3GPP TSG SA WG3 (Security) Meeting #87
S3-171327
15-19 May 2017; Ljubljana (Slovenia)

Source:
Qualcomm Incorporated
Title:
Simplified symmetric key privacy solution that enable routing to multiple AUSFs
Document for:
Approval

Agenda Item:
8.3.7
1
Decision/action requested

It is proposed that SA3 accept the described solution into the TR.
2
References
[1]
TR 33.899
3
Rationale

This contribution details a symmetric key based solution for subscriber identifier privacy that enables deployment of multiple AUSFs in a network such that each AUSF serves a different set of subscribers. It does this by using a longerpseudonym identitifer, called the Temp ID in this solution, for the associated subscriber permanent identifier that enables routing information to be embedded in the temporary identifier in a proprietary way in the home network, i.e. it has no impact on the UE.

For the proposed solution, the IMSI is never sent in the clear unless the the user is prompted to send it, i.e. it is up to the user whether to accept no coverage in the case that the network is asking for the permanent identifier. Such a mechansim seems to be needed for any solution where the state between the UE and network could be wrong, i.e. incorrect key provisioned in the UE or key change in the network.

It is assumed that each authentication method ends with some KRoot shared between UE and AUSF, e.g. CK and IK in case of AKA and EMSK in case of EAP. The general solution proceeds as follow with some addition described below to enable a multiple AUSF case.
The AUSF generates the temporary identifier called Temp ID as follows for each authentication:

AUSF generates a 128-bit number, Temp ID

· Length is chosen to be 128-bit to make encrypting the identity easy and the chance of collision is effectively negligible.
· Temp ID here is for MSIN part of the permanent identifier – MCC and MNC will need to be sent in the clear for the visited network to be able to route the request to the home network
AUSF calculates KPrivacy from KRoot
AUSF calculates Encrypted Temp ID by encrypting Temp ID using KPrivacy
AUSF sends Encrypted Temp ID to the UE and stores Temp ID with IMSI
The UE handles the Temp ID as follows:
UE receives the Encrypted Temp ID from AUSF

UE calculates KPrivacy from KRoot
UE calculates Temp ID from the Encrypted Temp ID using KPrivacy
UE stores and uses this Temp ID for the next authentication with the AUSF
To deal with the case of having multiple AUSFs that each serve a distinct set of subscribers, the AUSF could generate Temp ID as follows:

AUSF has its 32-bit Routing ID
AUSF generates a 96-bit random number, Short Temp ID

AUSF calculates 32-bit Keyed hash of Short Temp ID

· A key, KRouting, is shared between AUSF and routing function in the home network that associates a Temp ID with the corresposnding AUSF
AUSF calculates Temp ID as Short Temp ID | (Hash(KRouting, Short Temp ID) xor Routing ID)
When receiving a Temp ID that requires a slection of AUSF, the routing function does the following:

Routing Function calculates 32-bit Keyed hash of first 96 bits of Temp ID

Routing Function calculates Routing ID by xoring Keyed hash with last 32 bits of Temp ID

Routing Function passes request into correct AUSF based on Routing ID
4
Detailed proposal
It is proposed that SA3 approve the below pCR for inclusion in TR 33.899.
**** First Change ****

5.7.4.X
Solution #7.X: Using a pseudonym with multiple AUSFs
5.7.4.X.1
Introduction

This solution provides a symmetric key based solution for subscriber identifier privacy that enables deployment of multiple AUSFs in a network such that each AUSF serves a different set of subscribers. It does this by using a longer pseudonym identitifer, called the Temp ID in this solution, for the associated subscriber permanent identifier that enables routing information to be embedded in the temporary identifier in a proprietary way in the home network, i.e. it has no impact on the UE.

5.7.4.X.2
Solution details

For the proposed solution, the IMSI is never sent in the clear unless the the user is prompted to send it, i.e. it is up to the user whether to accept no coverage in the case that the network is asking for the permanent identifier. Such a mechansim seems to be needed for any solution where the state between the UE and network could be wrong, i.e. incorrect key provisioned in the UE or key change in the network.

It is assumed that each authentication method ends with some KRoot shared between UE and AUSF, e.g. CK and IK in case of AKA and EMSK in case of EAP. The general solution proceeds as follow with some addition described below to enable a multiple AUSF case.

The AUSF generates the temporary identifier called Temp ID as follows for each authentication:

AUSF generates a 128-bit number, Temp ID

Length is chosen to be 128-bit to make encrypting the identity easy and the chance of collision is effectively negligible.

Temp ID here is for MSIN part of the permanent identifier – MCC and MNC will need to be sent in the clear for the visited network to be able to route the request to the home network

AUSF calculates KPrivacy from KRoot

AUSF calculates Encrypted Temp ID by encrypting Temp ID using KPrivacy

AUSF sends Encrypted Temp ID to the UE and stores Temp ID with IMSI

The UE handles the Temp ID as follows:

UE receives the Encrypted Temp ID from AUSF

UE calculates KPrivacy from KRoot

UE calculates Temp ID from the Encrypted Temp ID using KPrivacy

UE stores and uses this Temp ID for the next authentication with the AUSF

To deal with the case of having multiple AUSFs that each serve a distinct set of subscribers, the AUSF could generate Temp ID as follows:

AUSF has its 32-bit Routing ID

AUSF generates a 96-bit random number, Short Temp ID

AUSF calculates 32-bit Keyed hash of Short Temp ID

A key, KRouting, is shared between AUSF and routing function in the home network that associates a Temp ID with the corresposnding AUSF

AUSF calculates Temp ID as Short Temp ID | (Hash(KRouting, Short Temp ID) xor Routing ID)

When receiving a Temp ID that requires a slection of AUSF, the routing function does the following:

Routing Function calculates 32-bit Keyed hash of first 96 bits of Temp ID

Routing Function calculates Routing ID by xoring Keyed hash with last 32 bits of Temp ID

Routing Function passes request into correct AUSF based on Routing ID
5.7.4.X.3
Evaluation

**** End of Changes ****

