Page 4
Draft prETS 300 ???: Month YYYY
3GPP TSG SA4 #94	Tdoc S4-170705
June 26-30, Sophia Antipolis, France
	

Agenda item: 	11.6
Source: 	Editor (Ericsson LM)
Title: 	Framework for Live Uplink Streaming Permanent Document
Version:	0.1
Document for	Agreement
[bookmark: _Toc486414871]Introduction
The present document is a permanent document, collecting various agreements around use-cases, working assumption, requirements and considerations for the work on the Framework for Live Uplink Video Streaming (FLUS).
The content of this document may be converted into a Technical Report or appended as informative annex to the technical specification.

Table of Contents
1	Introduction	1
2	Introduction and Scope	1
3	Use-Case Descriptions	1
3.2	Use-Case: zzz	1
3.2.1	Description	1
3.2.2	Realization Considerations	1
3.2.3	Potential Requirements	1
4	General Considerations	1
4.1	General Use Case and architecture considerations	1
4.2	Video Compression considerations	1
4.3	Adaptive Bitrate and QoS	1
4.4	Security considerations	1
4.5	Capability Exchange	1
5	Potential Instantiations	1
5.1	RTP based schemes	1
5.1.1	General	1
5.1.2	IMS base based live ingest session establishment	1
5.1.3	RTSP based live ingest session establishment	1
5.1.4	WebRTC based live ingest session establishment	1
5.2	RTMP on TCP	1
5.3	HTTP with MPEG2-TS or with Fragmented MP4	1
6	Media Profiles and Handling	1
7	Uplink Streaming Interface	1
8	References	1

[bookmark: _Toc486414872]Introduction and Scope

[bookmark: _Toc486414873]Use-Case Descriptions
[bookmark: _Toc486414874]Use-Case: zzz
[bookmark: _Toc486414875]Description
[bookmark: _Toc486414876]Realization Considerations
[bookmark: _Toc486414877]Potential Requirements

System Design and Reference Architecture

[bookmark: _Toc486414878]General Considerations
Editor’s note: The text in Section 3 should be separated into use-cases, realization considerations and potential requirements, following the template in section 2.1.
0. [bookmark: _Toc486414879]General Use Case and architecture considerations
The work-item aims to standardize a framework for live uplink video streaming. One consideration is to use the means and capabilities of the various 3GPP access systems, but specifically the new capabilities and features of the new NR access technology. The various 3GPP access systems (e.g. LTE or NR) have different capabilities, which depend on the device realization (and device categories) and system deployment.
Live uplink video is typically used as contribution or ingest for a live video distribution services. The term ‘contribution’ is often used in professional TV productions for the live ingest of media. The main characteristics of such a video system is that the video flow is unidirectional, from the video source via some intermedia nodes to typically many receivers. The relation of the ingest link and a possible distribution system is depictured in Figure 1. Typically, the ingest link is decoupled from the distribution system. Or, the ingest server is just storing the video data for later usage or the ingest server is forwarding the video stream to a monitoring screen. For example, the live video of the source may be just stored in a file system for later use or the video material from the live video source are first screened and only used, when a program director decides to use a specific live source.
 [image:]
Figure 1: e2e system for live uplink video streaming (Presence of a Distribution System is optional)
On the distribution side, adaptive bitrate streaming (like DASH) is today commonly used. For adaptive bitrate, the content needs to be provided in multiple quality representations (called video profiles), e.g. ranging from a few hundred kbps up to several hundred Mbps. Depending on the usage, DRM protection is added for the distribution. The distribution system for IP based systems is typically a Content Delivery Network (CDN). Other distribution systems (IP and traditional broadcast systems) are certainly possible.
On the live ingest side (which is the scope of the work item), a live media source is capturing the frames, and then transmitting the frames to an ingest server (i.e. the media sink). In this document, we mostly focus on video content, since video content generally requires much higher data rates than audio or other media.
The captured video frames may be compressed for bitrate reduction before transmission over the ingest link. The contribution link in scope of this work item is a 3GPP access system, which is used in uplink direction.
Due to presence of NATs and Firewalls in the ingest link path on the device side (yes, there are personal firewalls) and over 3GPP systems (although these functions are not standardized, they still exist), the media source of the communication (i.e. Camera), should always activate the communication session towards the ingest server (i.e. media sink). Reason is, that “opening ports” in firewalls is often prohibited due to security reasons or (company) security rules. Further, when there is a Network Address Translator (NAT) in the path, there must be a dedicated NAT forwarding rule to the target device.
UEs are often configured with dynamic IP addresses. The firewall and NAT forwarding rules typically depend on the device IP address, thus, need to be adjusted with every IP address change.
as opposed to UEs, ingest servers are properly configured (e.g. to be reachable) and secured to receive incoming connections. When the ingest server is behind a NAT, then according NAT forwarding rules are configured.
Therefore: Although it is technically possible to run servers on the 3GPP UE side, such realizations should be out of scope for the work item.
[bookmark: _Toc486414880]Video Compression considerations
In the professional broadcast work, the Serial Digital Interface (SDI) is commonly used for live video handling and for sending live video from an outside event into the broadcast studio. SMPTE has defined in 2022 an RTP payload format (IETF RFC 4175) for carrying SDI signals over RTP (note that an RTP session can be established through various means). Typical SDI bitrates for high resolution video in the Gigabit range, since SDI carries either uncompressed video frames or lightly compressed video frames (e.g. using JPEG2000). The key benefit of SDI is the ability to switch on every frame (there are no GoP type of dependency structures) and the low latency (every frame is sent immediately).
3GPP use compressed video (using H.264 or HEVC) even for the low latency conversational video of VoLTE – Video (ViLTE) in order to reduce the video bitrate. For the low latency video compression, latency is prioritized over resulting video bitrate and several compression tools like B-Frames are avoided. It is recommended to discuss and agree the target bitrates / bitrate ranges and latency limits for the 3GPP Live Uplink video solution, before starting any detailed normative work.
[bookmark: _Toc486414881]Adaptive Bitrate and QoS
3GPP systems support a different set of access systems like LTE or NR. Access systems have different capabilities such as supported link bitrate or QoS. The capabilities depend to a certain level on the deployment realization, e.g. allocated carrier bandwidth (e.g. LTE carries can support different bandwidth like 20MHz, 10Mhz). The access system may support carrier aggregation, meaning to combine uplink capacity of multiple radio carriers into a single uplink.
3GPP UE may have different capabilities, depending on the device realization and the device vendor.
The system characteristic may depend on the device movement pattern. For example, the channel characteristics may depend on whether the device is stationary or moving. When the device is moving, the device may perform handovers from one base station to other base stations or even from one access network to another access network. This could temporarily disrupt the stream, which can be mitigated by e.g. introducing additional buffering (and latency) before the ingest server.
Quality of Service (QoS) and other techniques may be used to increase the probability for availability of a certain minimum bitrate of the link ingest.
It is recommended that the target solution can benefit from Quality of Service (QoS) mechanisms of the network. However, due to the differences in 3GPP access systems, mobility and deployments, it is recommended that the uplink streaming solution can work with different bitrates and that it supports even adaptive bitrate changes.
[bookmark: _Toc486414882]Security considerations
The live ingest solution needs to be properly protected against misuse. There are at least the following misuse considerations.
The live ingest solution shall be possible to us with multiple, independent media sources, sequentially or simultaneously. The solution should consider or support the usage of separate accounts for each media source. An account here is the chain of ingest and postprocessing functions (like ABR transcoders) and likely also the distribution system (i.e. how the live feed is offered to the receivers) It must be ensured that only authorized client can access and control such an account, and that each account has a unique ingest point description.
Further, when the ingest server is listening on a certain ingest point (e.g. port or URL) for incoming data, it should be ensured that only authorized sources can ingest media data into the post-processing and distribution chain. Otherwise, the live service can be hijacked or spammed by inserting alternative video or just garbage data. So, the user plane should be protected so that the ingest server can differentiate between authorized content data and un-authorized data.
[bookmark: _Toc486414883]Capability Exchange
As shown in Figure 1, the ingest server (media sink) is forwarding the data to subsequent functions link ABR transcoders. For any transcoding or any video rendering, the system needs to first decode the incoming stream. A wide range of different codecs and codec profiles are available.
To ensure that the ingest server is capable of post processing the received stream, capability exchange and potentially codec negotiation is needed. The simplest form would be, that the ingest server announces or exposes its capabilities (like subtitle support or supported codecs), so that the client (media source) can select an appropriate subset for the live ingest. There are different means to expose or negotiate the settings.
The most obvious ingest server capability is the supported codecs and codec profiles. There are additional capabilities, like support for subtitle streams or the placement of ad-opportunity marker insertion.
The capability exposure / negotiation framework should be extensible and allow for vendor specific capabilities.

[bookmark: _Toc486414884]Potential Instantiations
There is a set of technical solutions available, which can be considered for the realization. In the following, we briefly introduce at least some of the available realization alternatives. It should be noted, that other realization alternatives are available.
0. General
1. RTP based schemes
RTP is a protocol, which is commonly used in various environments for video transmissions. There are various RTP payload formats available such as H.264 (RFC 6184) or HEVC (RFC 7798) video. There are also formats available for carrying MPEG2-Transport Stream multiplexed data inside of RTP (RFC 2250) or even uncompressed video of a Serial Digital Interface (SDI, SMPTE 2022-6) (RFC 4175). Note, the SDI is widely used in professional TV production systems.
RTP uses UDP transport and a dedicated protocol is needed to establish and configure the UDP transport. With SRTP, a security framework is available for RTP. Alternatively, or as complement, DTLS may be used.
1. HTTP based schemens

0. IMS-based system
System configuration
IMS base based live ingest session establishment
3GPP conversational services are built using IMS and IMS is well suited to establish the needed RTP user plane for providing an uplink live video (3GPP TS 26.114). In the live uplink case, the Communication channel is used only for unidirectional video and possible improvements of the IMS system for this use-case should be considered.
3GPP already has support for various RTP video payload formats, specifically for H.264 and HEVC video. Other payload formats could be added, when necessary.
IMS uses SIP/SDP for establishing the unicast transport sessions and also for the codec negotiation and selection. IMS provides a framework for authorization and authentication. SRTP and/or DTLS may be used to protect the user plane ingest against misuse.
Figure 2 depicts the session establishment with IMS. The media source is an IMS client. The media sink is the MRF (here). Another example could be that an auto-answering IMS client is used as media sink.
3GPP TS 26.114 defines a video rate control. Other RTP video rate control schemes exist, like SCReAM. One alternative is SCReAM (Self-Clocked Rate Adaptation for Multimedia) that is under standardization in IETF [10]. SCReAM handles the network congestion control and also provides with recommended bitrate for the Media Source(s). An implementation of SCReAM is available at [11].

[image:]
Figure 2: Session establishment with IMS

0. Non-IMS-based system
System configuration
RTSP based live ingest session establishment
The 3GPP Packet Switched Streaming service (PSS) (3GPP TS 26.234) uses RTSP for downlink streaming session establishment. It seems natural to build a live uplink video streaming solution on RTSP, where the RTSP server (media sink) is located in the infrastructure.
Placing an RTSP server on the UE side is impractical, although technically possible. In particular consumer devices are shielded using firewalls. Some MNOs even use Network Address translations and assign IP addresses dynamically.
The RTSP client should act as media source and the RTSP server as media sink (see Figure 3). The RTSP client shall establish the RTP uplink streaming sessions towards the RTSP server. The existing RTSP Setup procedure can be used to establish the UDP transport for the ingest link. Then, the uplink live streaming session is started using the “RTSP Record” method and potentially modified using RTSP Set Parameters.
Note, the RTSP Record method was obsoleted with RTSP 2.0.
 [image:]
Figure 3: Session Establishment with RTSP
The RTSP Describe method is used to announce the selected codec and codec configuration. A separate procedure should be used to query supported codecs by the RTSP ingest server.
Security procedures to authorize and authenticate the RTSP client and the UDP user plane data need to be studied and discussed further. SRTP or DTLS may be used to protect the user plane ingest against misuse.
Various video rate control schemes for RTP streams existing and should be implemented in order to meet the delay requirements for the case where the throughput becomes low for instance due to degraded coverage. SCReAM, as introduced in Section 3.1.2, is one realization alternative.
WebRTC based live ingest session establishment
WebRTC is today widely supported in browsers for communication like services. WebRTC is designed for bi-directional communication services, but has been successfully tested and used for uni-directional streaming services. WebRTC Gateways can be used as Ingest Server.
WebRTC uses SRTP/ UDP as communication transport. Security using a combination of SRTP and DTLS is built-in.
RTMP on TCP
The most common streaming protocol for uplink streaming is Adobe’s Real Time Messaging Protocol (RTMP). RTMP uses TCP for reliable uplink streaming on a well-define port (i.e. port 1935). The benefit of TCP and HTTP based uplink streaming formats with the server component on the infrastructure side is prevention of Firewall and NAT issues. The use of TCP necessitates TCP configurations that ensure low latency, this involved proper setting of TCP send buffers as well as the use of congestion control algorithms that ensures low latency, the details are tbd.
RTMP streams can be identified by the RTMP protocol handler scheme (rtmp://), so that URLs in form of rtmp://ex.com/live.swf can be interpreted by an application. A separate well-known port (port 1935) is defined for RTMP schemes, so providing the port is not required. Of course, an RTMP URL allows other ports.
RTMP defines its own message format and multiplexing mechanism. In order to support RTMP, both, the sender and receive must support the needed range of RTMP message types and message handling procedures.
RTMP is a message based protocol. Each message contains a length, often a timestamp and some type information. Messages can be subdivided into smaller RTMP chunks in order to multiplex and interleave messages. RTMP defines “Chunk streams”, which can be multiplexed. Note, that there is a clear difference between RTMP chunks and HTTP chunks.
RTMP does not support all video codecs, audio codecs and closed captioning solutions. For example, HEVC seems currently not supported.
According to Wikipedia, it is possible (using RTMPT) to tunnel RTMP through HTTP. However, there is no description of this function in the RTMP specification. Traditionally, RTMP was primarily used for downlink streaming from a server to a client.
HTTP with MPEG2-TS or with Fragmented MP4
HTTP can also be used for Live Uplink Video Streaming. The benefit of HTTP is, that all HTTP specific security functions like HTTPS or source authentication, can be re-used. Here, either MPEG2-TS [ISO/IEC 13818-1] or Fragmented MP4 [ISO/IEC 14996-12] are suitable formats for uplink streaming. Further, the infrastructure is configured to allow HTTP or HTTPS traffic on port 80 or 443 to traverse any intermediate firewall.
In both cases, the HTTP client on the mobile 3GPP device is opening the HTTPS connection to the HTTP Ingest server using an HTTP request. The live uplink video is then provided with the HTTP body of the request. The HTTP client may use HTTP 1.0 principles to pipe the video content directly into the HTTP body or it may use HTTP 1.1 Chunked Transfer Encoding. HTTP Chunked Transfer Encoding allows the client to re-use the established TCP connection for subsequent HTTP transactions (persistent TCP connection). As is the case with RTMP over TCP, it is important to ensure that TCP is configured correctly.
Figure 4 illustrates a call flow using fragmented MP4 that has live ingest format on HTTP. The media source is here an HTTP client. The Media sink is here a HTTP server, which forwards the receive stream chunks immediately into the post-processing chain, illustrated here as de-jitter buffer.
The client first queries and checks the capabilities of the HTTP Ingest Server, before the live uplink stream is started. HTTP can be used to query the capabilities. 	
<more details>
[image:]
Figure 4: Example realization using HTTP
Then, the HTTP client is uploading the live stream using HTTP chunked delivery within the body of the HTTP request. The fragments, which are carried as HTTP chunks are formatted according to ISO/IEF 14996-12. The Movie Box (‘moov’) contains the codec, codec configuration and potentially other information. When the client terminates the live ingest, then the server provides the HTTP response (201 Created in this case).
When MPEG2_TS [ISO/IEC 13818-1] is used as ingest format, then the fragments are formatted according to MPEG2-TS.
Rate control should be implemented in this solution, this can preferably monitor the TX buffer and adjust the Media Source accordingly.
Session management
[bookmark: _GoBack]
0. [bookmark: _Toc486414885]RTP based schemes
[bookmark: _Toc486414886]General
RTP is a protocol, which is commonly used in various environments for video transmissions. There are various RTP payload formats available such as H.264 (RFC 6184) or HEVC (RFC 7798) video. There are also formats available for carrying MPEG2-Transport Stream multiplexed data inside of RTP (RFC 2250) or even uncompressed video of a Serial Digital Interface (SDI, SMPTE 2022-6) (RFC 4175). Note, the SDI is widely used in professional TV production systems.
RTP uses UDP transport and a dedicated protocol is needed to establish and configure the UDP transport. With SRTP, a security framework is available for RTP. Alternatively, or as complement, DTLS may be used.
[bookmark: _Toc486414887]IMS base based live ingest session establishment
3GPP conversational services are built using IMS and IMS is well suited to establish the needed RTP user plane for providing an uplink live video (3GPP TS 26.114). In the live uplink case, the Communication channel is used only for unidirectional video and possible improvements of the IMS system for this use-case should be considered.
3GPP already has support for various RTP video payload formats, specifically for H.264 and HEVC video. Other payload formats could be added, when necessary.
IMS uses SIP/SDP for establishing the unicast transport sessions and also for the codec negotiation and selection. IMS provides a framework for authorization and authentication. SRTP and/or DTLS may be used to protect the user plane ingest against misuse.
Figure 2 depicts the session establishment with IMS. The media source is an IMS client. The media sink is the MRF (here). Another example could be that an auto-answering IMS client is used as media sink.
3GPP TS 26.114 defines a video rate control. Other RTP video rate control schemes exist, like SCReAM. One alternative is SCReAM (Self-Clocked Rate Adaptation for Multimedia) that is under standardization in IETF [10]. SCReAM handles the network congestion control and also provides with recommended bitrate for the Media Source(s). An implementation of SCReAM is available at [11].

[image:]
Figure 2: Session establishment with IMS

[bookmark: _Ref485293978][bookmark: _Toc486414888]RTSP based live ingest session establishment
The 3GPP Packet Switched Streaming service (PSS) (3GPP TS 26.234) uses RTSP for downlink streaming session establishment. It seems natural to build a live uplink video streaming solution on RTSP, where the RTSP server (media sink) is located in the infrastructure.
Placing an RTSP server on the UE side is impractical, although technically possible. In particular consumer devices are shielded using firewalls. Some MNOs even use Network Address translations and assign IP addresses dynamically.
The RTSP client should act as media source and the RTSP server as media sink (see Figure 3). The RTSP client shall establish the RTP uplink streaming sessions towards the RTSP server. The existing RTSP Setup procedure can be used to establish the UDP transport for the ingest link. Then, the uplink live streaming session is started using the “RTSP Record” method and potentially modified using RTSP Set Parameters.
Note, the RTSP Record method was obsoleted with RTSP 2.0.
 [image:]
Figure 3: Session Establishment with RTSP
The RTSP Describe method is used to announce the selected codec and codec configuration. A separate procedure should be used to query supported codecs by the RTSP ingest server.
Security procedures to authorize and authenticate the RTSP client and the UDP user plane data need to be studied and discussed further. SRTP or DTLS may be used to protect the user plane ingest against misuse.
Various video rate control schemes for RTP streams existing and should be implemented in order to meet the delay requirements for the case where the throughput becomes low for instance due to degraded coverage. SCReAM, as introduced in Section 3.1.2, is one realization alternative.
[bookmark: _Toc486414889]WebRTC based live ingest session establishment
WebRTC is today widely supported in browsers for communication like services. WebRTC is designed for bi-directional communication services, but has been successfully tested and used for uni-directional streaming services. WebRTC Gateways can be used as Ingest Server.
WebRTC uses SRTP/ UDP as communication transport. Security using a combination of SRTP and DTLS is built-in.
 RTMP on TCP
The most common streaming protocol for uplink streaming is Adobe’s Real Time Messaging Protocol (RTMP). RTMP uses TCP for reliable uplink streaming on a well-define port (i.e. port 1935). The benefit of TCP and HTTP based uplink streaming formats with the server component on the infrastructure side is prevention of Firewall and NAT issues. The use of TCP necessitates TCP configurations that ensure low latency, this involved proper setting of TCP send buffers as well as the use of congestion control algorithms that ensures low latency, the details are tbd.
RTMP streams can be identified by the RTMP protocol handler scheme (rtmp://), so that URLs in form of rtmp://ex.com/live.swf can be interpreted by an application. A separate well-known port (port 1935) is defined for RTMP schemes, so providing the port is not required. Of course, an RTMP URL allows other ports.
RTMP defines its own message format and multiplexing mechanism. In order to support RTMP, both, the sender and receive must support the needed range of RTMP message types and message handling procedures.
RTMP is a message based protocol. Each message contains a length, often a timestamp and some type information. Messages can be subdivided into smaller RTMP chunks in order to multiplex and interleave messages. RTMP defines “Chunk streams”, which can be multiplexed. Note, that there is a clear difference between RTMP chunks and HTTP chunks.
RTMP does not support all video codecs, audio codecs and closed captioning solutions. For example, HEVC seems currently not supported.
According to Wikipedia, it is possible (using RTMPT) to tunnel RTMP through HTTP. However, there is no description of this function in the RTMP specification. Traditionally, RTMP was primarily used for downlink streaming from a server to a client.
[bookmark: _Toc486414891]HTTP with MPEG2-TS or with Fragmented MP4
HTTP can also be used for Live Uplink Video Streaming. The benefit of HTTP is, that all HTTP specific security functions like HTTPS or source authentication, can be re-used. Here, either MPEG2-TS [ISO/IEC 13818-1] or Fragmented MP4 [ISO/IEC 14996-12] are suitable formats for uplink streaming. Further, the infrastructure is configured to allow HTTP or HTTPS traffic on port 80 or 443 to traverse any intermediate firewall.
In both cases, the HTTP client on the mobile 3GPP device is opening the HTTPS connection to the HTTP Ingest server using an HTTP request. The live uplink video is then provided with the HTTP body of the request. The HTTP client may use HTTP 1.0 principles to pipe the video content directly into the HTTP body or it may use HTTP 1.1 Chunked Transfer Encoding. HTTP Chunked Transfer Encoding allows the client to re-use the established TCP connection for subsequent HTTP transactions (persistent TCP connection). As is the case with RTMP over TCP, it is important to ensure that TCP is configured correctly.
Figure 4 illustrates a call flow using fragmented MP4 that has live ingest format on HTTP. The media source is here an HTTP client. The Media sink is here a HTTP server, which forwards the receive stream chunks immediately into the post-processing chain, illustrated here as de-jitter buffer.
The client first queries and checks the capabilities of the HTTP Ingest Server, before the live uplink stream is started. HTTP can be used to query the capabilities. 	
<more details>
[image:]
Figure 4: Example realization using HTTP
Then, the HTTP client is uploading the live stream using HTTP chunked delivery within the body of the HTTP request. The fragments, which are carried as HTTP chunks are formatted according to ISO/IEF 14996-12. The Movie Box (‘moov’) contains the codec, codec configuration and potentially other information. When the client terminates the live ingest, then the server provides the HTTP response (201 Created in this case).
When MPEG2_TS [ISO/IEC 13818-1] is used as ingest format, then the fragments are formatted according to MPEG2-TS.
Rate control should be implemented in this solution, this can preferably monitor the TX buffer and adjust the Media Source accordingly.

[bookmark: _Toc486414892]Media Profiles and Handling

[bookmark: _Toc486414893]Uplink Streaming InterfaceService
0. Introduction
Editor’s Note: The content of this section describes general capability discovery and capability exposure and should be moved to section 8.3.
An Uplink streaming service provides an end point for UEs to stream or upload content which can may be stored or then later be distributed to interested users. Below are some of the parameters of an uplink streaming service that can be configured or provided as a feature to UEs.

	Parameter
	Description

	Supported control protocols
	List of supported control protocols for setting up streaming sessions between UEs and uplink service.

	Security
	Security configurations the uplink service can have with downlink UEs during content distribution

Table 1: List of parameters/capabilities of an uplink service

Other parameters that may need further considerations are provided in the following table:
	Processing
	Possible processing operations that are offered by the Uplink end-point for the UE.

	Hosting threshold
	Amount of time and storage capacity that can be made available by the uplink service for the UE

	Supported downlink service delivery methods
	Type of distribution the uplink service supports for downlink distribution (e.g., unicast, multicast, broadcast, or a combination of above)

Discovery of Available Uplink Streaming Service
Editor’s note: The content of this section is relevant to configure the UE with the results of the Uplink Streaming Service Configurations.
Before streaming content to the uplink service, the UEs require a mechanism for discovery of available uplink services. The available uplink services can be discovered using one of the following methods. Note, preparation steps such as account creation and other preparations may happen before the UE discovers the Uplink Streaming Service:
· Option 1: uplink streaming services can be pre-configured or manually entered in the UE. Manual entering may occur via a local GUI / key board or via an interface (like HTTP)
· Option 2: Using device management mechanisms such as OMA DM to configure the UE with available uplink streaming services.
· Option 3: Using Domain Name Service (DNS) for discovery of available uplink services. DNS records can be configured for location and service details.
Service Capability Discovery of an Uplink Service
Using one of the uplink service discovery techniques as described in previous section, if the UE only gets to know the entry point information of the uplink streaming service, it can use the interface to query the uplink streaming service for complete service details. Once the UE gets to know the capabilities of an uplink streaming service, it can proceed to initiate a session with that uplink service.
Uplink Streaming Service Configuration
and Session Setup with Uplink Service
Once the UE user discovers the uplink service capabilities, and if it is interested in using that uplink service, it will perform session service and session setup configuration with the uplink service in one of the following two ways.
Note, the UE or another device may be used for the service configuration
Note, the definition of the terms service and session in context of FLUS is ffs:

· Service configuration and session setup using the USS interface: The UE performs service configuration at the uplink service endpoint to configure and negotiate parameters for uplink streaming and potentially also parameters pertaining to the storage and / or downlink distribution of the content as shown in the following figure.

 Session Setup with Uplink Streaming Service

The session set-up for the actual uplink streaming user-plane may happen in different ways.
Note, the Service configuration should be separated from the session setup in this section.
Delegate session setup to a control protocol: With this option, the source UE performs service configuration as defined in the previous option using APIs with the exception of negotiating uplink streaming parameters. The UE negotiates downlink parameters (described above) and just the control protocol it can use for uplink streaming. The UE will switch to using the control protocol (e.g., SIP) for completing the session setup with the uplink service. The UE and uplink service can use the negotiated control protocol for defining session parameters for uplink streaming. The exchange between UE and uplink service will be as follows:

[bookmark: _Toc486414894]References
3GPP TS 26.238, Uplink streaming framework
3GPP TS 26.114, IP Multimedia Subsystem (IMS); Multimedia telephony; Media handling and interaction
[bookmark: _Ref485283927]3GPP TS 26.234, Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs
ISO / IEC 13818-1, MPEG2 Systems (MPEG2-TS)
ISO / IEC 14996-12, ISO base media file format (ISO-BMFF)
RFC 4175, RTP Payload Format for Uncompressed Video
RFC 6184, RTP Payload Format for H.264 Video
RFC 7798, RTP Payload Format for High Efficiency Video Coding (HEVC)
RFC 2250, RTP Payload Format for MPEG1/MPEG2 Video
SMPTE 2022-6, Transport of High Bit Rate Media Signals over IP Networks (HBRMT)
[bookmark: _Ref485293871]Self-Clocked Rate Adaptation for Multimedia (work in progress)	 https://tools.ietf.org/wg/rmcat/draft-ietf-rmcat-scream-cc/
[bookmark: _Ref485293879]SCReAM, open source code https://github.com/EricssonResearch/scream

- 15/24 -
image3.emf
IMS Client

(RTPSender)

MRF

(RTP Receiver)

SIP Invite

RTP Packets

UDP Session

Frames

Fraes

Frames

Event, like stop feed or

change of resolution

SIP Bye

Capability retrieval

TX Buffer

Media

Source

image4.emf
RTSP Client

(RTPSender)

RTSP Server

(RTP Receiver)

De-jitter

Buffer

RTSP Describe

RTP Packets

UDP Session

Frames

Fraes

Frames

Event, like stop feed or

change of resolution

RTSP Stop

Capability retrieval

RTSP Setup

RTSP Record

TX Buffer

Media

Source

image5.emf
TX Buffer

HTTP Client

(TCPSender)

HTTP Server

(TCP Receiver)

De-jitter

Buffer

HTTP Request Start

Request Body Start

HDR

HTTP Body

Read portion of data

Chunk Size

HTTPChunk

Read portion of data

HTTPChunk

HTTPChunk

Read portion of data

Init

Frag#0

Frag#1

Frag#1

Chunk Size

Event, like stop feed or

change of resolution

Chunk Size

Chunk Size (zero

size)

HTTP Response (e.g. 201 Created)

HTTP Request Start

HDR

Re-using the TCP Connection for a

subsequent HTTP Transaction

Capability retrival

Media

Source

image6.emf
Client

Device

Uplink

Service

1.Service Configuration API Request

(service parameters for uplink and downlink)

2. Uplink Service verifies

that it can create service

and distribute content as

requested

3.Service Configuration API Response

4. Content Streaming

Microsoft_Visio_2003-2010_Drawing1.vsd
Client Device

Uplink Service

1. Service Configuration API Request

(service parameters for uplink and downlink)

2. Uplink Service verifies that it can create service and distribute content as requested

3.Service Configuration API Response

4. Content Streaming

image7.emf
Client

Device

Uplink

Service

1.Service Configuration API Request

(service parameters for downlink, intend to switch to

control protocol for session setup for uplink streaming)

2. Uplink Service verifies that it

can create service and

distribute content as requested.

Also checks to see if it supports

requested control protocol for

uplink streaming

3.Service Configuration API Response

6. Content Streaming

(acknowledgement to switch to requested control protocol)

4.Session setup request with negotiated control protocol

(session parameters for uplink streaming)

5.Session setup response with negotiated control protocol

(session parameters for uplink streaming)

Microsoft_Visio_2003-2010_Drawing12.vsd
Client Device

Uplink Service

1. Service Configuration API Request

(service parameters for downlink, intend to switch to control protocol for session setup for uplink streaming)

2. Uplink Service verifies that it can create service and distribute content as requested. Also checks to see if it supports requested control protocol for uplink streaming

3.Service Configuration API Response

6. Content Streaming

(acknowledgement to switch to requested control protocol)

4. Session setup request with negotiated control protocol

(session parameters for uplink streaming)

5.Session setup response with negotiated control protocol

(session parameters for uplink streaming)

image2.emf
Camera

+encoder

(Media Source)

Ingest

Server

(Media Sink)

ABR Transcoder,

Packager, …

Distribution

(CDN)

Receivers

(Consumers)

Contribution

or Live Ingest Link

Distribution System

Decoupling Ingest

from distribution

