3GPP TSG SA WG3 (Security) Meeting #91	S3-181236
Belgrade(RS), 16 April - 20 April 2018	is S3-180888

Source:	China Mobile
Title:	Living Document: Security of Service Based Architecture of 5G phase 1
Document for:	Approval
Agenda Item:	7.2.13.2
1	Decision/action requested
Approve updates to the living document for SBA Phase 1
2	References
[1]	3GPP TS 33.501 Security Architecture and Procedures for 5G System
[2]	S3-172533, Security Considerations for Service Based Architecture in 5G
[3]	S3-172539, Authorization of NF service access
[4]	C4-174343 LS on Conclusion on Service Based Architecture Protocol Selection
[5]	3GPP TS 23.502 v1.1.0 Procedures for the 5G System
[6]	S3-173153 Adding KI of Service authorization to living doc
[7]	S3-173486 Security for Service Based Interconnect interfaces
[8]	S3-173490 Application layer security based on JOSE framework
[9]	3GPP TS 23.501 v1.5.0 Procedures for the 5G System
[10]	JSON Object Signing and Encryption - https://datatracker.ietf.org/wg/jose/charter/
[11]	JSON Web Signature - https://tools.ietf.org/html/rfc7515
[12]	JSON Web Encryption - https://tools.ietf.org/html/rfc7516
[13]	JSON Web Algorithms - https://tools.ietf.org/html/rfc7518
[14]	S3-180353 SBA: Prioritization for Phase 1
[15]	S3-180354 SBA: Resolve EN on Information Elements that require protection
[16]	S3-180356 SBA: Resolve EN on use of JOSE with multiple HTTP Sessions between two NFs.
[17]	S3-180358 NF Service Register Request Procedure
[18]	S3-180155 Authorization of NF service access
[19]	S3-180177 Merge two procedures of SBA authorization
[20]	S3-180363 NF Service Request Procedure
3	Rationale
This is an update to the SBA living document for Phase 1.
4	Living Document
4.1 Endorsed working assumption for SBA
Following security goals for further work on SBA is endorsed:
Goal #1	The following aspects need to be standardized for 5G SBA in Rel-15:
1. message origin authentication
“Who is the real sender?”
2. message integrity protection
“Was the message modified?”
3. cross-layer antispoofing enforcement
“Do identities (addresses etc.) used on different protocol layers all belong to the same sender?”
4. message content authorization
“Is the consumer legitimized to request or be subscribed to a specific service offered by the producer?”
Goal #2	Goal #1 is relevant for all procedures during registration, discovery, and communication between NF Service Consumer and Provider.
Goal #3	A 5G signalling edge proxy is required to protect traffic crossing a security domain boundary, and thus needs to be included in the architecture.
Goal #4	Authorization should consider the network edge, each NF, and the NRF.
Goal #5	5G CN signalling needs to support hop-by-hop security for message transport, and end-to-end security for sensitive parts of messages.
Goal #6	Define specific security requirements of the new signalling protocol stack[4], at least for JSON, and consider implementation recommendations.
The following proposals are taken as the basis for future work on security for service based interconnect interfaces.
Proposal 1: Add in the 5G architecture a network element at the edge of the service provider network that allows for interconnect security to be implemented, in addition to other security policies such topology hiding etc.
Proposal 2: Implement application layer security at the edge of the network.
Proposal 3: Add in the 5G architecture the possibility for active intermediate security nodes that may manipulate application layer information as it traverses through it.
Proposal 4: Take FS.19 – Diameter Interconnect Security, as the basis to identify Information elements (IEs) that need e2e protection in 5G SBA.
Proposal 5: Map identified IEs into one of the protection categories identified in clause 4.1.5 of S3-173486 [7].
4.1.1	Prioritization of IPX related security work for Phase 1
SA3 has come to an agreement that the following tasks are necessary to implement for Phase 1.
Task 1: 	Define SEPP and its functionality
Task 2:	Define a mechanism/protocol allowing SEPPs to protect application layer information on the N32 interface.
Task 3:	Identifying all IEs that require e2e protection
a. Integrity protect ALL IEs e2e. This would eliminate the need to identify and categorize IEs in phase 1.
NOTE: The implication of this is that in phase 1 there is no support for intermediate nodes in IPX network to manipulate IEs that are in transit.
b. Confidentiality protection is mandated ONLY for Authentication vector IEs, cryptographic material, Location Data (e.g. Cell ID and Physical Cell ID). In addition, SUPI may be confidentiality protected.
Task 4:	Come up with a protection scheme that ’will provide e2e confidentiality protection for AVs and e2e integrity protection, replay protection for ALL information transferred on N32.
Task 5:	Determination of where to implement e2e security – in SEPP or in individual NFs
	NOTE: There was agreement at the call that e2e security shall be implemented in SEPP
Task 6:	Key distribution and management aspects.
NOTE: SA3 has also discussed that TLS may be used in Phase 1 as a security solution between SEPPs, in case any of the above identified tasks can not be completed in Phase 1.

4.1.2	Endorsed working assumptions for service access authorization
Following proposals are endorsed for service access authorization:
1. SA3 adopt both the SA2 defined authorization mechanism based on static configuration, and the SA3 defined authorization mechanism based on OAuth access tokens, as the supported methods for Service access authorization of Network functions in 5G SBA. Except SEPP, all Network functions support both the authorization mechanisms.
2. Authorization mechanism based on static configuration be made mandatory to support.
3. OAuth token based authorization mechanism be made mandatory to support.

4.1.3	Requirements for secure API design	Comment by CMCC2: S3-180923
4.1.3.1		General requirements
The following requirements are intended as general guidance for 3GPP stage 3 work in order to specify secure protocols and APIs. As such, these guidelines are independent of the specific technology and shall be followed at all times.
- 	The valid format and range of values for each IE shall be defined unambiguously.
NOTE 1: Explicitly defining format and range of values not only helps to improve the security of a certain implementation, but also allows for realiable interoperability between different protocol implementations. Example: Defining a “lowercase string variable of length 10 and range [a..z]” is much more explicit that just defining a “string of length 10”.
· Each message shall have a defined maximum number of IEs.
-	Each datastructure shall have a defined maximum size.
-	Each datastructure shall have a defined maximum nesting depth.
NOTE 2: There are resource exhaustion attacks on JSON parsers. Defined maximum numbers of IEs, sizes and nesting depths allow implementations to know an upper bound of required ressources. It also allows validation of incoming messages.
-	Information elements of the same name shall only be used in ordered data structures, e.g. arrays or dictionaries, not in unordered structures, e.g. lists or sets. Multiple use of the same information element within an unordered data type must be explicitly forbidden to allow implementations to act accordingly when malformed messages occur, i.e. by discarding them.
NOTE 3: Duplicate or multiple occurrence of information elements is likely to be handled differently by implementations. Some may interpret the first occurrence, others the last. There are known attacks with specially crafted malicious messages that are designed to confuse implementations of NFs to get fraudulent messages into a PLMN.

4.1.3.2		SBA-specific requirements
The following requirements shall be considered for every network function that implements a service-based interface.
[bookmark: _Hlk507609866]-	OpenAPI specifications are machine-readable JSON objects and can be used as the basis for re-configuring an NFs action when an API or message structure changes. Therefore, each OpenAPI specifications shall contain all necessary information to correctly and unambiguously parse messages.
Editor’s Note: If OpenAPI specifications can contain all information for the above-mentioned purposes is FFS.
-	A specific information should only be contained once in a given message. If the inclusion of duplicate information cannot be avoided, the API specification shall explicitly point out all occurences within the same message. This includes IEs of different names that effectively hold the same value, e.g. if a message contains multiple representations of the SUPI within different IEs, the message definition shall state whether the values of those IEs should match in a valid message.
NOTE 4: Attacks often exploit corner cases and unspecified behavior in order to exploit a system. Traffic normalization counters this by either dropping traffic that is malformed or by forcing certain information elements to a "normal" value. Typically, this relates to inconsistent fields.
· TS 33.501 documents which information shall be confidentiality protected on the N32 interface. The fields where this information is contained may have different names. The machine readable part of the API specification shall include sufficient details to identify all fields that may include this information.
4.1.4 	API-related requirements for the SEPP	Comment by CMCC2: S3-180962
· The SEPP shall fulfil the following API-specific requirements.
· Certain types of information require confidentiality protection. In order to reliably apply confidentiality protection to all instances of this information, the SEPP shall be able to identify all occurrences in which this sensitive type of information is transmitted. This is not limited to explicitly defined IEs, but also to state information if it is contained in the message, rather than being stored at the server.
· The SEPP shall be aware of state information that is required to correctly interpret a message. This includes cookies or session IDs which are required to match in order for a message to be correctly interpreted at the receiving end.
· Since the SEPP’s security functionality necessitates its awareness of the application-layer messages, the SEPP will have to adapt to future API changes. To allow for an easy way to adapt message parsing within the SEPP, it would be desireable to have an automated way of reading in API specifications. This mechanism should be based on a well-defined, standardized format.

4.2 Key Issues
4.2.1 Key Issue #1: Authorization
4.2.1.1 Key issue detail
TS 23.501[9] stated that “network functions within the 5GC Control Plane shall only use service-based interfaces for their interactions”. Most procedures between core NFs have become service based. In SBA, a service could be accessed by any other NFs with service based interface. This introduces a risk of service abuse if its invocation is not access controlled. SA2 has paid much attention to this and TS 23.501 [2] requires that “The Service authorization may entail two steps: (1) Check whether the NF Service Consumer is permitted to discover the requested NF Service Producer instance during the NF service discovery procedure. (2) Check whether the NF Service Consumer is permitted to access the requested NF Service Producer for consuming the NF service. ”
SA3 has also endorsed that authorization should consider the network edge, each NF, and the NRF [2].
Authorization in SBA is relatively complex because the service access between NFs is very frequent and services would be invoked across different network domains. To provide an effect and efficient method against service abuse, the following key issues should be taken into account:
· What is the granularity of authorization? Candidates include service based, NF based, NF type based.
· Since three authorization methods will be considered, i.e. the network edge, each NF, and NRF, the applicable scenarios of each method should be specified.
· Solutions and procedures of each authorization should be specified.
· For each authorization method, where are the authorization rules determining whether to allow service access from and stored? Does NF profile include its authorization rules?
4.2.1.2 Security threats
In service based networks, NF services would be abused if NF service discovery and access are not access controlled. For example, the service Nudm_SubscriberDataManagement_Get provided by UDM should only be accessed by certain NFs like AMF and SMF to get UE’s subscriber data. Without access control, Nudm_SubscriberDataManagement_Get would be invoked by any NF, which leads to data leakage and privacy violation.
4.2.1.3 Potential security requirements
TBA.

4.2.x Key Issue #x: <Title>
Editor’s Note: This subclause is used to collect all agreed candidate key issues.
4.2.x.1 Key issue detail
4.2.x.2 Security threats
4.2.x.3 Potential security requirements
4.3 Candidate solution for SBA security
Editor’s Note: The subclause is used to capture all potential solution agreed in SA3 meeting.
4.3.1 Solution #1: Authorization of NF service access
4.3.1.1 Introduction
This clause specifies authorization procedures for authorizing NF service consumer to access services provided by NF service producer.
Granularity of authorization shall be per service based. In the case of authorization by NRF, prior to accessing a service defined in TS 23.502 [5], the NF service consumer shall request a token from NRF. The token records and proves that NF service consumer is permitted to access the service provided by the service producer. The NF service producer shall verify the token before executing the requested service. The authorization token can be reused to avoid requesting authorization for every service access.
Editor’s Note: It is assumed that NRF authenticates the NF service consumer before authorization. The authentication method is FFS.
4.3.1.2 Solution details
4.3.1.2.1 Service authorization procedure for non-roaming scenarios

Figure 4.3.1.2.1-1: Service authorization procedure for non-roaming scenario
1. [bookmark: OLE_LINK2]NF service consumer to NRF: Service Authorization Request (NF type and NF instance ID of service consumer, NF type and NF instance ID of service producer, NF service name). Service Authorization Request is included in Nnrf_NFDiscovery_Request [2] if the NF Service Counsumer requests service authorization along with NF service discovery request.
2. NRF to NF Service Consumer: Authorization Result (Token).
NRF checks whether the access can be permitted according to the maintained authorization information. If the service can be authorized, NRF sends the result along with a token that proves this authorization. The token should include the NF type and NF instance ID of NF service consumer, the NF type and NF instance ID of NF service producer, the NF service name that will be accessed, and a credential such as MAC (Message Authentication Code) or digital signature. If the token can be reused within a period of time, the expiration date should also be included. If Service Authorization Request is included in Nnrf_NFDiscovery_Request, NF service producer should include Authorization Result in Nnrf_NFDiscovery_Request Response [2] which will be sent to the NF Service Consumer.
3. NF service consumer to NF service producer: NF Service Request (NF type and NF instance ID of service consumer, NF service name, Token).
4. NF service producer to NRF: Token Verification Request (Token).
If NF service producer is able to verify the token, step 4 and step 5 are skipped. Otherwise, NF service producer requests NRF to verify the token through Token Verification Request.
5. NRF to NF service producer: Token Verification Response.
NRF informs NF service producer the verification result. Token Verification Request and Response could introduce much overhead, thus it is recommended to verify the token by NF service producer itself.
6. NF service producer to NF service consumer: NF Service Response.
If the token is valid and the NF service Request is consistent with the information in the token, NF service producer executes the requested service and response to NF service consumer.
Editor’s Note: Parameters of the messages and parameters in the token are FFS.
Editor’s Note: How to compute and verify the credential included in the token is FFS.
4.3.1.2.2 Authorization of NF service access for roaming scenario

[bookmark: OLE_LINK15]Figure 4.3.1.2.2-1: Authorization of NF service access for roaming scenario
1. NF service consumer to NF service producer: NF Service Request (NF type and NF instance ID of service consumer, NF type and NF instance ID of service producer, NF service name).
2. NF service producer to NRF in Home PLMN: Authorization Request (NF type and NF instance ID of service consumer, NF type and NF instance ID of service producer, NF service name).
3. NRF in Home PLMN to NF service producer:
NRF in Home PLMN checks whether the access can be permitted according to the maintained authorization information (static policies). If the service can be authorized, NRF in Home PLMN sends the Authorization Response to the NF service producer.
4. NF service producer to NF service consumer:
If authorized, NF service producer executes the requested service and response to NF service consumer.
Editor’s Note: The authentication mechanisms between different PLMNs is FFS.
4.3.1.3 Evaluation
4.3.2 Solution #2: Application layer protection based on JSON Object Signing and Encryption (JOSE)
4.3.2.1		General
Following aspects are considered when designing a solution for e2e protection of application layer information in the HTTP payload:
-	Which protocol to use to secure JSON content
-	Where to implement e2e security in the network
-	Which JSON information elements to protect and what kind of protection is required
-	Algorithms to use for protection and their negotiation between two Edge Proxy end points
-	Key management aspects including key distribution to the Edge Proxies
-	Protection mechanism that allows selective protection of the payload while allowing other unprotected payload to be modified by the intermediaries
4.3.2.2	Application layer protection based on JOSE
JOSE [10] provides a set of specifications to protect JSON based data structures. These include standards for
-	representation of integrity-protect JSON data based on public-key digital signatures as well as symmetric-key MACs using JSON Web Signing (JWS) [11],
-	representation of encrypted data using JSON Web Encrypton [12],
-	specifying how to encode public keys as JSON-structured objects,
-	specifying algorithms and algorithm identifiers using JSON Web Algorithm [13],
-	specifying a means to protect private and symmetric keys via encryption.
JOSE shall be used to protect JSON based application content in SBA.

4.3.2.2.1	JSON based IEs that require protection (WHAT)
JOSE framework will be used to integrity protect all the JSON IEs in the HTTP message payload. The JSON Web Signature [11] applies integrity protection either based on digital signatures (asymmetric protection) or Message Authentication Codes (symmetric protection). The resulting datastructure is of JSON type and contains JWS Signature representing a digitally signed or MACed message payload.
JOSE framework will be used to confidentiality protect Authentication Vector (AVs), cryptographic keys, SUPI and Location data (e.g. Cell ID and Physical Cell ID) contained in the HTTP message. The JSON Web Encryption [12] is based on the use of Authenticated Encryption with Associated Data (AEAD) based encryption algorithms. Hence it applies both confidentiality protection and integrity protection on the Authentication Vectors.
Editor’s Note: This clause shall be revisited again in Phase 2 if any change is identified in the list of IEs identified in this clause for protection in Phase 1.
4.3.2.2.2	Integrity and Confidentiality protection schemes (HOW)
Editor’s Note: This clause shall include the following aspects - whether Confidentiality protection and Integrity protection is based on Asymmetric encryption or Symmetric encryption, protection schemes needed to allow intermediate nodes to modify application layer information, if required.
4.3.2.2.2.1 Integrity protection based on JSON patch	Comment by CMCC2: S3-180898
There is a requirement for "e2e" integrity protection in conjunction with requirement for intermediaries to be able to modify the message in a verifiable way.

Figure 4.3.2.2.2-1: Message flow across N32 interface
1.	The vSEPP receives an HTTP request.
2.	The vSEPP shall encapsulate the HTTP request into a JSON object encapsulatedRequest consisting of three JSON objects:
-	the request line shall be put into an element called requestLine containing an element each for the method, the URI, and the protocol of the request received in step 1.
-	the header of the request received in step 1 shall be put in into an element called httpHeaders, with one element per header of the original request.
-	the body of the request received in step 1 shall be put into an element called http body.
Editor's note: how to deal with multipart messages is FFS.
	The vSEPP shall include its own identity and the encapsulatedRequest into a JSON object called partRequest as well to allow the hSEPP to identify the originator.
Editor's note: it is FFS whether: The vSEPP shall include the first intermediary’s ID in the partRequest. This authorizes the first intermediary to perform modifications.
Editor’s Note: Only authorized intermediaries are allowed to perform modifications. Authorization mechanism is FFS
	Editor's note: whether the hSEPP should include a policy which elements are allowed to be changed by the first intermediary is FFS.
	The vSEPP shall integrity protect the complete partRequest using JWS.
	The integrity protected partRequest shall be put into an array.
3.	The vSEPP shall use HTTP POST to send the encapsulated request to the first intermediary (visited network's IPX provider).
4.	The first intermediary (e.g. visited network's IPX provider) checks the integrity and authenticity of the encapsulated request. It shall parse the encapsulated request and determine which changes are required. The first intermediary creates a JSON element called operations, taking the sytnax and semantic from RFC 6902, that, when applied as a JSON patch to the encapsulated request, will result in the desired request. If no patch is required, the operations element is empty.

Editor's note: error handling in case of failed integrity check is FFS.
	The first intermediary creates a JSON element called partRequest that includes the intermediary's identity, and integrity protect the partRequest in a JWS.
Editor's note: whether the the part Request includes the hSEPP ID or the next intermediarie's ID to authorize further changes is FFS. Inclusion of a policy is not required, because this would be under the home networks remit.
	The integrity protected partRequest is appended to the array inside the encapsulated request created in step 2.
5.	The first intermediary sends the encapsulated request to the second intermediary (home network's IPX) as in step 3.
6.	The second intermediary checks the integrity and authenticity of the encapsulated request and the partRequest. It parses the encapsulated request, apply the modifications described in the partRequest and determine further modifications required to result in the desired request. These modifications are recorded as a further patch request. Further processing is like in step 4 (create a pertRequest and integrity protect).
Editor's note: it is FFS, if a policy is included in step 2, how and whether the second intermediary can check that the first intermediary only changed allowable elements.
7.	The second intermediary sends the encapsulated request to the hSEPP as in step 3.
Note: The behaviour of the intermediaries is not normative, but the hSEPP assumes that behaviour for processing the resulting request.
8.	The hSEPP shall check the integrity and authenticity of the encapsulated request and the partRequests. The hSEPP checks whether the modifications performed by the intermediaries were permitted by policy. The hSEPP shall decapsulate the encapsulated request, verify signatures, apply the patches in the partRequests in order, perform filtering on the resulting request, and create a new HTTP request according to the "patched" encapsulatedRequest.
Editor's note: which signatures the hSEPP needs to verify is FFS
9.	 The hSEPP shall send the HTTP request resulting from step 8 to the home network's NF.
10.-18.	These steps shall be analogous to steps 1.-9., but treating the HTTP response like the HTTP request.

Below is an example to illustrate the elements in the JSON:
partRequest created by vSEPP
{
"partRequest": {
 "previousSignature": "",
 "originatorIdentity": "some MNO's SEPP",
 "encapsulatedRequest": {
 "requestLine": {
 "method": "POST",
 "URI": "APIroot/nausf_auth/v1/ue_authentications",
 "protocol": "HTTP/2"
 },
 "httpHeader": {
 "Accept: application/json",
 "Content-Type: application/json",
 "host: ": "hplmn.f.q.dn",
 "content-length: ": 100
 },
 "body": {
 "UE-id": "maguro_suci",
 "Serving network name": "some_VPLMN",
 "access_type": "5G" }
 },
 "nextHopIdentity": "next intermediaries name"
 }
}
partRequest created by Intermediary
{
 "partRequest": {
 "previous": "<signature of previous request entry in requesthistory array>",
 "next": "<expected next originator>",
 "originator": "intermediary name",
 "operations": [
 {
 "op": "replace",
 "path": "/HTTP-headers/Host",
 "value": "HPLMN2.com"
 },
 {
 "op": "replace",
 "path": "/HTTP-headers/Content-Length",
 "value": "131"
 },
 {
 "op": "add",
 "path": "/HTTP-body/new_element",
 "value": "value1"
 }
]
 }
}

The complete request with change history as will arrive at the hSEPP

{
 "requestHistory": [
 {
 "integrityProtectedPartRequest": "protectedHeader.protectedPayloadIsPartRequestFromVSEPP.signature"
 },
 {
 "integrityProtectedPartRequests": "protectedHeader.protectedPayloadIsPartRequestFromFirstIntermediary.signature"
 },
 {
 "integrityProtectedPartRequests": "protectedHeader.protectedPayloadIsPartRequestFromFirstIntermediary.signature"
 }
]
}

4.3.2.2.3	Key management aspects
Editors’ Note: This clause shall include the following aspects - whether Confidentiality protection and Integrity protection is based on Asymmetric encryption or Symmetric encryption, how to establish the required keys for Integrity and Confidentiality protection.

4.3.2.3	Evaluation
[bookmark: _Toc496020536][bookmark: _Toc496020993][bookmark: _Toc496867181][bookmark: _Toc500341409][bookmark: _Toc500507631]4.3.3 Solution #3:	NF service registration process
4.3.3.1 Solution Details
During initial provisioning and configuration of NF, NRF is configured with NF’s public key and other information. And NF is configured with public key of NRF and other information.

Figure 4.3.3.1-1 Authentication of NF service registration
1. NF service consumer sends Nnrf_NFManagement_NFRegister Request message to NRF, signed by NF’s private key and encrypted using public key of NRF. Registration request includes a nonce for replay protection.
2. NRF sends Registration response signed by NRF private key. Registration response includes NF certificate and other parameters.
3. Upon receipt if registration response, NF service consumer checks the integrity the Nnrf_NFRegister_Response by using public key of NRF decrypts the payload by NF Service consumer’s private key.
4.3.4 Solution #4: Authorization of NF service access
4.3.4.1 Introduction
During initial provisioning and configuration of NF, NRF is configured with NF’s public key and other information. And NF is configured with public key of NRF and other information. During service registration, NF obtains certificate from NRF for its public key.
Service request and response uses TLS to establish a secure session between NF Service Consumer and NF Service Producer using their corresponding certificates. Upon successful Service request and response, a secure association is established between NF service consumer and NF service producer which provides secure session between the two.
Service request and response can function within same PLMN or across PLMNs. Subsequent sections describe the detailed flow for each case.
4.3.4.2 Solution details
4.3.4.2.1 Authorization of NF service access in the same PLMN

Figure 4.3.4.2.1-1 Authorization of NF service request in the same PLMN
1. The NF Consumer sends an NF Service request to NF producer. It shall contain a self-signed client ID. Service request shall also include a client TLS [client_hello] message for the NF Producer. The contents of TLS client_hello are defined in the TLS specification.
2. a. The NF Producer forwards the Signed Client ID as a payload to IsAuthorized message to NRF.
b. NRF verifies client ID signature. If the NF Consumer ID is successfully verified, NRF checks the stored NF profile information to determine whether the access can be permitted. If the service can be provided, NRF sends the verification result back to NF Service Producer. If verification is unsuccessful, NF Service producer does not proceed.
Editor’s Note: IsAuthorized Request and response messages and VerifyCertificate message need to be defined. Its format and parameters are FFS.
3. The NF Producer replies to the NF Consumer with TLS[server_hello], which further includes information elements such as server_hello, NF_P_Certificate, server_key_exchange, certificate_request, server_hello_done. These information elements are defined in the RFCs for the TLS.
4. Upon receiving the TLS[server_hello] message NF consumer forwards the message to its NRF through VerifyCertificate message. NRF verifies the NF Producer certificate received in TLS [server_hello].
5. Upon successful verification of NF producer certificate, NF Consumer replies with TLS [client key exchange], which further contains information element such as client_certificate (NF_C_Certificate), client_key_exchange, client_certificate_verify, change_cipher_spec, client_finished, etc.
6. After receiving the TLS [client_certificate] message NF consumer forwards the message to its NRF through VerifyCertificate message. NRF verifies the NF Consumer certificate received in TLS [client_certificate] by NRF’s public key.
7. NF producer sends Nrf_Nf_Service Response with TLS [Server_finished] with change_cipher_spec to the NF Consumer.
8. Session Key (KSESSION_C_P) is used to secure further communication between NF consumer and producer.
4.3.4.2.2	Authorization of NF service access in different PLMNs

Figure 4.3.4.2.2-1 Authorization of NF service access across PLMNs

1. The NF Consumer sends an NF Service request to NF producer in the home PLMN. It shall contain a self-signed client ID. Service request shall also include a client TLS [client_hello] message for the NF Producer. The contents of TLS client_hello are defined in the TLS specification.
2. The NF Producer forwards the Signed Client ID as a payload to IsAuthorized message to NRF in home PLMN. hNRF acts proxy for NRF in serving PLMN and forwards the signed payload to it. Serving NRF verifies the Client ID signature. If the NF Consumer ID is successfully verified, NRF checks the stored NF profile information to determine whether the access can be permitted. If the service can be provided, NRF sends the verification result back to NF Service Produce through hNRF proxy. If verification is unsuccessful, NF Service producer does not proceed.
Editor’s Note: IsAuthorized Request and response messages need to be defined. Its format and parameters are FFS.
3. The NF Producer replies to the NF Consumer with TLS[server_hello], which further includes information elements such as server_hello, NF_P_Certificate, server_key_exchange, certificate_request, server_hello_done. These information elements are defined in the RFCs for the TLS.
4. NF Service producer’s certificate is sent to NRF in HPLMN for verification through the VerifyCertificate message. Serving NRF acts as a proxy and just transfer the payload to Home NRF. The NRF in HPLMN verifies the NF producer’s certificate received in TLS [server_hello].
5. NF Consumer replies with TLS [client key exchange], which further contains information element such as client_certificate (NF_C_Certificate), client_key_exchange, client_certificate_verify, change_cipher_spec, client_finished etc.
6. NF Service consumer certificate is sent to NRF in SPLMN for verification through the VerifyCertificate message. HPLMN NRF acts as a proxy and just transfer the payload to Serving NRF. The NRF in Serving PLMN verifies the NF Consumers certificate received in TLS [client_certificate].
7. NF producer sends Nrf_Nf_Service Response with TLS [Server_finished] with change_cipher_spec to the NF Consumer.
8. Session Key (KSESSION_C_P) is used to secure further communication between NF consumer and producer.

4.3.5	Solution #5: Using mediation services with end-to-end encryption
4.3.5.1	Generic
The scenario that is depicted in the figure below is a scenario with two MNOs, MNO A and MNO B and two IPX providers, IPX A and IPX B. The IPX provider A provides mediation services for MNO A and IPX provider B provides mediation services for MNO B. Both MNOs have one network function (NF), which is left unnamed. This solution provides two possible implementations, one where two SEPPs communicate securely with each other via HTTPS or TLS, and one where JOSE is used for the protection of the messages between two SEPPs.
4.3.5.2	End-to-end encryption using HTTPS or TLS
In this version of the solution, it is assumed that the SEPPs themselves use HTTPS for providing end-to-end security. In this case, the solution works as follows:
1.	The SEPP A receives a HTTP(S) Request from NF A as usual.
2.	In case this request contains sensitive information according to clause 9.1.3.3, the SEPP A performs an action to hide these fields for the mediation service. This action is not to be standardized. Some examples are:
a.	Replacing the values of these with some other values, e.g. a hash of the value. The SEPP A stores the hash of the value and the corresponding value temporarily.
b..	Entirely removing the fields from the message and storing bot the header and the value temporarily.
c.	Encrypting the fields using some proprietary mechanism.
3.	The SEPP A invokes the Mediate service running at the IPX A by sending a MediateAndReturn Request message to the IPX provider. The MediateAndReturn Request contains the message that was received from the NF A and has it’s sensitive information removed or hidden according to step 2.
4.	The Mediation services performs it’s mediation
5.	The mediation service sends the MediateAndReturn Response message, which contains the mediated message, to the SEPP A.
6.	Upon reception, the SEPP A reinserts the sensitive information. This action depends on how the SEPP A has removed or hidden the sensitive information and can be entirely proprietary.
7.	The SEPP A then sends the mediated version of the original NF A’s request to the SEPP B over HTTPS. So the request would look like a request that came from NF A apart from the mediated fields.
8.	The SEPP B receives the request, and if mediation is deemed necessary, the SEPP B also removes or hides the sensitive fields from the message.
9.	The SEPP B then invokes the Mediate service running on IPX B by sending a MediateAndReturn Request message to IPX B.
10.	The mediation service performs it’s mediation.
11.	The mediation service sends the MediateAndReturn Response message, which contains the mediated message.
12.	The SEPP B re-inserts the sensitive information
13.	And finally, SEPP B sends the request to NF B.
In short, the solution relies on standard HTTP and HTTPS. In between the steps 2 and 6, the SEPP A will either have to keep state or use an encryption / decryption mechanism. In between the steps 8 and 12, the SEPP B has a similar task. In case IPX provider hosts the SEPP (e.g. for small operators), the steps 2-6 would probably be left out altogether.
[image:]
Figure 4.3.5.2-1 – Mediation service using HTTPS
4.3.5.3	End-to-end security using JOSE
In this version of the solution, it is assumed that the SEPPs themselves use HTTP request with an encrypted JOSE payload for providing end-to-end security. In this case, the solution works as follows:
1.	The SEPP A receives a HTTP(S) Request from NF A as usual.
2.	The SEPP A takes the request and wraps the whole request into a JSON format. So, the request headers go into a field called ‘HTTPRequestHeader’, a binary blob goes into a field called ‘BinaryBlob’ and the session cookie goes into a field called ‘SessionCookie’. Then, the SEPP determines whether the message contains sensitive information according to clause 9.1.3.3 and performs an action to hide these fields for the mediation service. This action is not to be standardized. Some examples are:
a.	Replacing the values of these with some other values, e.g. a hash of the value. The SEPP A stores the hash of the value and the corresponding value temporarily.
b.	Entirely removing the fields from the message and storing bot the header and the value temporarily.
c.	Encrypting the fields using some proprietary mechanism.
3.	The SEPP A invokes the Mediate service running at the IPX A by sending a MediateAndReturn Request message to the IPX provider. The MediateAndReturn Request contains the message that was received from the NF A and has it’s sensitive information removed or hidden according to step 2.
4.	The Mediation services performs it’s mediation
5.	The mediation service sends the MediateAndReturn Response message, which contains the mediated message, to the SEPP A.
6.	Upon reception, the SEPP A reinserts the sensitive information. This action depends on how the SEPP A has removed or hidden the sensitive information and can be entirely proprietary. The SEPP A encrypts the message using standard JOSE using the target SEPP’s public key.
7.	The SEPP A then sends the mediated version of the original NF A’s request to the SEPP B over HTTP.
8.	The SEPP B receives the request, decrypts the request, and if mediation is deemed necessary, the SEPP B also removes or hides the sensitive fields from the message.
9.	The SEPP B then invokes the Mediate service running on IPX B by sending a MediateAndReturn Request message to IPX B.
10.	The mediation service performs it’s mediation.
11.	The mediation service sends the MediateAndReturn Response message, which contains the mediated message.
12.	The SEPP B re-inserts the sensitive information
13.	And finally, SEPP B reconstructs the HTTP Request from the JSON fields and sends the HTTP Request to the NF B.
In short, the solution relies on standard HTTP and JOSE. A complicating factor is that the SEPPs will have to convert the entire HTTP Request into a JSON object, which in itself will be contained in another HTTP request.. The receiving SEPP will have to do the reverse conversion. Like in the solution based on HTTPS, in between the steps 2 and 6, the SEPP A will either have to keep state or use an encryption / decryption mechanism. In between the steps 8 and 12, the SEPP B has a similar task. In case IPX provider hosts the SEPP (e.g. for small operators), the steps 2-6 would probably be left out altogether.
[image:]
Figure 4.3.5.3-1 – Mediation service using JOSE end-to-end encryption
4.3.5.4	Migration paths after accepting this solution
One possible drawback of the solution is that it will ‘stick’ even past its due date. The solution provides therefore proposes to name the mediation service in 3GPP specs. By standardizing a name, it becomes possible to migrate to a newer service by using a service under the newer name and migration remains under control of 3GPP. Investments in existing services and SEPPs will not be affected and IPX providers can distinguish themselves by operating the newer service.
4.3.5.5	Possible deployments
In this solution, it is always assumed that the SEPP is located in the MNO domain and the mediation service is located in the IPX domain. As a drawback, there is an additional message exchange between the SEPP in the MNO domain and the mediation service in the IPX domain. There are two possible deployments that alleviate this problem:
-	Colocation of the SEPP in the IPX domain: This is a likely deployment scenario for smaller operators, but should not be the standard preferred option.
-	Colocation of the mediation service in the MNO domain: In this deployment, the mediation service is run as a service on premise for the MNO. This is a deployment scenario for larger operators, but will depend on the willingness of IPX providers to run their service offsite.
4.3.5.6	Evaluation
This solution has a number of drawbacks:
-	It introduces additional messages (in total 4 if mediation is used twice);
-	The SEPP needs to either keep state for removing / reinserting the sensitive fields;
-	TLS handshake for HTTP request will take time and messages;
-	MNO needs to operate both a connection to IPX Mediation Service and a 'direct' connection to MNO peers (both can be over the same IPX network, but doesn’t have to go there).
On the other hand:
-	It mostly reuses standard HTTP, etc. making it relatively easy to implement;
-	Works with end-to-end security, also if different from what is presented here;
-	Offers a migration path;
-	Does not expose the sensitive information to the IPX provider, while making mediation services possible;
-	Can be specified within the timeframe available;
-	Allows IPX providers to continue to offer their services, even if end-to-end security is used.

4.3.6	Solution #6: Policies for protection on the N32 interface
A message protection policy determines which part of a certain message shall be integrity protected, which part of a certain message shall be confidentiality protected, and which part of a certain message shall be modifyable by IPX providers. For application layer protection of messages on the N32 interface, the SEPP shall apply message protection policies.
Editor's Note: The specification of the protection policy is in scope of CT4. SA3 requires that the granularity is at service level or more fine-grained. Whether 'per subscription' is relevant, is to be discussed between SA3 and CT4. Other details are for CT4 to decide.
If the SEPP neither has nor obtains a policy applicable for a specific message, the SEPP shall apply a default policy.
Editor's Note: Which IEs are protected according to the default policy is for further study.
For the protection of a specific message, an NF may include a message protection policy applicable for that specific message into the message.
The SEPP shall retrieve a message protection policy from the NRF, if operator configuration requires, e.g. when the SEPP has no message protection policy available for a message to be sent on N32.
Editor's Note: It is for further study whether the procedure is a service offered by the NRF.
The SEPP shall send message protection policy error messages to NFs or the NRF if operator configuration requires, e.g for the case that the SEPP has no policy applicable for a specific message.
It is up to operator configuration how the SEPP behaves if more than one policy applicable for a specific message are available to the SEPP.

4.4 Conclusion
Editor’s Note: The subclause is used to conclude real issues identified and selected solutions which needs to move into TS 33.501

image1.emf

5 . Token V erification R esponse

4 . Token V erification Request (Token)

6 . NF Service R esponse

3 . NF Service Request (Token)

1. Service Authorization Request

2 . Authorization Result (Token)

NRF

NF Ser vice Consumer

NF Service Producer

Authentication

oleObject1.bin

Authentication

1. Service Authorization Request

2. Authorization Result (Token)

3. NF Service Request (Token)

4. Token Verification Request (Token)

5. Token Verification Response

6. NF Service Response

NF Service Producer

NF Service Consumer

NRF

image2.wmf

3

.

Authorization

R

esponse

2

.

Authorization

Request

4

.

NF

Serv

ice

R

esponse

1

.

NF

Service

Request

V

-

NRF

NF

Service Consumer

NF Service

Producer

H

-

NRF

NF

Discovery

Authorize based on

authorization

information

NF

authentication

NF

authentication

A

uthentication

Microsoft_Office_Word_97_-_2003___1.doc

NF Discovery

2. Authorization Request

3. Authorization Response

Authorize based on authorization information

Authentication

NF authentication

NF authentication

1. NF Service Request

4. NF Service Response

NF Service Consumer

H-NRF

V-NRF

NF Service Producer

image3.wmf
v

i

s

i

t

e

d

N

e

t

w

o

r

k

V

i

s

i

t

e

d

S

E

P

P

v

i

s

i

t

e

d

I

P

X

H

o

m

e

I

P

X

H

o

m

e

S

E

P

P

H

o

m

e

N

e

t

w

o

r

k

1

r

e

q

u

e

s

t

2

.

e

n

c

a

p

s

u

l

a

t

e

r

e

q

u

e

s

t

3

.

e

n

c

a

p

s

u

l

a

t

e

d

r

e

q

u

e

s

t

4

.

a

d

d

m

o

d

i

f

i

c

a

t

i

o

n

s

5

.

e

n

c

a

p

s

u

l

a

t

e

d

r

e

q

u

e

s

t

w

i

t

h

m

o

d

i

f

i

c

a

t

i

o

n

s

6

.

a

d

d

f

u

r

t

h

e

r

m

o

d

i

f

c

a

t

i

o

n

s

7

.

e

n

c

a

p

s

u

l

a

t

e

d

r

e

q

u

e

s

t

w

i

t

h

m

o

d

i

f

i

c

a

t

i

o

n

s

w

i

t

h

f

u

r

t

h

e

r

m

o

d

i

f

i

c

a

t

i

o

n

s

8

.

d

e

c

a

p

s

u

l

a

t

e

r

e

q

u

e

s

t

a

p

p

l

y

m

o

d

i

f

i

c

a

t

i

o

n

s

v

e

r

i

f

y

9

.

m

o

d

i

f

i

e

d

r

e

q

u

e

s

t

1

0

.

r

e

s

p

o

n

s

e

1

1

.

e

n

c

a

p

s

u

l

a

t

e

r

e

s

p

o

n

s

e

1

2

.

e

n

c

a

p

s

u

l

a

t

e

d

r

e

s

p

o

n

s

e

1

3

.

a

d

d

m

o

d

i

f

i

c

a

t

i

o

n

s

1

4

.

e

n

c

a

p

s

u

l

a

t

e

d

r

e

s

p

o

n

s

e

w

i

t

h

m

o

d

i

f

i

c

a

t

i

o

n

s

1

5

.

a

d

d

f

u

r

t

h

e

r

m

o

d

i

f

i

c

a

t

i

o

n

s

1

6

.

e

n

c

a

p

s

u

l

a

t

e

d

r

e

s

p

o

n

s

e

w

i

t

h

m

o

d

i

f

i

c

a

t

i

o

n

s

w

i

t

h

f

u

r

t

h

e

r

m

o

d

i

f

i

c

a

t

i

o

n

s

1

7

.

d

e

c

a

p

s

u

l

a

t

e

r

e

s

p

o

n

s

e

a

p

p

l

y

m

o

d

i

f

i

c

a

t

i

o

n

s

v

e

r

i

f

y

1

8

.

m

o

d

i

f

i

e

d

r

e

s

p

o

n

s

e

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

6

.

3

.

2

oleObject2.bin

image4.emf
NF Service Consumer NRF

1. Registration Request((NF type of the target NF, NF ID, NF services), Nonce)Sign-PrivKey-NF

2. Registration Response(Result, Nonce, NF Certificate)Sign-PrivKey-NRF

NF Service Consumer
NRF
1. Registration Request((NF type of the target NF, NF ID, NF services), Nonce)Sign-PrivKey-NF
2. Registration Response(Result, Nonce, NF Certificate)Sign-PrivKey-NRF

image5.emf
NF Service Consumer NRF NF Service Producer

1. Nrf_NF Service Request[TLS(ClientHello), Sign_PrivKey_NF_C(client_id)]

2. a. IsAuthorized(Sign_privkey_NF_C(Client_Id))

2.c.Response_IsAuthorized(Yes/No)

2.b.NRF authorizes NF_C.

3. TLS[ServerHello, NF_P_certificate,ServerKeyExchange, CertificateRequest, ServerHelloDone]

4. Check Certificate

5.a.TLS[NF_C_certificate,CertificateVerify]

5.b.TLS[ClientKeyExchange]

5.c.TLS[ClientFinished]

6. Check Certificate

7. Nrf_NF_Service REsponse(TLS [ChangeCipherSpec, ServerFinished])

8. Secure Session using Session K

Session_C_P

4.aVerifyCertificate(NF_P Certificate)

4. c. Response_VerifiyCertificate(Yes/No)

6. a. VerifyCertificate(NF_C)

6.c.Response_VerifyCertificate(Yes/No)

NF Service Consumer
NRF
NF Service Producer
1. Nrf_NF Service Request[TLS(ClientHello), Sign_PrivKey_NF_C(client_id)]
2. a. IsAuthorized(Sign_privkey_NF_C(Client_Id))
2.c.Response_IsAuthorized(Yes/No)
2.b.NRF authorizes NF_C.
3. TLS[ServerHello, NF_P_certificate,ServerKeyExchange, CertificateRequest, ServerHelloDone]
4. Check Certificate
5.a.TLS[NF_C_certificate,CertificateVerify]
5.b.TLS[ClientKeyExchange]
5.c.TLS[ClientFinished]
6. Check Certificate
7. Nrf_NF_Service REsponse(TLS [ChangeCipherSpec, ServerFinished])
8. Secure Session using Session KSession_C_P
4.aVerifyCertificate(NF_P Certificate)
4. c. Response_VerifiyCertificate(Yes/No)
6. a. VerifyCertificate(NF_C)
6.c.Response_VerifyCertificate(Yes/No)

image6.emf
NF Service Consumer NRF in Home PLMN NF Service Producer

1. Nrf_NF Service Request[TLS(ClientHello), Sign_PrivKey_NF_C(client_id)]

2. a. IsAuthorized(Sign_privkey_NFC(Client_Id))

2.e.Response_IsAuthorized(Yes/No)

3. TLS[ServerHello, NF_P_certificate,ServerKeyExchange, CertificateRequest, ServerHelloDone]

4. Check Certificate

5.a.TLS[NF_C_certificate,CertificateVerify]

5.b.TLS[ClientKeyExchange]

5.c.TLS[ClientFinished]

6. Check Certificate

7. Nrf_NF_Service REsponse(TLS [ChangeCipherSpec, ServerFinished])

Secure Session using Session K

Session_C_P

NRF in Serving PLMN

2. b. IsAuthorized(Sign_privkey_NFC(Client_Id))

2.c. NRF Authorizes NF_C

2.d.Response_IsAuthorized(Yes/No)

IPX

4.a.VerifyCertificate(NF_P Certificate) 4.b.VeifiyCetificate(NF_P Certificate)

4.c.Response_VerifyCertificate(Yes/No)

4.d.Response_VerifyCertificate(Yes/No)

6.b.VerifyCertificate(NF_C Certificate)

6.a.VerifyCertificate(NF_C Certificate)

6.c.Response_VerifyCertificate(Yes/No) 6.d. Response_VerifyCertificate(Yes/No)

NF Service Consumer
NRF in Home PLMN
NF Service Producer
1. Nrf_NF Service Request[TLS(ClientHello), Sign_PrivKey_NF_C(client_id)]
2. a. IsAuthorized(Sign_privkey_NFC(Client_Id))
2.e.Response_IsAuthorized(Yes/No)
3. TLS[ServerHello, NF_P_certificate,ServerKeyExchange, CertificateRequest, ServerHelloDone]
4. Check Certificate
5.a.TLS[NF_C_certificate,CertificateVerify]
5.b.TLS[ClientKeyExchange]
5.c.TLS[ClientFinished]
6. Check Certificate
7. Nrf_NF_Service REsponse(TLS [ChangeCipherSpec, ServerFinished])
Secure Session using Session KSession_C_P
NRF in Serving PLMN
2. b. IsAuthorized(Sign_privkey_NFC(Client_Id))
2.c. NRF Authorizes NF_C
2.d.Response_IsAuthorized(Yes/No)
IPX
4.a.VerifyCertificate(NF_P Certificate)
4.b.VeifiyCetificate(NF_P Certificate)
4.c.Response_VerifyCertificate(Yes/No)
4.d.Response_VerifyCertificate(Yes/No)
6.b.VerifyCertificate(NF_C Certificate)
6.a.VerifyCertificate(NF_C Certificate)
6.c.Response_VerifyCertificate(Yes/No)
6.d. Response_VerifyCertificate(Yes/No)

image7.png
MNO A

NF A

SEPP A

MNO B

1. HTTPS Request

2. Remove Sensitive fields

6. Reinsert sensitive fields

SEPP B

NF B

8. Remove Sensitive Fields

IPXA IPX B
3. HTTPS Request
4. Med. Service
5. HTTPS Response
7. HTTPS Request N
9. HTTPS Request
10. Med. Service

11. HTTPS Response

12. Reinsert sensitive fields

13. HTTPS Request

image8.png
MNO A

NF A

MNO B

SEPP B

SEPP A IPXA IPX B
1. HTTPS Request
2. Remove Sensitive fields &
Construct JSON
3. HTTP Request
4. Med. Service

5. HTTP Response

6. Reinsert sensitive fields

7. HTTP Request

>

NF B

8. Remove Sensitive Fields

9. HTTPS Request

10. Med. Service

11. HTTPS Response

12. Reinsert sensitive fields &
Reconstruct HTTP Req.

13. HTTPS Request

