3GPP TSG SA WG3 (Security) Meeting #92
S3-182340
20-24 August 2018, Dalian (CN)

Source:
Ericsson
Title:
References to encrypted IEs in the rewritten HTTP message
Document for:
Approval
Agenda Item:
7.1.13.1
1
Decision/action requested

Approve changes to draft-CR S3-181937.

2
References

 [1]
draft-CR S3-181937, “Application layer security on the N32 interface”
3
Rationale

3.1

Problem description

According to the current status of the N32 application layer solution (clauses 13.2.4.2.1.1 and 13.2.4.2.1.2 in the draft-CR [1]), encrypted IEs in the encrypted block are referenced from the clearTextBlock by inserting a reference of the form {“encBlockIdx”: <num>}.
The problem with the current solution is that the original sender of the HTTP message (the NF service producer or consumer) can by mistake or maliciously interfere with these references. If the original HTTP message happens to contain elements of the form {“encBlockIdx”: <num>}, this will lead to misinterpretation at the receiving SEPP and consequently errors or possibly even attacks. For example, if the original message already contains {“encBlockIdx”: 1} and the sending SEPP adds another element {“encBlockIdx”: 1}, the receiving SEPP would replace both {“encBlockIdx”: 1}, with the decrypted value. It seems to be a good principle that the N32 solution cannot interfere with the original message, besides the IPX modifications of course.
3.2

Solution proposal

Instead of the current solution, the reference to the encrypted IE could be done from outside what is currently called the clearTextBlock. This could be done by inserting an additional block into the integrity-protected but not encrypted part of the message which contains the references to both the original location of the encrypted content in the rewritten message as well as the location of the encrypted content in the encrypted block. Figure 3.2-1 is a schematic example of how the rewritten message could look like with the proposed solution.

[image: image1.emf]{ “authenticatedBlock” : { ”modifyableBlock” : { “messageBlock” : { “Request_Line” : { “Method” : {}, “Scheme” : {}, “Authority” : (}, “Path” : {}, “Query&Fragment” : {}, “Protocol version” : {} }, “HTTP_Headers” : { “Hdr1”: {}, “Hdr2”: ”” }, “Payload” : { “IE1” : {}, “IE2” : ””, “IE3” : {}, “IE4” : {} } }, ”referenceBlock” : [{ ”locInMessage” : ”/HTTP_Headers/Hdr2",”locInEnc” : ”0" }, { ”locInMessage” : ”/Payload/IE2",”locInEnc” : ”1" }], } “encryptedBlock” : [Hdr2, IE2], “metaData” : { “Request_Id” : {}, “NextHop_Id” : {} } } “modificationsBlock” : {“Mod_chain”:[] }}

Figure 3.2-1: JSON representation of a reformatted HTTP message. Proposed changes to the draft-CR [1] in red.

The values of “locInMessage” and “locInEnc” in the referenceBlock are JSON pointers to the original location of the encrypted content in the rewritten message and the location of the encrypted content in the encrypted block, respectively. As an optimization in processing, the JSON pointer to the original location could be copied from the NF API data-type placement mapping (see clause 13.2.3.3 of [1]) used to find the original IE that is to be encrypted.
The block called clearTextBlock in the draft-CR [1] is renamed to messageBlock, because the newly introduced referenceBlock is also in clear.

The messageBlock and the referenceBlock are both included in the new modifyableBlock. This is explained in the following section on IPX provider modifications.

In the messageBlock, the to-be-encrypted content is replaced by a placeholder that obfuscates the data. We propose to simply use the empty string as placeholder.
3.3

Comment on IPX provider modifications

With the proposed solution, it is still possible for an IPX provider to move or copy encrypted content using the method described in clause 13.2.4.4 of the draft-CR [1]. However, instead of only constructing a JSON object that describes changes to the messageBlock (called clearTextBlock in the current baseline), the IPX provider also needs to describe changes to the referenceBlock.

For example, to describe copying the value of IE2 into IE3 in Figure 3.2-1, the IPX provider could provide the following JSON patch:
[
 {

”op”: ”replace”,

”path”: ”/messageBlock/Payload/IE3”,

”value”: ””

 },

{

”op”: ”add”,

”path”: ”/referenceBlock/-”,

”value”: {”locInMessage” : ”/Payload/IE3", ”locInEnc” : ”1"}

}

]
The IPX providers are allowed to modify both the messageBlock (called clearTextBlock in the current proposal) and the referenceBlock, but not other blocks. Hence messageBlock and referenceBlock are included in the new modifyableBlock, and JSON pointers in the IPX provider modifications are relative to the modifyableBlock.
4
Detailed proposal: pCR to S3-181937
* * * First Change* * *

13.2.4.2.1
N32 Message payload structure

13.2.4.2.1.1
Overall message structure
A HTTP message received from an internal Network Function is reformatted into a JSON object called N32 Message payload, consisting of the following parts:

a. The authenticatedBlock containing complete set of information that is integrity protected. It contains the following:

-
modifyableBlock – contains the part of the N32 message that can be modified by IPX providers. It contains of

two subblocks:

-
messageBlock – contains the complete original HTTP message.

-
referenceBlock – contains references to the original location of the encrypted content and the location of the

encrypted content in the encrypted block

-
encryptedBlock - containing all the attribute values requiring encryption.

-
metadata – contains SEPP generated information such as Request-Id, nexthop Id etc.
b. The modificationsBlock (modifiable integrity-protected) containing attribute values that require modifiable integrity protection
The N32 message payload is represented using the JSON syntax as follows and is transmitted on the N32 interface in the payload body of a SEPP to SEPP HTTP message.

[image: image3.emf]{ “authenticatedBlock” : { ”modifyableBlock” : { “messageBlock” : { “Request_Line” : { “Method” : {}, “Scheme” : {}, “Authority” : (}, “Path” : {}, “Query&Fragment” : {}, “Protocol version” : {} }, “HTTP_Headers” : { “Hdr1”: {}, “Hdr2”: ”” }, “Payload” : { “IE1” : {}, “IE2” : ””, “IE3” : {}, “IE4” : {} } }, ”referenceBlock” : [{ ”locInMessage” : ”/HTTP_Headers/Hdr2",”locInEnc” : ”0" }, { ”locInMessage” : ”/Payload/IE2",”locInEnc” : ”1" }], } “encryptedBlock” : [Hdr2, IE2], “metaData” : { “Request_Id” : {}, “NextHop_Id” : {} } } “modificationsBlock” : {“Mod_chain”:[] }}

Figure 13.2.4.2.1-1 JSON representation of a reformatted HTTP message (i.e. N32 message payload)

Editor's Note: It is FFS whether the reference from the cleartextblock JSON object to the encryptedBlock is secure, or whether a different way of linking these is required.
13.2.4.2.1.2
authenticatedBlock
The authenticatedBlock contains the complete original HTTP message (including HTTP Request/Response line, HTTP headers and HTTP Payload) which is re-formatted into this block. This block represents information that is integrity protected. The block shall be represented as a single JSON structure consisting of the following JSON objects:
1) modifyableBlock – This is a JSON object containing the content that is modifyable by IPX providers. It contains of two subblocks, the messageBlock and the referenceBlock.

1a) messageBlock – This is a JSON object that contains the non-encrypted portion of the original message and consists of the following objects:

1a.a.1)
Request_Line - containing an attribute each for the method, the optional authority part of the URI, the remaining parts of the URI and the protocol of the request OR

1.a.2)
Response_Line - containing an attribute for each of the HTTP version, the status code and the status message.
1a.b) HTTP_Headers - All the headers of the request are put into a JSON object (map) called HTTP_Headers, with the header name as key and the header value as value. The path shall be put into an array, with one element per part of the path (i.e. per "directory") to enable individual encryption of the SUPI in the request line.

1a.c) Payload – the JSON object that includes the payload body of the request. Each attribute or IE in the payload shall form a single entry in the Payload JSON object.

NOTE: The order and contents of the original message are unchanged as they are copied into the Payload JSON object by SEPP.

1b) referenceBlock – This is a JSON object that contains references to the original location of the encrypted content and the location of the encrypted content in the encrypted block.

1b.1) locInMessage - JSON pointer to the original location of the encrypted content in the rewritten message

1b.2) locInEnc - JSON pointer to the location of the encrypted content in the encrypted block
2) encryptedBlock – cf clause 13.2.6.2.1.3. If there is any attribute value that requires encryption, it shall be moved into the encryptedBlock JSON object, and the original value in the clearTextBlock is replaced by the empty string "". The reference to the original value and original location is captured in the referenceBlock.
3) metaData – contains additional information for replay protection (Request_Id), Next Hop Identity (if available) etc.

13.2.4.2.1.3
encryptedBlock

The encryptedBlock is a JSON array that contains all the attribute values that require encryption. Attribute values can come from any part of the original HTTP message - request/response line, headers and payloads.

The JSON array shall contain one array entry per attribute value that needs encryption. Each array entry represents the value of the attribute to be protected, and the index in the array is used to reference the protected value.

There is an association in the referenceBlock that connects each attribute in the encryptedBlock with the original attribute in the original HTTP message (see clause 13.2.6.2.1.1 and 13.2.6.1.2). This is needed to reassemble the original message at the receiving SEPP. The association is the position of the attribute in this block.

13.2.4.2.1.4
modificationsBlock

The modificationsBlock contains modifications that require integrity protection. A JSON array is created in the modificationsBlock to represent modifications. The first entry in the array is created by the cSEPP. Subsequent entries in the array are for modifications by intermediaries.

Each entry in the array contains a JSON object representing the desired modifications by the intermediaries. The JSON object contains the following:

a)
Operations - This is a JSON element with the syntax and semantic to capture the delta based on RFC 6902 (JSON Patch). If no patch is required, the operations element is empty.
b)
Identity - identity of the entity performing the modification.
c)
Next Hop Identity - which when present shall be the identity of the next hop (intermediary).

The first entry in the array, called originalObject, represents the original message in the clearTextBlock (i.e., no original is stored in the array as first entry and operations JSON element is empty). Subsequent entries, called patchRequests, contain the forward delta that only records the modifications made by the intermediary, in the Operations field.

Each entry is signed by the modifying entity using JWS[x].
13.2.4.2.2
Procedure

The following clause illustrates the message flow between the two SEPPs with modifications from cIPX and pIPX.

[image: image4.emf]cSEPPpSEPPpIPX

cIPX

cNF

pNF

1. HTTP Request

2. Message rewriting and

protection using JOSE

3. Protected HTTP

Request

4. Append cIPX

modifications to miPBlock

in the message

5. Protected HTTP

Request

w/IPX modification

6. Append pIPX

modifications to miPBlock

in the message

7. Protected HTTP

Request

w/IPX modifications

8. Verify integrity of ipBlock.

Decrypt encBlock.

Verify IPX updates in

mipBlock and apply them.

Reassemble the HTTP

Request message.

9. Modified HTTP

Request

10. HTTP Response

11. Message rewriting and

protection using JOSE

12. Protected HTTP

Response

13. Append pIPX

modifications to miPBlock

in the message

14. Protected HTTP

Response

w/IPX modification

15. Append cIPX

modifications to miPBlock

in the message

16. Protected HTTP

Response

w/IPX modifications

18. Modified HTTP

Response

17. Verify message.

Reassemble the HTTP response.

Figure 13.2.4.2.2-1 Message flow between two SEPPs
1.
The cSEPP receives an HTTP request message from a network function.

2.
The cSEPP shall begin rewriting the HTTP Request message.

a. Generating blocks for integrity protected data and encrypted data, and protecting them:

The cSEPP encapsulates the HTTP request into a messageBlock containing the following child JSON objects:

-
Request_Line

-
HTTP_Headers with one element per header of the original request.

-
Payload that contains the message body of the original request.

For each attribute that requires e2e encryption, the attribute is copied into an encryptedBlock JSON object and
the attribute’s value in the clearTextBlock is replaced by the empty string "". The reference to the original location and original value is captured by an entry in the referenceBlock, see clause 13.2.4.2.1.2.

The messageBlock and referenceBlock are encapsulated into the modifyableBlock.
A metadata block is created that contains a new Request Id generated by SEPP for this request and next hop identity (when available).

ThemodifyableBlock, encryptedBlock and metadata is encapsulated into the authenticatedBlock, which represents the complete set of information that needs to be integrity protected.

The cSEPP protects authenticatedBlock as per clause 13.2.6.3. This results in a single JWE or JWS object representing protected ipBlock.

b. Generating modifiable integrity block for attributes that may be modified by the intermediaries

If there are attribute(s) that require modifiable integrity protection, an array (Mod_chain) is created in a top level modificationsBlock JSON object to store modifications by the intermediaries.

The cSEPP creates a new originalObject JSON object. Since there is nothing modified by the cSEPP, the
operations field is empty. The cSEPP shall include its own identity in the originalObject JSON object.

Editor's note: it is FFS whether: The vSEPP shall include the first intermediary’s ID in the originalObject. This authorizes the first intermediary to perform modifications.

Editor’s Note: Only authorized intermediaries are allowed to perform modifications. Authorization mechanism is FFS

The cSEPP shall integrity protect the complete originalObject using JWS and insert it as the first entry of the Mod_chain array.

c. Additional binary payloads in multipart messages from NF are represented as separate root-level binaryPayload object

d. Generating payload for the SEPP to SEPP HTTP message

The JWE/JWS object representing protected authenticatedBlock (part a), miodificationsBlock array containing JWS protected originalObject (part b), and binaryPayload (part c) are included as payload in a new HTTP message.
3.
The cSEPP shall use HTTP POST to send the HTTP message to the first intermediary (visited network's IPX provider).

4.
The first intermediary (e.g. visited network's IPX provider) creates a new patchRequest JSON object. The operations JSON element contains its modifications as per RFC 6902[y]. The intermediary includes its own identity in the Identity field of the patchRequest element.

The intermediary executes JWS on the patchRequest JSON object with its signature and inserts it into the next available entry in the Mod_chain array of the modificationsBlock.
5.
The first intermediary sends the modified HTTP message request to the second intermediary (home network's IPX) as in step 3.

6.
The second intermediary determines further modifications required are captured in a new patchRequest object. Further processing is like in step 4. The intermediary executes JWS on the patchRequest JSON object with its signature and inserts it into the next available entry in the Mod_chain array.
7.
The second intermediary sends the modified HTTP message to pSEPP as in step 3.

Note: The behaviour of the intermediaries is not normative, but the hSEPP assumes that behaviour for processing the resulting request.

8.
The pSEPP receives the message and does the following:

-
It checks the integrity of the authenticatedBlock.
-
If successfully verified, the pEPP decrypts the encryptedBlock.
-

The pSEPP updates the messageBlock with the values from the decrypted encBlock by replacing the references to the encryptedBlock, which are stored in the messageBlock, by the referenced decrypted values from the encryptedBlock, using the references from the referenceBlock to obtain the original location of the decrypted value
-
It then verifies IPX provider updates of the attributes in the modificationsBlock. It checks whether the modifications performed by the intermediaries were permitted by policy.

-
The modified values of the attributes are updated in the clearTextBlock in order.
The pSEPP then re-assembles the full HTTP Request or HTTP Response from the contents of the messageBlock.
9.
The pSEPP shall send the HTTP request resulting from step 8 to the home network's NF.

10.-18.
These steps are analogous to steps 1.-9.

* * * Next Change* * *

13.2.4.4
Message modifications in IPX

Editor's Note: Message modifications in IPX may need to be revised following input from CT4.
Only cIPX and pIPX shall be able to modify messages between cSEPP and pSEPP. In cases of messages from cSEPP to pSEPP, the cIPX is the first intermediary, while the pIPX is the second intermediary. In cases of messages from pSEPP to cSEPP the pIPX is the first intermediary, while the cIPX is the second intermediary.

The first intermediary shall parse the encapsulated request (i.e. the modifyableBlock) and determine which changes are required. The first intermediary creates a JSON object to describe the differences between received and desired message, taking the syntax and semantic from RFC 6902 [xx] (JSON patch), such that, when applying the JSON patch to the encapsulated request the result will be the desired request. If no patch is required, the operations element is empty. The patches are relative to the modifyableBlock.

It is possible for an IPX provider to move or copy encrypted content, by describing changes both to the messageBlock and the referenceBlock.
The first intermediary appends this JSON object, together with modifier metadata, to the JSON message and then forwards the combined message to the second intermediary.

The first intermediary modifier metadata consists of the first intermediary's identity, and a JWS signature over the combined message, including the appended JSON object.

The second intermediary parses the encapsulated request, applies the modifications described in the JSON patch appended by the first intermediary and determines further modifications required for obtaining the desired request. These modifications are recorded in an additional JSON patch against the JSON object resulting after application of the first intermediary's JSON patch. The second intermediary appends this JSON object, together with modifier metadata, to the JSON message and then forwards it to the receiving SEPP.

The second intermediary metadata consists of the second intermediary's identity, and a JWS signature over the complete message, including the appended JSON object.

The receiving SEPP shall check the integrity and authenticity of the encapsulated request (i.e. the cleartext block) and the appended modifications by verifying the MAC of the SEPP to SEPP message (i.e. authenticated data block) and the signatures of the intermediaries. The receiving SEPP also checks whether the modifications performed by the intermediaries were permitted by the respective modification policies. If this is the case, the receiving SEPP shall decrypt and decapsulate the encapsulated request, apply the patches in the JSON patches in order, perform plausibility checks, and create a new HTTP request according to the "patched" encapsulatedRequest.
* * * End of Changes* * *

_1595333707.vsd
{
 “authenticatedBlock” : {
 ”modifyableBlock” : {
 	 “messageBlock” : {
	 “Request_Line” : {
	 	 “Method” : {},
	 	 “Scheme” : {},
		 “Authority” : (},
		 “Path” : {},
	 “Query&Fragment” : {},
		 “Protocol version” : {}
	 },
	 “HTTP_Headers” : {
		 “Hdr1”: {},
		 “Hdr2”: ””
	 },
	 “Payload” : {
		 “IE1” : {},
	 	 “IE2” : ””,
		 “IE3” : {},
	 	 “IE4” : {}
	 }
	 },
	 ”referenceBlock” : [
	 {
	 ”locInMessage” : ”/HTTP_Headers/Hdr2",
			”locInEnc” : ”0"
		 },
	 {
	 ”locInMessage” : ”/Payload/IE2",
			”locInEnc” : ”1"
		 }
],	
 }
 “encryptedBlock” : [
 Hdr2,
 IE2
],
 “metaData” : {
	 “Request_Id” : {},
	 “NextHop_Id” : {}
 }
 }
 “modificationsBlock” : {
	“Mod_chain”:[]
 }
}

_1595333830.vsd
{
 “authenticatedBlock” : {
 ”modifyableBlock” : {
 	 “messageBlock” : {
	 “Request_Line” : {
	 	 “Method” : {},
	 	 “Scheme” : {},
		 “Authority” : (},
		 “Path” : {},
	 “Query&Fragment” : {},
		 “Protocol version” : {}
	 },
	 “HTTP_Headers” : {
		 “Hdr1”: {},
		 “Hdr2”: ””
	 },
	 “Payload” : {
		 “IE1” : {},
	 	 “IE2” : ””,
		 “IE3” : {},
	 	 “IE4” : {}
	 }
	 },
	 ”referenceBlock” : [
	 {
	 ”locInMessage” : ”/HTTP_Headers/Hdr2",
			”locInEnc” : ”0"
		 },
	 {
	 ”locInMessage” : ”/Payload/IE2",
			”locInEnc” : ”1"
		 }
],	
 }
 “encryptedBlock” : [
 Hdr2,
 IE2
],
 “metaData” : {
	 “Request_Id” : {},
	 “NextHop_Id” : {}
 }
 }
 “modificationsBlock” : {
	“Mod_chain”:[]
 }
}

_1587819440.vsd
{
 “authenticatedBlock” : {
 “clearTextBlock” : {
 “Request_Line” : {
 	 “Method” : {},
 	 “Scheme” : {},
	 “Authority” : (},
	 “Path” : {},
 “Query&Fragment” : {},
	 “Protocol version” : {}
 },
 “HTTP_Headers” : {
	 “Hdr1”: {},
	 “Hdr2”:{“encBlockIdx”: 0}
 },
 “Payload” : {
	 “IE1” :{},
 	 “IE2” :{“encBlockIdx”: 1},
	 “IE3” :{},
 	 “IE4” :{}
 }
 },
 “encryptedBlock” : [
 Hdr2,
 IE2
],
 “metaData” : {
	 “Request_Id” : {},
	 “NextHop_Id” : {}
 }
 }
 “modificationsBlock” : {
	“Mod_chain”:[]
 }
}

_1587808798.vsd
pSEPP

pIPX

cSEPP

cIPX

cNF

pNF

1. HTTP Request

2. Message rewriting and protection using JOSE

3. Protected HTTP
Request

4. Append cIPX modifications to miPBlock in the message

5. Protected HTTP Request
w/IPX modification

6. Append pIPX modifications to miPBlock in the message

7. Protected HTTP Request
w/IPX modifications

8. Verify integrity of ipBlock.
Decrypt encBlock.
Verify IPX updates in mipBlock and apply them.
Reassemble the HTTP Request message.

9. Modified HTTP
Request

10. HTTP Response

11. Message rewriting and protection using JOSE

12. Protected HTTP
Response

13. Append pIPX modifications to miPBlock in the message

14. Protected HTTP Response
w/IPX modification

15. Append cIPX modifications to miPBlock in the message

16. Protected HTTP Response
w/IPX modifications

18. Modified HTTP Response

17. Verify message.
Reassemble the HTTP response.

