CoAP with a pair of "Block" options for transferring multiple blocks of information from a resource representation in multiple request-response pairs. RFC 7959 suggests to limit the size of datagrams in constrained networks:
· by the maximum datagram size (~ 64 KiB for UDP)

· by the desire to avoid IP fragmentation (MTU of 1280 for IPv6)

· by the desire to avoid adaptation-layer fragmentation (60-80 bytes for 6LoWPAN [x RFC4919])

NOTE: KiB = 1024 bytes
The block-wise specification adds a pair of Block options (Block1 and Block2) to CoAP that can be used for block-wise transfers. Both options can be present in both the request and response messages. In either case, the Block1 Option pertains to the request payload, and the Block2 Option pertains to the response payload. Benefits of using these options include:

· Transfers larger than what can be accommodated in constrained-network link-layer packets can be performed in smaller blocks.
· No hard-to-manage conversation state is created at the adaptation layer or IP layer for fragmentation.
· The transfer of each block is acknowledged, enabling individual retransmission if required. Both sides have a say in the block size that actually will be used.
· The resulting exchanges are easy to understand using packet analyzer tools, and thus quite accessible to debugging.
· If needed, the Block options can also be used (without changes) to provide random access to power-of-two sized blocks within a resource representation.
7.1.8.1 Structure of a Block Option
Three items of information may need to be transferred in a Block (Block1 or Block2) option:

· the size of the block (SZX);

· whether more blocks are following (M);

· the relative number of the block (NUM) within a sequence of blocks with the given size.

The value of the Block option is a variable-size (0 to 3 byte) unsigned integer. This integer value encodes these three fields, see Figure 7.1.8.1-1.
[image: image7.png]]
©1234567
R e e T
| Num M| szx |
R e e T

] 1
©123456789012345
B S e et T T]
| NUM M| szx |
B S e et T T]

] 1 2
©12345678901234567890123
B e s R EE L TE LT
| NUM Im| szx |
B e s R EE L TE LT

Figure 7.1.8.1-1 – Block Option Value

The block size is encoded using a three-bit unsigned integer (0 for 2**4 bytes to 6 for 2**10 bytes), which we call the "SZX" ("size exponent"); the actual block size is then "2**(SZX + 4)".

The bit M or "more" bit, indicates whether more blocks are following or if the current block-wise transfer is the last block being transferred.

The option value divided by sixteen (the NUM field) is the sequence number of the block currently being transferred, starting from zero. The current transfer is, therefore, about the "size" bytes starting at byte "NUM << (SZX + 4)".

More specifically, within the option value of a Block1 or Block2 Option, the meaning of the option fields is defined as follows:

NUM: Block Number, indicating the block number being requested or provided. Block number 0 indicates the first block of a body (i.e., starting with the first byte of the body).

M: More Flag ("not last block"). For descriptive usage, this flag, if unset, indicates that the payload in this message is the last block in the body; when set, it indicates that there are one or more additional blocks available. When a Block2 Option is used in a request to retrieve a specific block number ("control usage"), the M bit MUST be sent as zero and ignored on reception. (In a Block1 Option in a response, the M flag is used to indicate atomicity, see below.)

SZX: Block Size. The block size is represented as a three-bit unsigned integer indicating the size of a block to the power of two. Thus, block size = 2**(SZX + 4). The allowed values of SZX are 0 to 6, i.e., the minimum block size is 2**(0+4) = 16 and the maximum is 2**(6+4) = 1024. The value 7 for SZX (which would indicate a block size of 2048) is reserved, the detailed behavior is referred to RFC 7959.
NOTE: The bit order (e.g. most or least significant bits) are specified in RFC 7959.
Table 7.1.8.1-1 shows the CoAP options including Block1 and Block2 with numbers 27 and 23, respectively.

[image: image8.png]Format | Length | Default

Name

o
N
Bl
o
2
m

Repeatable

R=1

ocacheKey,

N=N

Unsafe,

U=t

c=Critical,

Table 7.1.8.1-1 – Block Option Numbers
7.2 Overview of LwM2M

Lightweight M2M (LwM2M) [9] is a system standard defined by Open Mobile Alliance (OMA). As with other device management standards (e.g. OMA DM), LwM2M solution is called an Enabler. LwM2M Enabler defines the application layer communication protocol between a LwM2M Server and a LwM2M Client. The LwM2M Server resides in a private or public data center and can be hosted by the M2M Service Provider, Network Service Provider or Application Service Provider while the LwM2M Client resides on the device. The target LwM2M Devices are mainly resource constrained devices. The key features of LwM2M 1.0 Enabler can be summarized as follows:

· Simple resource model with the core set of objects and resources defined in this specification.

· Operations for creation, update, deletion, and retrieval of resources.

· Asynchronous notifications of resource changes.

· Support for several serialization formats, namely TLV, JSON, Plain Text and binary data formats and the core set of LightweightM2M Objects.

· UDP and SMS transport support.

· Communication security based on the DTLS protocol supporting different types of credentials.

· Queue Mode offers functionality for a LwM2M Client to inform the LwM2M Server that it may be disconnected for an extended period and when it becomes reachable again.

· Support for use of multiple LwM2M Servers.

· Provisioning of security credentials and access control lists by a dedicated LwM2M bootstrap-server.

LwM2M employs a client-server architecture plus CoAP with UDP/SMS transport binding as shown in Figure 7.2-1 while the protocol stack is shown in Figure 7.2-2. The LwM2M Enabler has two components, LwM2M Server and LwM2M Client. Four interfaces are designed between these two components as shown below:

· Bootstrap: is used to provision essential information into the LwM2M Client to enable the LwM2M Client to perform the operation “Register” with one or more LwM2M Servers. Bootstrap interface also allows LwM2M Bootstrap Server to manage the keying, access control and configuration of a device.

· Client Registration: is used by a LwM2M Client to register its capabilities with one or more LwM2M Servers, maintain each registration and de-register from a LwM2M Server.
· Device management and service enablement: allows the LwM2M Server to perform device management and M2M service enablement by sending operation to the Client and to get corresponding response from the LwM2M Client.

· Information Reporting: is used by a LwM2M Server to observe any changes in a Resource on a registered LwM2M Client, receiving notifications when new values are available.
[image: image9.emf]
Figure 7.2-1: The overall architecture of the LwM2M Enabler
[image: image10.emf]
Figure 7.2-2: The protocol stack of the LwM2M Enabler
The LwM2M Enabler defines a simple resource model where each piece of information made available by the LwM2M Client is a Resource. The Resources are further logically organized into Objects, and each Resource is given a unique identifier within that Object.
Figure 7.2-3illustrates the relationship between Resources, Objects and the LwM2M Client. The LwM2M Client can have any number of Resources, each of which belongs to an Object. For example, the Firmware Object contains all the Resources used for firmware update purposes.
[image: image11.emf]
Figure 7.2-3: Relationship between LwM2M Client, Object, and Resources
OMA LwM2M Enabler version 1.0 also specifies a set of 8 Device Management‐oriented Objects
· 0: Security Object ‐ handles security aspects between LwM2M Client and Server

· 1: Server ‐ defines data and functions related to the LwM2M Server

· 2: Access Control ‐ defines the access rights which can be granted on Client Objects for a given Server

· 3: Device ‐ details device specific information

· 4: Firmware ‐ details resources on the device useful for firmware upgrades

· 5: Location ‐ groups resources providing information about the device current location

· 6: Connectivity Monitoring ‐ groups resources that assist in monitoring the status of a network connection

· 7: Connection Statistics ‐ groups resources that hold statistical information about an existing network connection
Editor note: section 7.2 to be reviewed.
* * * Next Change * * * *

Application

Requests/Responses

Messages

DTLS

CoAP

UDP

	Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION | 80-xxxxx-x Rev. A	 ‹#›

The Constrained Application Protocol (CoAP)

Piggybacked response

Separated response

	Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION | 80-xxxxx-x Rev. A	 ‹#›

image1.emf

CoAP Client CoAP Server

CON [0xbc90]

GET/Temperature

(Token 0x71)

ACK [0xbc90]

…

CON [0x12bb]

2.05 Content

(Token 0x71)

“18.4 C”

ACK [0x12bb]

Request

Response

(w/ payload)

Response

(w/o payload)

image2.emf

CoAP Client CoAP Server

CON [0xbc90]

Get/Temperature

(Token 0x71)

ACK [0xbc90]

2.05 Content

(Token 0x71)

“20.5 C”

Request

Response

oleObject1.bin

Text

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

�

�

�

Data

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

text

�

Bootstrap Finish

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

BootstrapInfo in SDCard

LWM2M Client
(CoAP)

CoAP Client

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

ServerHello (seq=1)

LWM2M Client
(CoAP/DTLS)

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-2>;
 CompressionMethod compression_methods<1..2^8-1>;
 select (extensions_present) {
 ...
 };
 } ClientHello;

LWM2M Client
(CoAP)

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

Endpoint Client Name, Object(s)

Client Registration

MO Object(s)/Resource(s)

Objects/Resources

Bootstrap Managed Object(s)

Bootstrap*

* Optional interface. Bootstrap information can be pre-provisioned in SmartCard or Flash. Also, Bootstrap Object can be pushed by the Server, when the client is discovered thru other mechanism

MO Object(s)/Resource(s) Value

MO Object(s)/Resource(s) Value

Device Management & Service Enablement

Resource Value

Information Reporting

De-register

Client Registration

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

POST /bs?ep=node34141

POST /bs

Bootstrap

Request
Bootstrap

BootstrapInfo in SDCard

oleObject2.bin

Text

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

�

�

�

Data

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

text

�

The height of the text box and its associated bracket increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

Bootstrap Finish

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

BootstrapInfo in SDCard

CoAP Client

LWM2M Client
(CoAP)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

ServerHello (seq=1)

LWM2M Client
(CoAP/DTLS)

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-2>;
 CompressionMethod compression_methods<1..2^8-1>;
 select (extensions_present) {
 ...
 };
 } ClientHello;

LWM2M Client
(CoAP)

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

Endpoint Client Name, Object(s)

Client Registration

MO Object(s)/Resource(s)

Objects/Resources

Bootstrap Managed Object(s)

Bootstrap*

* Optional interface. Bootstrap information can be pre-provisioned in SmartCard or Flash. Also, Bootstrap Object can be pushed by the Server, when the client is discovered thru other mechanism

MO Object(s)/Resource(s) Value

MO Object(s)/Resource(s) Value

Device Management & Service Enablement

Resource Value

Information Reporting

De-register

Client Registration

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

POST /bs?ep=node34141

POST /bs

Bootstrap

Request
Bootstrap

BootstrapInfo in SDCard

The Constrained Application Protocol (CoAP)

	Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION | 80-xxxxx-x Rev. A	 ‹#›

image1.emf

CoAP Client CoAP Server

NON [0xab88]

GET/Temperature

(Token 0x71)

NON [0x17d2]

2.05 Content

(Token 0x71)

“23.8 C”

oleObject1.bin

Text

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

�

�

�

Data

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

text

�

The height of the text box and its associated bracket increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

Bootstrap Finish

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

BootstrapInfo in SDCard

CoAP Client

LWM2M Client
(CoAP)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

ServerHello (seq=1)

LWM2M Client
(CoAP/DTLS)

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-2>;
 CompressionMethod compression_methods<1..2^8-1>;
 select (extensions_present) {
 ...
 };
 } ClientHello;

LWM2M Client
(CoAP)

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

Endpoint Client Name, Object(s)

Client Registration

MO Object(s)/Resource(s)

Objects/Resources

Bootstrap Managed Object(s)

Bootstrap*

* Optional interface. Bootstrap information can be pre-provisioned in SmartCard or Flash. Also, Bootstrap Object can be pushed by the Server, when the client is discovered thru other mechanism

MO Object(s)/Resource(s) Value

MO Object(s)/Resource(s) Value

Device Management & Service Enablement

Resource Value

Information Reporting

De-register

Client Registration

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

POST /bs?ep=node34141

POST /bs

Bootstrap

Request
Bootstrap

BootstrapInfo in SDCard

CoAP includes two features (integrated layers)

Requests/Responses

Messages

CoAP message format – integrated layers

Version (Ver)

Ver=1 in RFC 7252

Type (T)

CON (0), NON (1), ACK (2), RST (3)

Supported message reliability – resend CON message after a timeout if no ACK/RST received

Token Length (TKL) and Token

Correlates a response with a corresponding request

Message ID

Supports message correlation – ACK/RST matched to CON/NON messages

ACK/RST message echo message ID 		 on CON/NON request

Supports duplicate detection

ACK/RST resent on duplicate			CON message ID

Silently ignores duplicate NON messages

Message ID must not be reused in EXCHANGE_LIFETIME

The Constrained Application Protocol (CoAP)

Piggybacked response

Message format

	Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION | 80-xxxxx-x Rev. A	 ‹#›

image1.emf

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

Ver T TKL Code Message ID

Token (if any, TKL bytes) ...

Options (if any) ...

1 1 1 1 1 1 1 1 Payload (if any) ...

image2.emf

LWM2M Client

(CoAP)

LWM2M

Bootstrap Server

(CoAP)

CON [0xbc90]

(Token 0x71)

{Bootstrap Request}

ACK [0xbc90]

(Token 0x71)

{Bootstrap Response}

Bootstrap

oleObject1.bin

Text

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

�

�

�

Data

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

text

�

Bootstrap Finish

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

BootstrapInfo in SDCard

LWM2M Client
(CoAP)

LWM2M Client
(CoAP)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

Endpoint Client Name, Object(s)

Client Registration

MO Object(s)/Resource(s)

Objects/Resources

Bootstrap Managed Object(s)

Bootstrap*

* Optional interface. Bootstrap information can be pre-provisioned in SmartCard or Flash. Also, Bootstrap Object can be pushed by the Server, when the client is discovered thru other mechanism

MO Object(s)/Resource(s) Value

MO Object(s)/Resource(s) Value

Device Management & Service Enablement

Resource Value

Information Reporting

De-register

Client Registration

oleObject2.bin

Text

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

�

�

�

Data

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

text

�

Bootstrap Finish

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

BootstrapInfo in SDCard

LWM2M Client
(CoAP)

LWM2M Client
(CoAP)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

ServerHello (seq=1)

LWM2M Client
(CoAP/DTLS)

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-2>;
 CompressionMethod compression_methods<1..2^8-1>;
 select (extensions_present) {
 ...
 };
 } ClientHello;

LWM2M Client
(CoAP)

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

Endpoint Client Name, Object(s)

Client Registration

MO Object(s)/Resource(s)

Objects/Resources

Bootstrap Managed Object(s)

Bootstrap*

* Optional interface. Bootstrap information can be pre-provisioned in SmartCard or Flash. Also, Bootstrap Object can be pushed by the Server, when the client is discovered thru other mechanism

MO Object(s)/Resource(s) Value

MO Object(s)/Resource(s) Value

Device Management & Service Enablement

Resource Value

Information Reporting

De-register

Client Registration

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

POST /bs?ep=node34141

POST /bs

Bootstrap

Request
Bootstrap

BootstrapInfo in SDCard

The Constrained Application Protocol (CoAP)

	Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION | 80-xxxxx-x Rev. A	 ‹#›

image1.emf

CoAP Client CoAP Server

CON [0xfc17]

ACK [0xfc17]

oleObject1.bin

Text

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

�

�

�

Data

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

text

�

The height of the text box and its associated bracket increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

Bootstrap Finish

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

BootstrapInfo in SDCard

CoAP Client

LWM2M Client
(CoAP)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

ServerHello (seq=1)

LWM2M Client
(CoAP/DTLS)

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-2>;
 CompressionMethod compression_methods<1..2^8-1>;
 select (extensions_present) {
 ...
 };
 } ClientHello;

LWM2M Client
(CoAP)

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

Endpoint Client Name, Object(s)

Client Registration

MO Object(s)/Resource(s)

Objects/Resources

Bootstrap Managed Object(s)

Bootstrap*

* Optional interface. Bootstrap information can be pre-provisioned in SmartCard or Flash. Also, Bootstrap Object can be pushed by the Server, when the client is discovered thru other mechanism

MO Object(s)/Resource(s) Value

MO Object(s)/Resource(s) Value

Device Management & Service Enablement

Resource Value

Information Reporting

De-register

Client Registration

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

POST /bs?ep=node34141

POST /bs

Bootstrap

Request
Bootstrap

BootstrapInfo in SDCard

Internet

Constrained

environment

image1.png

image2.png

Constrained
environment

[« Internet >

