3GPP TSG-SA4 Meeting #95		Tdoc S4-170876
Belgrade, Serbia, 9-13 October 2017

	
Source:	Ericsson LM[footnoteRef:1] [1: 	Thorsten Lohmar]

Title:	FLUS Non-IMS Instantiation
Document for:	Discussion and Approval
Agenda Item:	11.6

1 Introduction
This document proposes text that describes the usage of PSS with HTTP fragmented MP4 / ISO-BMFF as FLUS media session instantiation. It summarises, how to ingest media data using FLUS into existing PSS and xMB-U enablers while minimizing transcoding or repackaging needs. The paper further identifies some open issues where more 3GPP SA4 discussions and decisions are needed before text can be provided.
The principle of the Non-IMS based System follow the description on section 6.3.5 of the P-Doc.
Note that the terminology for the Non-IMS based system is for further study.
A “fragment” in context of this paper is the combination of a ISO-BMFF movie fragment header box (moof) with the associated media data (mdat).

2 Non-IMS based System
2.1 General
The Packet Switch Streaming (PSS) Service uses 3GP DASH. 3GP DASH builds on fragmented MP4 (ISO-BMFF) as transmission format over HTTP. When DASH or similar formats are used for the distribution of media content, it should be preferable to use fragmented MP4 for the FLUS ingest as discussed in Section 6.3.5 of the P-Doc.
The carriage of a high number of media codecs is defined for fragmented MP4. Fragmented MP4 supports codecs from non-MPEG standards organizations (e.g. 3GPP AMR) and even non standardized codecs.
The FLUS system architecture employing PSS for downstream content distribution is depicted below. The green functions are in-scope of the FLUS specification and the orange boxes are not. Here, the PSS Server realizes the FLUS distribution sub-function. Configuration of the distribution sub-function is equivalent to the configuration of a PSS server, for example, in defining the HTTP URLs for the use by PSS clients for 3GP-DASH content reception.

[image:]
Figure 1: FLUS ingest to PSS
MBMS supports the transmission of ISO-BMFF based segments according to the DASH specification over UDP. The xMB interface supports user-plane ingestion to the BM-SC for subsequent MBMS or unicast bearer service delivery, and supports the ingest of pre-formatted ISO-BMFF segments (according to DASH spec) for MBMS (i.e. UDP delivery) and unicast delivery (i.e. via HTTP).
The architecture for FLUS with MBMS based downstream media distribution is depicted below. The green functions are in-scope of the FLUS specification, and the orange boxes are not.
 [image:]
Figure 2: FLUS ingest for MBMS
When fragmented MP4 based segments are uploaded, a ‘Processing’ sub-function typically exists in the path. For example, the Processing sub-function may add DRM content protection functionality to the distribution stream, or it may transcodes the input stream to one or more lower quality Representations.
Furthermore, the Processing sub-function may aggregate multiple uploaded fragments into larger fragments. For example, the FLUS Source may create fragments without a SAP (cf. CMAF Chunks) and the processing function involves the combining of received fragments into longer media segments.
Ideally, for optimal content delivery and latency reduction, it is desirable for the processing sub-function to be omitted.
Two profiles for ISO-BMFF usage defined:
· Profile A: F-U carries full DASH Segments: here, the FLUS source uploads (using HTTP POST or PUT) a sequence of DASH Media Segments, each with its own Segment URL. For low-latency operations, HTTP Chunked Upload of the HTTP request body part should be supported. Alternatives, very short Segments should be used.
· Profile B: F-U carries ISO-BMFF fragments: here, conceptually a single long DASH Segment is uploaded and the fragments are consecutively and continuously appended.

Both profile, A and B leverage DASH and fragmented ISO-BMFF and simplify operations and implementations for the FLUS Sink. Both profiles should support chunked delivery (i.e. chunked transfer encoding) of the HTTP request body payload to reduce latency.
When Profile A uses TCP persistent connections, then the number of transport connections used for the uplink streaming session is identical as in Profile B. Usage of persistent TCP connections is generally preferred to increase session throughput. Otherwise, the FLUS Source should establish a new TCP transport connection for every segment.
The difference between Profile A and B is that Profile B reduces the HTTP request load on the Ingest: The uplink is started with a single HTTP POST or PUT, and then ingest all media data.

2.2 Non-IMS based Live uplink session establishment
2.2.1 General
The FLUS Media Session contains one or more HTTP 1.1 sessions, which typically uses TCP based transport. HTTP Sessions are established using HTTP POST or HTTP PUT (whether POST or PUT is for discussion). The FLUS Source retrieves the HTTP URLs or the base URL for session establishment via F-C from the FLUS Sink.
It is recommended that every HTTP 1.1 session carries only a single media component, such as audio or video. When several media components like audio, video or timed-metadata are carried via the same HTTP 1.1 session, then the media components should be multiplexed at the fragment level. Fragments should contain only a single media component. Details around and support for multiplexing is ffs.
For low latency upstream operations, the FLUS Source should support creation of short fragments and of fragments without an SAP (i.e. subdivide a Gop into multiple fragments). The FLUS source always needs to gather all samples of a fragment, before upstreaming a fragment. At minimum, a fragment contains only a single sample or some few samples (like B-Frames with a P-Frame).
The FLUS Source may support HTTP chunked delivery to reduce the request load the the request overhead of low latency upstream operations. HTTP Chunked delivery enables the FLUS Source to continuously append newly created fragments into the ongoing HTTP session.
The FLUS Sink should query the set of supported codecs from the FLUS Source and only define and establish media sessions for supported codecs. Otherwise, the FLUS Sink is only able to record the upstreamed information.
With HTTP 2, multiple media streams may be multiplexed onto a single transport session. Usage of multiple HTTP 2 sessions may still be beneficial for some scenarios. The usage of HTTP2 is ffs.

2.2.2 FLUS Media Session
The FLUS Source defines the number of Media Sessions for the FLUS session via F-C. A media session here are all the media components carried via a single HTTP uplink session.
The media session may contain one or more media components, which are multiplexed / interleaved on the same HTTP session. For example, timed metadata are multiplexed to the media component.
For every Media Session, the FLUS Source requests or provisions either a single HTTP URL or an HTTP URL template. When the FLUS source provisions an URL or URL template, it gets a base URL from the FLUS sink and provides the desired target URL or URL template in response (e.g. FLUS session update).
When a single HTTP URL is used, then the FLUS Source is upstreaming the captured content as a single large fragmented MP4 file. The FLUS Source is appending fragments as fragments become available from the encoder & packager. The initialization information, i.e. Movie Header (moov) with the codec configuration information, is always upstreamed first.
When a URL Template is used, then the FLUS Source is upstreaming the captured as sequence of segments, where every segment contains one or more fragments of a fragmented MP4 file. The initialization information (i.e. Movie Header (moov) with the codec configuration information) is always upstreamed as first file.
The FLUS Sink determines the media type (e.g. audio or video) from the codec configuration information of the initialization segment. For processing operations like transcoding, the FLUS Sink should the decoding of the media stream. When the FLUS Sink does not support the codec, the FLUS Sink may still accept the reception but only with simple operations like storage of the received stream.

2.2.3 FLUS Metadata
It can be assumed that exchange of some amount of FLUS media metadata is needed between FLUS Sink and FLUS Source. The amount of data and transport requirements such as timing for such data is currently TBD. It is even possible that different parts of such metadata have different transport requirements.
HTTP and fragmented MP4 provides several different information transport possibilities, with varying suitability depending on characteristics and requirements for such metadata:
· Depending on the periodicity of metadata:
· When the metadata is static after FLUS media session setup (like stream slogan, stream description, camera characteristics (like FoV), time of recording, location of recording, etc) :
· F-C signalling allows definition of media session properties during the media session definition (The FLUS Source retrieves the HTTP URLs for upstream during the FLUS Session creation)
· New (or existing, depending on metadata contents) ISO-BMFF boxes in the Movie Header (moov) (incl meta), and/or
· New (or existing, depending on metadata contents) HTTP headers.
· When the metadata is dynamic, changing during the FLUS media session:
· (design principles from SerInter work item should be considered, when appropriate)
· Usage of the DASH Event Message Box (emsg) or metadata in Movie Fragment headers for sparse metadata
· Creation of a timed metadata track (multiplexed or as separate media session)
· Creation of a separate Session, like a WebRTC datachannel or a WebSocket, carrying JSON or XML objects
· Insertion of SEI messages into the component stream. It is assumed that usage of SEI messages are straight forward also for the not-MPEG defined codecs in fragmented MP4. Note, SEI messages are scoped with the media component.

The FLUS metadata format is TBD. One generic possibility is to define an XML schema, possibly encoded with JSON to limit the size.
Capability for verbatim transport of existing, standard, or proprietary metadata formats (possibly in addition to a FLUS native format) is TBD.
What transport and configuration that would be appropriate to use for a separate FLUS metadata channel, depends on the transport requirements, which are currently TBD. Usage of existing principles like insertion of metadata into a Movie Header (moov) or into movie fragment (moof) or the definition of separate metadata tracks depends on the type of metadata.

2.2.4 FLUS Media Control
For AVC and HEVC, fragmented MP4 allows insertion of Video (HEVC only), Sequence and Picture Parameters sets (VPS, SPS & PPS) into the stream. Thus, the FLUS sender may change e.g. resolution in case of AVC or HEVC coding, when appropriate. Similar techniques (i.e. in-band information) may be possible for other codecs as well.
The FLUS Sender should monitor the transport session throughput as describe in section 6.3.5 of the P-Doc. Conceptually, the FLUS Source should monitor, whether the transport connection is capable of uploading a chunk of data during a given time. When the FLUS Source cannot upload fragments or segments in the defined time, then the FLUS source should reduce the media bitrate.

3 Proposal
It is proposed to specify an HTTP based Media Session instantiation (in addition to MTSI) within the FLUS work. The specification text around the HTTP media session instantiation will contain conditional mandatory behavior (normative text), which applies, when the HTTP media session instantiation is selected.

It is proposed that the text and the listed open issues from clause 2 is added to clause 6.3.6 of the FLUS permanent document.
		Page: 1/5

		Page: 4/5
image1.emf
FLUS MediaFLUS MediaProcessingDistribution(PSS Server)PSS clientFLUS CTLFLUS SourceFLUS CTLFLUS Sink

image2.emf
FLUS MediaFLUS MediaProcessingMBMS & Unicast distributionReceivers(Consumers)FLUS CTLxMB-UFLUS SourceFLUS CTLFLUS SinkDistributionxMB-C

