3GPP TSG-SA4 Meeting #96		Tdoc S4-171129
Albuquerque, New Mexico, USA, 13 to 17 November 2017

	
Source:	Ericsson LM[footnoteRef:1] [1: 	Thorsten Lohmar]

Title:	Discussion doc on processing and distribution subfunction configuration via F-C
Document for:	Discussion and Approval
Agenda Item:	12.6

1 Introduction
This document discusses the FLUS forward pipeline and distribution target configuration, using the Gstreamer framework as an example. GStreamer is an open source tool for media processing.

2 Processing Pipeline discussion
Gstreamer is a very popular open source library for media processing. It has a modular software design, providing different components, called plugins. A chain for plugins is called a pipeline. Typical plugins have a source and a sink pad, which are used for data exchange with other plugins. A high number of different plugins do exist, including plugins for 360 video creation.
Some main plugins are
· sources like file source or udp source,
· demuxers like ts demux or mp4 demux
· decoders,
· queues, filters, resamples, scalers, overlays,
· encoders like aac or h.264,
· muxers like ts or mp4,
· sinks like file, curl (for HTTP), TCPserver, TCPclient, udp, etc.
A full list is available at https://gstreamer.freedesktop.org/documentation/plugins.html
An example pipeline is depicted below. The pipeline expects multiplexed media data, which is sent providing separated audio & video forward to distribution.

[image:]
Figure 1: Example AV processing pipeline
Each of the plugins requires different input parameters.
Sources typically take parameters like a file name, a file descriptor or UDP/RTP IP address and port information as input.
Operations like filters, scalers etc, require operation-specific input, which depend on the type of plugin.
Encoders require a high set of parameters, in particular the codec name, codec configuration, target bitrate, etc as input
Muxers are often configured via the type and number of inputs.
Sinks require output details. For example, an HTTP sink like curl requires an HTTP upload URL. A sink like a TCPserversink requires the local serving port as configuration, etc.

FLUS enables uplink of one or more media components to a FLUS server, which can receive and postprocess the received data. Incoming data can be video or audio streams, for example encapsulated into RTP and carried over UDP.
2.1 RTP Stream Ingest
To inject an RTP stream into the correct av pipeline for postprocessing, the stream must be identified. In case of UDP / RTP, this is at least the destination UDP port and optionally also the source port and other information. The pipe is then listening on a certain UDP port for incoming data. In case of MTSI FLUS media instantiation, the RTP stream carry only a single elementary stream. Other RTP streams may use for example MPEG2-TS as multiplexing container to carry multiple elementary streams. When the elementary stream identification is not unique via the media type (like audio / video), an additional identifier such as the MPEG2-TS PID can be used.
UDP (receive) ports are often exchanged using information in a session establishment protocol such as SDP carried by SIP or RTSP. In that case, the actual UDP port only becomes known after UDP Port exchange for the media streams. In that case, either the type of the media object (e.g. audio or video) or the sequence number of stream establishment (e.g. 1st audio stream) should be used as identification.
2.2 HTTP Stream Ingest
To ingest an HTTPS stream into the correct AV pipeline for postprocessing, the stream must be identified e.g. by the HTTPS URL or an HTTPS base URL. The FLUS Source constructs the ingest URL from FLUS Sink information (i.e. Push URL via F-C) and optionally additional URL components. The pipe is then listening on a certain HTTP URL or base URL for incoming data. When a container format like MPEG2-TS or fragmented MP4 is used, the multiplex identifiers like the pid or the track id can be used in case the media type is not sufficient.
2.3 Summary
[bookmark: _GoBack]In general, the input media stream needs to be uniquely identified, when forwarding into a dedicated AV pipeline. The AV pipeline is also connected with a defined media receiver. The media stream can be processed by the AV pipeline, and be made available for distribution e.g. using an HTTPS CDN or a local storage.

3 Proposal
The FLUS Source (using F-C signaling) should allow to identify the post processing AV Pipeline uniquely per single input media stream. Every pipeline is configured with a distribution target. The distribution target can in the simplest case be instructions for local storage of the media (filename(s) still required for later identification) or the (unmodified) forwarding of the data to a subsequent ingest server like a CDN origin server.
The FLUS Source should also allow a configuration of the AV pipeline in a generic way, e.g. as json object per input media stream. The Gstreamer pipeline description can act as guideline, but other pipeline descriptions should be allowed as well. Thus, it is suggested to leave the internal format of the json object to implementation.
The identification of a AV pipeline / F-C configuration object should be specific to the FLUS media instantiation.
In case of MTSI media instantiation, the media component type (audio or video) should be used for identifying the AV pipeline. In case of multiple media components of the same type (e.g. multiple audio stream) is present in the SDP, “a=mid” must be used, and the “a=mid” value should be used as identification.
In case of fragmented MP4 via HTTPS, the HTTPS URL or HTTPS base URL (e.g. https://ex.com/chn1/audio1/) for the media stream should be used for identifying the AV pipeline. Additional parameters like the track id can be allowed.

4: References
[1] GStreamer https://gstreamer.freedesktop.org/
		Page: 1/3
		Page: 2/3
image1.emf
demuxer

AV Pipe

Source

queue

queue

Audio

decoder

Video

encode

Operations

like filter

Video

decode

Muxer/ FF

AV Pipe

Sink

AV Pipe

Sink

Muxer/ FF Audio encode

Operations

like filter

